exec.c 124.2 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45
#include "exec/memory.h"
P
Paolo Bonzini 已提交
46
#include "exec/ioport.h"
47
#include "sysemu/dma.h"
48
#include "sysemu/hostmem.h"
49
#include "sysemu/hw_accel.h"
50
#include "exec/address-spaces.h"
51
#include "sysemu/xen-mapcache.h"
52
#include "trace-root.h"
53

54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
MemoryRegion io_mem_rom, io_mem_notdirty;
92
static MemoryRegion io_mem_unassigned;
93
#endif
94

95 96 97 98 99
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

100 101
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
102 103
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
104
__thread CPUState *current_cpu;
P
pbrook 已提交
105
/* 0 = Do not count executed instructions.
T
ths 已提交
106
   1 = Precise instruction counting.
P
pbrook 已提交
107
   2 = Adaptive rate instruction counting.  */
108
int use_icount;
B
bellard 已提交
109

Y
Yang Zhong 已提交
110 111 112
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

132
#if !defined(CONFIG_USER_ONLY)
133

134 135 136 137 138 139 140 141 142 143
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

144 145 146
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
147
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
149
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150
    uint32_t ptr : 26;
151 152
};

153 154
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

155
/* Size of the L2 (and L3, etc) page tables.  */
156
#define ADDR_SPACE_BITS 64
157

M
Michael S. Tsirkin 已提交
158
#define P_L2_BITS 9
159 160 161 162 163
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
164

165
typedef struct PhysPageMap {
166 167
    struct rcu_head rcu;

168 169 170 171 172 173 174 175
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

176
struct AddressSpaceDispatch {
177
    MemoryRegionSection *mru_section;
178 179 180 181
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
182
    PhysPageMap map;
183 184
};

185 186 187
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
188
    FlatView *fv;
189
    hwaddr base;
190
    uint16_t sub_section[];
191 192
} subpage_t;

193 194 195 196
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
197

198
static void io_mem_init(void);
A
Avi Kivity 已提交
199
static void memory_map_init(void);
200
static void tcg_commit(MemoryListener *listener);
201

202
static MemoryRegion io_mem_watch;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

218 219 220 221 222 223
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

224
#endif
B
bellard 已提交
225

226
#if !defined(CONFIG_USER_ONLY)
227

228
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
229
{
230
    static unsigned alloc_hint = 16;
231
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
232
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
233 234
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
235
        alloc_hint = map->nodes_nb_alloc;
236
    }
237 238
}

239
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
240 241
{
    unsigned i;
242
    uint32_t ret;
243 244
    PhysPageEntry e;
    PhysPageEntry *p;
245

246
    ret = map->nodes_nb++;
247
    p = map->nodes[ret];
248
    assert(ret != PHYS_MAP_NODE_NIL);
249
    assert(ret != map->nodes_nb_alloc);
250 251 252

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
253
    for (i = 0; i < P_L2_SIZE; ++i) {
254
        memcpy(&p[i], &e, sizeof(e));
255
    }
256
    return ret;
257 258
}

259 260
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
261
                                int level)
262 263
{
    PhysPageEntry *p;
264
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
265

M
Michael S. Tsirkin 已提交
266
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
267
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
268
    }
269
    p = map->nodes[lp->ptr];
270
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
271

272
    while (*nb && lp < &p[P_L2_SIZE]) {
273
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
274
            lp->skip = 0;
275
            lp->ptr = leaf;
276 277
            *index += step;
            *nb -= step;
278
        } else {
279
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
280 281
        }
        ++lp;
282 283 284
    }
}

A
Avi Kivity 已提交
285
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
286
                          hwaddr index, hwaddr nb,
287
                          uint16_t leaf)
288
{
289
    /* Wildly overreserve - it doesn't matter much. */
290
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
291

292
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
293 294
}

295 296 297
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
298
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
318
            phys_page_compact(&p[i], nodes);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

348
void address_space_dispatch_compact(AddressSpaceDispatch *d)
349 350
{
    if (d->phys_map.skip) {
351
        phys_page_compact(&d->phys_map, d->map.nodes);
352 353 354
    }
}

F
Fam Zheng 已提交
355 356 357 358 359 360
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
361
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
362
           range_covers_byte(section->offset_within_address_space,
363
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
364 365
}

366
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
367
{
368 369 370
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
371
    hwaddr index = addr >> TARGET_PAGE_BITS;
372
    int i;
373

M
Michael S. Tsirkin 已提交
374
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
375
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
376
            return &sections[PHYS_SECTION_UNASSIGNED];
377
        }
378
        p = nodes[lp.ptr];
379
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
380
    }
381

F
Fam Zheng 已提交
382
    if (section_covers_addr(&sections[lp.ptr], addr)) {
383 384 385 386
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
387 388
}

389
/* Called from RCU critical section */
390
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
391 392
                                                        hwaddr addr,
                                                        bool resolve_subpage)
393
{
394
    MemoryRegionSection *section = atomic_read(&d->mru_section);
395 396
    subpage_t *subpage;

397 398
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
399
        section = phys_page_find(d, addr);
400
        atomic_set(&d->mru_section, section);
401
    }
402 403
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
404
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
405 406
    }
    return section;
407 408
}

409
/* Called from RCU critical section */
410
static MemoryRegionSection *
411
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
412
                                 hwaddr *plen, bool resolve_subpage)
413 414
{
    MemoryRegionSection *section;
415
    MemoryRegion *mr;
416
    Int128 diff;
417

418
    section = address_space_lookup_region(d, addr, resolve_subpage);
419 420 421 422 423 424
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

425
    mr = section->mr;
426 427 428 429 430 431 432 433 434 435 436 437

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
438
    if (memory_region_is_ram(mr)) {
439
        diff = int128_sub(section->size, int128_make64(addr));
440 441
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
442 443
    return section;
}
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
462
 * @attrs: transaction attributes
463 464 465 466 467 468 469 470 471 472
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
473 474
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
475 476 477 478 479 480 481
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
482 483 484 485 486 487 488 489 490
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
533
 * @target_as: the address space targeted by the IOMMU
534
 * @attrs: memory transaction attributes
535 536 537
 *
 * This function is called from RCU critical section
 */
538 539 540
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
541 542
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
543 544
                                                 bool is_write,
                                                 bool is_mmio,
545 546
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
547 548
{
    MemoryRegionSection *section;
549
    IOMMUMemoryRegion *iommu_mr;
550 551
    hwaddr plen = (hwaddr)(-1);

552 553
    if (!plen_out) {
        plen_out = &plen;
554
    }
555

556 557 558
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
559

560 561 562 563 564
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
565
                                             target_as, attrs);
566
    }
567
    if (page_mask_out) {
568 569
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
570 571
    }

572
    return *section;
573 574 575
}

/* Called from RCU critical section */
576
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
577
                                            bool is_write, MemTxAttrs attrs)
578
{
579
    MemoryRegionSection section;
580
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
581

582 583 584 585 586
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
587 588
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
589

590 591 592 593
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
594

595 596 597 598 599
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
600
        .target_as = as,
601 602 603
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
604 605 606 607 608 609 610 611 612
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
613
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
614 615
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
616 617 618
{
    MemoryRegion *mr;
    MemoryRegionSection section;
619
    AddressSpace *as = NULL;
620 621

    /* This can be MMIO, so setup MMIO bit. */
622
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
623
                                    is_write, true, &as, attrs);
624 625
    mr = section.mr;

626
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
627
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
628
        *plen = MIN(page, *plen);
629 630
    }

A
Avi Kivity 已提交
631
    return mr;
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672 673 674 675 676 677 678
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
679 680
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
712
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
713
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
714
        g_free(notifier);
715 716 717 718
    }
    g_array_free(cpu->iommu_notifiers, true);
}

719
/* Called from RCU critical section */
720
MemoryRegionSection *
721
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
722 723
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
724
{
A
Avi Kivity 已提交
725
    MemoryRegionSection *section;
726 727 728 729
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
730
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
767

768
    assert(!memory_region_is_iommu(section->mr));
769
    *xlat = addr;
A
Avi Kivity 已提交
770
    return section;
771 772 773

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
774
}
775
#endif
B
bellard 已提交
776

777
#if !defined(CONFIG_USER_ONLY)
778 779

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
780
{
781
    CPUState *cpu = opaque;
B
bellard 已提交
782

783 784
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
785
    cpu->interrupt_request &= ~0x01;
786
    tlb_flush(cpu);
787

788 789 790 791 792 793 794
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

795
    return 0;
B
bellard 已提交
796
}
B
bellard 已提交
797

798 799 800 801
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

802
    cpu->exception_index = -1;
803 804 805 806 807 808 809 810

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

811
    return tcg_enabled() && cpu->exception_index != -1;
812 813 814 815 816 817
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
818
    .needed = cpu_common_exception_index_needed,
819 820 821 822 823 824
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

843
const VMStateDescription vmstate_cpu_common = {
844 845 846
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
847
    .pre_load = cpu_common_pre_load,
848
    .post_load = cpu_common_post_load,
849
    .fields = (VMStateField[]) {
850 851
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
852
        VMSTATE_END_OF_LIST()
853
    },
854 855
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
856
        &vmstate_cpu_common_crash_occurred,
857
        NULL
858 859
    }
};
860

861
#endif
B
bellard 已提交
862

863
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
864
{
A
Andreas Färber 已提交
865
    CPUState *cpu;
B
bellard 已提交
866

A
Andreas Färber 已提交
867
    CPU_FOREACH(cpu) {
868
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
869
            return cpu;
870
        }
B
bellard 已提交
871
    }
872

A
Andreas Färber 已提交
873
    return NULL;
B
bellard 已提交
874 875
}

876
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
877 878
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
879
{
880
    CPUAddressSpace *newas;
P
Peter Xu 已提交
881
    AddressSpace *as = g_new0(AddressSpace, 1);
882
    char *as_name;
P
Peter Xu 已提交
883 884

    assert(mr);
885 886 887
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
888 889 890 891

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

892 893 894 895 896
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

897 898
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
899

900 901
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
902
    }
903

904 905 906
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
907
    if (tcg_enabled()) {
908 909
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
910
    }
911
}
912 913 914 915 916 917

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
918 919
#endif

920
void cpu_exec_unrealizefn(CPUState *cpu)
921
{
922 923
    CPUClass *cc = CPU_GET_CLASS(cpu);

924
    cpu_list_remove(cpu);
925 926 927 928 929 930 931

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
932 933 934
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
935 936
}

F
Fam Zheng 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
951
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
952
{
953
    cpu->as = NULL;
954
    cpu->num_ases = 0;
955

956 957
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
958 959
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
960
#endif
L
Laurent Vivier 已提交
961 962
}

963
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
964
{
965
    CPUClass *cc = CPU_GET_CLASS(cpu);
966
    static bool tcg_target_initialized;
967

968
    cpu_list_add(cpu);
969

970 971
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
972 973
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
974
    tlb_init(cpu);
975

976
#ifndef CONFIG_USER_ONLY
977
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
978
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
979
    }
980
    if (cc->vmsd != NULL) {
981
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
982
    }
983

984
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
985
#endif
B
bellard 已提交
986 987
}

988
const char *parse_cpu_option(const char *cpu_option)
989 990 991 992 993 994
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

995
    model_pieces = g_strsplit(cpu_option, ",", 2);
996 997 998 999
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1015
#if defined(CONFIG_USER_ONLY)
1016
void tb_invalidate_phys_addr(target_ulong addr)
1017
{
1018
    mmap_lock();
1019
    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1020 1021
    mmap_unlock();
}
1022 1023 1024 1025 1026

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1027
#else
1028 1029 1030 1031 1032 1033
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1034 1035 1036 1037
    if (!tcg_enabled()) {
        return;
    }

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    rcu_read_lock();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        rcu_read_unlock();
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
    rcu_read_unlock();
}

1050 1051 1052 1053 1054 1055 1056 1057
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1058
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1059
    }
1060
}
1061
#endif
B
bellard 已提交
1062

1063
#if defined(CONFIG_USER_ONLY)
1064
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1065 1066 1067 1068

{
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

1079
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1080 1081 1082 1083 1084
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
1085
/* Add a watchpoint.  */
1086
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1087
                          int flags, CPUWatchpoint **watchpoint)
1088
{
1089
    CPUWatchpoint *wp;
1090

1091
    /* forbid ranges which are empty or run off the end of the address space */
1092
    if (len == 0 || (addr + len - 1) < addr) {
1093 1094
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1095 1096
        return -EINVAL;
    }
1097
    wp = g_malloc(sizeof(*wp));
1098 1099

    wp->vaddr = addr;
1100
    wp->len = len;
1101 1102
    wp->flags = flags;

1103
    /* keep all GDB-injected watchpoints in front */
1104 1105 1106 1107 1108
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1109

1110
    tlb_flush_page(cpu, addr);
1111 1112 1113 1114

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1115 1116
}

1117
/* Remove a specific watchpoint.  */
1118
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1119
                          int flags)
1120
{
1121
    CPUWatchpoint *wp;
1122

1123
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1124
        if (addr == wp->vaddr && len == wp->len
1125
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1126
            cpu_watchpoint_remove_by_ref(cpu, wp);
1127 1128 1129
            return 0;
        }
    }
1130
    return -ENOENT;
1131 1132
}

1133
/* Remove a specific watchpoint by reference.  */
1134
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1135
{
1136
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1137

1138
    tlb_flush_page(cpu, watchpoint->vaddr);
1139

1140
    g_free(watchpoint);
1141 1142 1143
}

/* Remove all matching watchpoints.  */
1144
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1145
{
1146
    CPUWatchpoint *wp, *next;
1147

1148
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1149 1150 1151
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1152
    }
1153
}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1175
#endif
1176

1177
/* Add a breakpoint.  */
1178
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1179
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1180
{
1181
    CPUBreakpoint *bp;
1182

1183
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1184

1185 1186 1187
    bp->pc = pc;
    bp->flags = flags;

1188
    /* keep all GDB-injected breakpoints in front */
1189
    if (flags & BP_GDB) {
1190
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1191
    } else {
1192
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1193
    }
1194

1195
    breakpoint_invalidate(cpu, pc);
1196

1197
    if (breakpoint) {
1198
        *breakpoint = bp;
1199
    }
B
bellard 已提交
1200 1201 1202
    return 0;
}

1203
/* Remove a specific breakpoint.  */
1204
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1205 1206 1207
{
    CPUBreakpoint *bp;

1208
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1209
        if (bp->pc == pc && bp->flags == flags) {
1210
            cpu_breakpoint_remove_by_ref(cpu, bp);
1211 1212
            return 0;
        }
1213
    }
1214
    return -ENOENT;
1215 1216
}

1217
/* Remove a specific breakpoint by reference.  */
1218
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1219
{
1220 1221 1222
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1223

1224
    g_free(breakpoint);
1225 1226 1227
}

/* Remove all matching breakpoints. */
1228
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1229
{
1230
    CPUBreakpoint *bp, *next;
1231

1232
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1233 1234 1235
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1236
    }
B
bellard 已提交
1237 1238
}

B
bellard 已提交
1239 1240
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1241
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1242
{
1243 1244 1245
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1246
            kvm_update_guest_debug(cpu, 0);
1247
        } else {
S
Stuart Brady 已提交
1248
            /* must flush all the translated code to avoid inconsistencies */
1249
            /* XXX: only flush what is necessary */
1250
            tb_flush(cpu);
1251
        }
B
bellard 已提交
1252 1253 1254
    }
}

1255
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1256 1257
{
    va_list ap;
P
pbrook 已提交
1258
    va_list ap2;
B
bellard 已提交
1259 1260

    va_start(ap, fmt);
P
pbrook 已提交
1261
    va_copy(ap2, ap);
B
bellard 已提交
1262 1263 1264
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1265
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1266
    if (qemu_log_separate()) {
1267
        qemu_log_lock();
1268 1269 1270
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1271
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1272
        qemu_log_flush();
1273
        qemu_log_unlock();
1274
        qemu_log_close();
1275
    }
P
pbrook 已提交
1276
    va_end(ap2);
1277
    va_end(ap);
1278
    replay_finish();
1279 1280 1281 1282 1283
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1284
        act.sa_flags = 0;
1285 1286 1287
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1288 1289 1290
    abort();
}

1291
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1292
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1293 1294 1295 1296
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1297
    block = atomic_rcu_read(&ram_list.mru_block);
1298
    if (block && addr - block->offset < block->max_length) {
1299
        return block;
P
Paolo Bonzini 已提交
1300
    }
P
Peter Xu 已提交
1301
    RAMBLOCK_FOREACH(block) {
1302
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1303 1304 1305 1306 1307 1308 1309 1310
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1327 1328 1329 1330
    ram_list.mru_block = block;
    return block;
}

1331
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1332
{
1333
    CPUState *cpu;
P
Paolo Bonzini 已提交
1334
    ram_addr_t start1;
1335 1336 1337
    RAMBlock *block;
    ram_addr_t end;

1338
    assert(tcg_enabled());
1339 1340
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1341

M
Mike Day 已提交
1342
    rcu_read_lock();
P
Paolo Bonzini 已提交
1343 1344
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1345
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1346 1347 1348
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1349
    rcu_read_unlock();
J
Juan Quintela 已提交
1350 1351
}

P
pbrook 已提交
1352
/* Note: start and end must be within the same ram block.  */
1353 1354 1355
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1356
{
1357
    DirtyMemoryBlocks *blocks;
1358
    unsigned long end, page;
1359
    bool dirty = false;
1360 1361
    RAMBlock *ramblock;
    uint64_t mr_offset, mr_size;
1362 1363 1364 1365

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1366

1367 1368
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1369 1370 1371 1372

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1373 1374 1375 1376
    ramblock = qemu_get_ram_block(start);
    /* Range sanity check on the ramblock */
    assert(start >= ramblock->offset &&
           start + length <= ramblock->offset + ramblock->used_length);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

1388 1389 1390 1391
    mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
    mr_size = (end - page) << TARGET_PAGE_BITS;
    memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);

1392
    rcu_read_unlock();
1393 1394

    if (dirty && tcg_enabled()) {
1395
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1396
    }
1397 1398

    return dirty;
1399 1400
}

1401
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1402
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1403 1404
{
    DirtyMemoryBlocks *blocks;
1405
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

1447 1448
    memory_region_clear_dirty_bitmap(mr, offset, length);

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1473
/* Called from RCU critical section */
1474
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1475 1476 1477 1478 1479
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1480
{
A
Avi Kivity 已提交
1481
    hwaddr iotlb;
B
Blue Swirl 已提交
1482 1483
    CPUWatchpoint *wp;

1484
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1485
        /* Normal RAM.  */
1486
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1487
        if (!section->readonly) {
1488
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1489
        } else {
1490
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1491 1492
        }
    } else {
1493 1494
        AddressSpaceDispatch *d;

1495
        d = flatview_to_dispatch(section->fv);
1496
        iotlb = section - d->map.sections;
1497
        iotlb += xlat;
B
Blue Swirl 已提交
1498 1499 1500 1501
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1502
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1503
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1504 1505
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1506
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1507 1508 1509 1510 1511 1512 1513 1514
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1515 1516
#endif /* defined(CONFIG_USER_ONLY) */

1517
#if !defined(CONFIG_USER_ONLY)
1518

A
Anthony Liguori 已提交
1519
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1520
                             uint16_t section);
1521
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1522

1523
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1524
                               qemu_anon_ram_alloc;
1525 1526 1527 1528 1529 1530

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1531
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1532 1533 1534 1535
{
    phys_mem_alloc = alloc;
}

1536 1537
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1538
{
1539 1540 1541 1542
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1543
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1544

1545 1546 1547 1548
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1549
    }
1550
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1551
    memory_region_ref(section->mr);
1552
    return map->sections_nb++;
1553 1554
}

1555 1556
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1557 1558
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1559 1560
    memory_region_unref(mr);

D
Don Slutz 已提交
1561
    if (have_sub_page) {
1562
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1563
        object_unref(OBJECT(&subpage->iomem));
1564 1565 1566 1567
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1568
static void phys_sections_free(PhysPageMap *map)
1569
{
1570 1571
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1572 1573
        phys_section_destroy(section->mr);
    }
1574 1575
    g_free(map->sections);
    g_free(map->nodes);
1576 1577
}

1578
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1579
{
1580
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1581
    subpage_t *subpage;
A
Avi Kivity 已提交
1582
    hwaddr base = section->offset_within_address_space
1583
        & TARGET_PAGE_MASK;
1584
    MemoryRegionSection *existing = phys_page_find(d, base);
1585 1586
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1587
        .size = int128_make64(TARGET_PAGE_SIZE),
1588
    };
A
Avi Kivity 已提交
1589
    hwaddr start, end;
1590

1591
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1592

1593
    if (!(existing->mr->subpage)) {
1594 1595
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1596
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1597
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1598
                      phys_section_add(&d->map, &subsection));
1599
    } else {
1600
        subpage = container_of(existing->mr, subpage_t, iomem);
1601 1602
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1603
    end = start + int128_get64(section->size) - 1;
1604 1605
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1606 1607 1608
}


1609
static void register_multipage(FlatView *fv,
1610
                               MemoryRegionSection *section)
1611
{
1612
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1613
    hwaddr start_addr = section->offset_within_address_space;
1614
    uint16_t section_index = phys_section_add(&d->map, section);
1615 1616
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1617

1618 1619
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1629
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1630
{
1631
    MemoryRegionSection remain = *section;
1632
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1633

1634 1635 1636 1637
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1638

1639
        MemoryRegionSection now = remain;
1640
        now.size = int128_min(int128_make64(left), now.size);
1641
        register_subpage(fv, &now);
1642 1643 1644
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1645 1646 1647
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1648 1649 1650 1651 1652 1653 1654 1655 1656
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1657
        }
1658 1659 1660
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1661
    }
1662 1663 1664

    /* register last subpage */
    register_subpage(fv, &remain);
1665 1666
}

1667 1668 1669 1670 1671 1672
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1703 1704 1705 1706 1707 1708 1709
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1710
static int find_min_backend_pagesize(Object *obj, void *opaque)
1711 1712 1713 1714
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1715 1716
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1717

1718
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1719
            *hpsize_min = hpsize;
1720 1721 1722 1723 1724 1725
        }
    }

    return 0;
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1747 1748 1749 1750 1751
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

1752
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1766
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1801
#else
1802 1803 1804 1805 1806
long qemu_minrampagesize(void)
{
    return getpagesize();
}
long qemu_maxrampagesize(void)
1807 1808 1809 1810 1811
{
    return getpagesize();
}
#endif

1812
#ifdef CONFIG_POSIX
1813 1814 1815 1816 1817 1818 1819 1820 1821
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1822 1823 1824 1825
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1826 1827
{
    char *filename;
1828 1829
    char *sanitized_name;
    char *c;
1830
    int fd = -1;
1831

1832
    *created = false;
1833 1834 1835 1836 1837
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1838
        }
1839 1840 1841 1842
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1843
                *created = true;
1844 1845 1846 1847 1848
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1849
            sanitized_name = g_strdup(region_name);
1850 1851 1852 1853 1854
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1855

1856 1857 1858
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1859

1860 1861 1862 1863 1864 1865 1866
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1867
        }
1868 1869 1870 1871
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1872
            return -1;
1873 1874 1875 1876 1877
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1878
    }
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1889
    MachineState *ms = MACHINE(qdev_get_machine());
1890 1891
    void *area;

1892
    block->page_size = qemu_fd_getpagesize(fd);
1893 1894 1895 1896 1897
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1898 1899 1900 1901
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1902 1903
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1904 1905 1906 1907 1908
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1909

1910
    if (memory < block->page_size) {
1911
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1912 1913
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1914
        return NULL;
1915 1916
    }

1917
    memory = ROUND_UP(memory, block->page_size);
1918 1919 1920 1921 1922 1923

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1924 1925 1926 1927 1928 1929 1930 1931
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1932
     */
1933
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1934
        perror("ftruncate");
1935
    }
1936

1937
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1938
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1939
    if (area == MAP_FAILED) {
1940
        error_setg_errno(errp, errno,
1941
                         "unable to map backing store for guest RAM");
1942
        return NULL;
1943
    }
1944 1945

    if (mem_prealloc) {
1946
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1947
        if (errp && *errp) {
1948
            qemu_ram_munmap(fd, area, memory);
1949
            return NULL;
1950
        }
1951 1952
    }

A
Alex Williamson 已提交
1953
    block->fd = fd;
1954 1955 1956 1957
    return area;
}
#endif

1958 1959 1960 1961
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1962
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1963 1964
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1965
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1966

1967 1968
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1969
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1970
        return 0;
M
Mike Day 已提交
1971
    }
A
Alex Williamson 已提交
1972

P
Peter Xu 已提交
1973
    RAMBLOCK_FOREACH(block) {
1974
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1975

1976 1977 1978
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1979
        candidate = block->offset + block->max_length;
1980
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1981

1982 1983 1984
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1985
        RAMBLOCK_FOREACH(next_block) {
1986
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1987 1988 1989
                next = MIN(next, next_block->offset);
            }
        }
1990 1991 1992 1993 1994 1995 1996 1997

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1998
        }
1999 2000

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
2001
    }
A
Alex Williamson 已提交
2002 2003 2004 2005 2006 2007 2008

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

2009 2010
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
2011 2012 2013
    return offset;
}

2014
static unsigned long last_ram_page(void)
2015 2016 2017 2018
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
2019
    rcu_read_lock();
P
Peter Xu 已提交
2020
    RAMBLOCK_FOREACH(block) {
2021
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
2022
    }
M
Mike Day 已提交
2023
    rcu_read_unlock();
2024
    return last >> TARGET_PAGE_BITS;
2025 2026
}

2027 2028 2029 2030 2031
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2032
    if (!machine_dump_guest_core(current_machine)) {
2033 2034 2035 2036 2037 2038 2039 2040 2041
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
2042 2043 2044 2045 2046
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2062 2063 2064 2065 2066
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2093
/* Called with iothread lock held.  */
G
Gonglei 已提交
2094
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2095
{
G
Gonglei 已提交
2096
    RAMBlock *block;
2097

2098 2099
    assert(new_block);
    assert(!new_block->idstr[0]);
2100

2101 2102
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2103 2104
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2105
            g_free(id);
2106 2107 2108 2109
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2110
    rcu_read_lock();
P
Peter Xu 已提交
2111
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2112 2113
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2114 2115 2116 2117 2118
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2119
    rcu_read_unlock();
2120 2121
}

2122
/* Called with iothread lock held.  */
G
Gonglei 已提交
2123
void qemu_ram_unset_idstr(RAMBlock *block)
2124
{
2125 2126 2127 2128
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2129 2130 2131 2132 2133
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2134 2135 2136 2137 2138
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2139 2140 2141 2142 2143 2144
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2145
    RAMBLOCK_FOREACH(block) {
2146 2147 2148 2149 2150 2151
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2152 2153
static int memory_try_enable_merging(void *addr, size_t len)
{
2154
    if (!machine_mem_merge(current_machine)) {
2155 2156 2157 2158 2159 2160 2161
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2162 2163 2164 2165 2166 2167 2168
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2169
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2170 2171 2172
{
    assert(block);

2173
    newsize = HOST_PAGE_ALIGN(newsize);
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2197 2198
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2199 2200 2201 2202 2203 2204 2205
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2247
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2248
{
2249
    RAMBlock *block;
M
Mike Day 已提交
2250
    RAMBlock *last_block = NULL;
2251
    ram_addr_t old_ram_size, new_ram_size;
2252
    Error *err = NULL;
2253

2254
    old_ram_size = last_ram_page();
2255

2256
    qemu_mutex_lock_ramlist();
2257
    new_block->offset = find_ram_offset(new_block->max_length);
2258 2259 2260

    if (!new_block->host) {
        if (xen_enabled()) {
2261
            xen_ram_alloc(new_block->offset, new_block->max_length,
2262 2263 2264 2265
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2266
                return;
2267
            }
2268
        } else {
2269
            new_block->host = phys_mem_alloc(new_block->max_length,
2270
                                             &new_block->mr->align, shared);
2271
            if (!new_block->host) {
2272 2273 2274 2275
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2276
                return;
2277
            }
2278
            memory_try_enable_merging(new_block->host, new_block->max_length);
2279
        }
2280
    }
P
pbrook 已提交
2281

L
Li Zhijian 已提交
2282 2283 2284
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2285
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2286
    }
M
Mike Day 已提交
2287 2288 2289 2290
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2291
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2292
        last_block = block;
2293
        if (block->max_length < new_block->max_length) {
2294 2295 2296 2297
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2298
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2299
    } else if (last_block) {
M
Mike Day 已提交
2300
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2301
    } else { /* list is empty */
M
Mike Day 已提交
2302
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2303
    }
2304
    ram_list.mru_block = NULL;
P
pbrook 已提交
2305

M
Mike Day 已提交
2306 2307
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2308
    ram_list.version++;
2309
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2310

2311
    cpu_physical_memory_set_dirty_range(new_block->offset,
2312 2313
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2314

2315 2316 2317
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2318
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2319
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2320
        ram_block_notify_add(new_block->host, new_block->max_length);
2321
    }
P
pbrook 已提交
2322
}
B
bellard 已提交
2323

2324
#ifdef CONFIG_POSIX
2325
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2326
                                 uint32_t ram_flags, int fd,
2327
                                 Error **errp)
2328 2329
{
    RAMBlock *new_block;
2330
    Error *local_err = NULL;
2331
    int64_t file_size;
2332

J
Junyan He 已提交
2333 2334 2335
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2336
    if (xen_enabled()) {
2337
        error_setg(errp, "-mem-path not supported with Xen");
2338
        return NULL;
2339 2340
    }

2341 2342 2343 2344 2345 2346
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2347 2348 2349 2350 2351 2352
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2353 2354
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2355
        return NULL;
2356 2357
    }

2358
    size = HOST_PAGE_ALIGN(size);
2359 2360 2361 2362 2363 2364 2365 2366
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2367 2368
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2369 2370
    new_block->used_length = size;
    new_block->max_length = size;
2371
    new_block->flags = ram_flags;
2372
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2373 2374
    if (!new_block->host) {
        g_free(new_block);
2375
        return NULL;
2376 2377
    }

2378
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2379 2380 2381
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2382
        return NULL;
2383
    }
2384
    return new_block;
2385 2386 2387 2388 2389

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2390
                                   uint32_t ram_flags, const char *mem_path,
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2402
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2403 2404 2405 2406 2407 2408 2409 2410 2411
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2412
}
2413
#endif
2414

2415
static
2416 2417 2418 2419
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2420
                                  void *host, bool resizeable, bool share,
2421
                                  MemoryRegion *mr, Error **errp)
2422 2423
{
    RAMBlock *new_block;
2424
    Error *local_err = NULL;
2425

2426 2427
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2428 2429
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2430
    new_block->resized = resized;
2431 2432
    new_block->used_length = size;
    new_block->max_length = max_size;
2433
    assert(max_size >= size);
2434
    new_block->fd = -1;
2435
    new_block->page_size = getpagesize();
2436 2437
    new_block->host = host;
    if (host) {
2438
        new_block->flags |= RAM_PREALLOC;
2439
    }
2440 2441 2442
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2443
    ram_block_add(new_block, &local_err, share);
2444 2445 2446
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2447
        return NULL;
2448
    }
2449
    return new_block;
2450 2451
}

2452
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2453 2454
                                   MemoryRegion *mr, Error **errp)
{
2455 2456
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2457 2458
}

2459 2460
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2461
{
2462 2463
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2464 2465
}

2466
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2467 2468 2469 2470 2471
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2472 2473
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2474 2475
}

P
Paolo Bonzini 已提交
2476 2477 2478 2479 2480 2481 2482 2483
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2484
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2485 2486 2487 2488 2489 2490 2491 2492
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2493
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2494
{
2495 2496 2497 2498
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2499 2500 2501 2502
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2503
    qemu_mutex_lock_ramlist();
2504 2505 2506 2507 2508 2509
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2510
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2511 2512
}

H
Huang Ying 已提交
2513 2514 2515 2516 2517 2518 2519 2520
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2521
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2522
        offset = addr - block->offset;
2523
        if (offset < block->max_length) {
2524
            vaddr = ramblock_ptr(block, offset);
2525
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2526
                ;
2527 2528
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2529 2530
            } else {
                flags = MAP_FIXED;
2531
                if (block->fd >= 0) {
2532 2533
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2534 2535
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2536
                } else {
2537 2538 2539 2540 2541 2542 2543
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2544 2545 2546 2547 2548
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2549 2550 2551
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2552 2553
                    exit(1);
                }
2554
                memory_try_enable_merging(vaddr, length);
2555
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2556 2557 2558 2559 2560 2561
            }
        }
    }
}
#endif /* !_WIN32 */

2562
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2563 2564 2565
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2566
 *
2567
 * Called within RCU critical section.
2568
 */
2569
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2570
{
2571 2572 2573 2574
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2575
        addr -= block->offset;
2576
    }
2577 2578

    if (xen_enabled() && block->host == NULL) {
2579 2580 2581 2582 2583
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2584
            return xen_map_cache(addr, 0, 0, false);
2585
        }
2586

2587
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2588
    }
2589
    return ramblock_ptr(block, addr);
2590 2591
}

2592
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2593
 * but takes a size argument.
M
Mike Day 已提交
2594
 *
2595
 * Called within RCU critical section.
2596
 */
2597
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2598
                                 hwaddr *size, bool lock)
2599
{
2600
    RAMBlock *block = ram_block;
2601 2602 2603
    if (*size == 0) {
        return NULL;
    }
2604

2605 2606
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2607
        addr -= block->offset;
2608
    }
2609
    *size = MIN(*size, block->max_length - addr);
2610 2611 2612 2613 2614 2615 2616

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2617
            return xen_map_cache(addr, *size, lock, lock);
2618 2619
        }

2620
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2621
    }
2622

2623
    return ramblock_ptr(block, addr);
2624 2625
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2646 2647 2648 2649 2650 2651 2652
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2653 2654
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2655
{
P
pbrook 已提交
2656 2657 2658
    RAMBlock *block;
    uint8_t *host = ptr;

2659
    if (xen_enabled()) {
2660
        ram_addr_t ram_addr;
M
Mike Day 已提交
2661
        rcu_read_lock();
2662 2663
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2664
        if (block) {
2665
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2666
        }
M
Mike Day 已提交
2667
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2668
        return block;
2669 2670
    }

M
Mike Day 已提交
2671 2672
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2673
    if (block && block->host && host - block->host < block->max_length) {
2674 2675 2676
        goto found;
    }

P
Peter Xu 已提交
2677
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2678 2679 2680 2681
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2682
        if (host - block->host < block->max_length) {
2683
            goto found;
A
Alex Williamson 已提交
2684
        }
P
pbrook 已提交
2685
    }
J
Jun Nakajima 已提交
2686

M
Mike Day 已提交
2687
    rcu_read_unlock();
2688
    return NULL;
2689 2690

found:
D
Dr. David Alan Gilbert 已提交
2691 2692 2693 2694
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2695
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2696 2697 2698
    return block;
}

D
Dr. David Alan Gilbert 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2710
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2711 2712 2713 2714 2715 2716 2717 2718
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2719 2720
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2721
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2722 2723
{
    RAMBlock *block;
2724
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2725

2726
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2727
    if (!block) {
2728
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2729 2730
    }

2731
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2732
}
A
Alex Williamson 已提交
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
E
Emilio G. Cota 已提交
2745
    ndi->pages = NULL;
2746

2747
    assert(tcg_enabled());
2748
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
E
Emilio G. Cota 已提交
2749 2750
        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2751
    }
2752 2753 2754 2755 2756
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
E
Emilio G. Cota 已提交
2757
    if (ndi->pages) {
2758
        assert(tcg_enabled());
E
Emilio G. Cota 已提交
2759 2760
        page_collection_unlock(ndi->pages);
        ndi->pages = NULL;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2784
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2785
    memory_notdirty_write_complete(&ndi);
2786 2787
}

2788
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2789 2790
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2791 2792 2793 2794
{
    return is_write;
}

2795 2796
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2797
    .valid.accepts = notdirty_mem_accepts,
2798
    .endianness = DEVICE_NATIVE_ENDIAN,
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2809 2810
};

P
pbrook 已提交
2811
/* Generate a debug exception if a watchpoint has been hit.  */
2812
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2813
{
2814
    CPUState *cpu = current_cpu;
2815
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2816
    target_ulong vaddr;
2817
    CPUWatchpoint *wp;
P
pbrook 已提交
2818

2819
    assert(tcg_enabled());
2820
    if (cpu->watchpoint_hit) {
2821 2822 2823
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2824
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2825 2826
        return;
    }
2827
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2828
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2829
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2830 2831
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2832 2833 2834 2835 2836 2837
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2838
            wp->hitattrs = attrs;
2839
            if (!cpu->watchpoint_hit) {
2840 2841 2842 2843 2844
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2845
                cpu->watchpoint_hit = wp;
2846

E
Emilio G. Cota 已提交
2847
                mmap_lock();
2848
                tb_check_watchpoint(cpu);
2849
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2850
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2851
                    mmap_unlock();
2852
                    cpu_loop_exit(cpu);
2853
                } else {
2854 2855
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2856
                    mmap_unlock();
2857
                    cpu_loop_exit_noexc(cpu);
2858
                }
2859
            }
2860 2861
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2862 2863 2864 2865
        }
    }
}

2866 2867 2868
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2869 2870
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2871
{
2872 2873
    MemTxResult res;
    uint64_t data;
2874 2875
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2876 2877

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2878
    switch (size) {
2879
    case 1:
2880
        data = address_space_ldub(as, addr, attrs, &res);
2881 2882
        break;
    case 2:
2883
        data = address_space_lduw(as, addr, attrs, &res);
2884 2885
        break;
    case 4:
2886
        data = address_space_ldl(as, addr, attrs, &res);
2887
        break;
2888 2889 2890
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2891 2892
    default: abort();
    }
2893 2894
    *pdata = data;
    return res;
2895 2896
}

2897 2898 2899
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2900
{
2901
    MemTxResult res;
2902 2903
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2904 2905

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2906
    switch (size) {
2907
    case 1:
2908
        address_space_stb(as, addr, val, attrs, &res);
2909 2910
        break;
    case 2:
2911
        address_space_stw(as, addr, val, attrs, &res);
2912 2913
        break;
    case 4:
2914
        address_space_stl(as, addr, val, attrs, &res);
2915
        break;
2916 2917 2918
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2919 2920
    default: abort();
    }
2921
    return res;
2922 2923
}

2924
static const MemoryRegionOps watch_mem_ops = {
2925 2926
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2927
    .endianness = DEVICE_NATIVE_ENDIAN,
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2938 2939
};

2940
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2941
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2942
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2943 2944
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2945
                                  bool is_write, MemTxAttrs attrs);
2946

2947 2948
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2949
{
2950
    subpage_t *subpage = opaque;
2951
    uint8_t buf[8];
2952
    MemTxResult res;
2953

2954
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2955
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2956
           subpage, len, addr);
2957
#endif
2958
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2959 2960
    if (res) {
        return res;
2961
    }
2962 2963
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2964 2965
}

2966 2967
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2968
{
2969
    subpage_t *subpage = opaque;
2970
    uint8_t buf[8];
2971

2972
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2973
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2974 2975
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2976
#endif
2977
    stn_p(buf, len, value);
2978
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2979 2980
}

2981
static bool subpage_accepts(void *opaque, hwaddr addr,
2982 2983
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2984
{
2985
    subpage_t *subpage = opaque;
2986
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2987
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2988
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2989 2990
#endif

2991
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2992
                                 len, is_write, attrs);
2993 2994
}

2995
static const MemoryRegionOps subpage_ops = {
2996 2997
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2998 2999 3000 3001
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
3002
    .valid.accepts = subpage_accepts,
3003
    .endianness = DEVICE_NATIVE_ENDIAN,
3004 3005
};

A
Anthony Liguori 已提交
3006
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3007
                             uint16_t section)
3008 3009 3010 3011 3012 3013 3014 3015
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
3016 3017
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
3018 3019
#endif
    for (; idx <= eidx; idx++) {
3020
        mmio->sub_section[idx] = section;
3021 3022 3023 3024 3025
    }

    return 0;
}

3026
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3027
{
A
Anthony Liguori 已提交
3028
    subpage_t *mmio;
3029

3030
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3031
    mmio->fv = fv;
3032
    mmio->base = base;
3033
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
3034
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
3035
    mmio->iomem.subpage = true;
3036
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
3037 3038
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
3039
#endif
3040
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3041 3042 3043 3044

    return mmio;
}

3045
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3046
{
3047
    assert(fv);
3048
    MemoryRegionSection section = {
3049
        .fv = fv,
3050 3051 3052
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
3053
        .size = int128_2_64(),
3054 3055
    };

3056
    return phys_section_add(map, &section);
3057 3058
}

3059 3060 3061 3062 3063 3064 3065
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3066 3067
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

3091 3092
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
3093
{
3094 3095
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3096
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3097
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
3098

3099
    return &sections[index & ~TARGET_PAGE_MASK];
3100 3101
}

A
Avi Kivity 已提交
3102 3103
static void io_mem_init(void)
{
3104 3105
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
3106
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3107
                          NULL, UINT64_MAX);
3108 3109 3110 3111

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
3112
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3113
                          NULL, UINT64_MAX);
3114 3115
    memory_region_clear_global_locking(&io_mem_notdirty);

3116
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3117
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
3118 3119
}

3120
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3121
{
3122 3123 3124
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

3125
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3126
    assert(n == PHYS_SECTION_UNASSIGNED);
3127
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3128
    assert(n == PHYS_SECTION_NOTDIRTY);
3129
    n = dummy_section(&d->map, fv, &io_mem_rom);
3130
    assert(n == PHYS_SECTION_ROM);
3131
    n = dummy_section(&d->map, fv, &io_mem_watch);
3132
    assert(n == PHYS_SECTION_WATCH);
3133

M
Michael S. Tsirkin 已提交
3134
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3135 3136

    return d;
3137 3138
}

3139
void address_space_dispatch_free(AddressSpaceDispatch *d)
3140 3141 3142 3143 3144
{
    phys_sections_free(&d->map);
    g_free(d);
}

3145
static void tcg_commit(MemoryListener *listener)
3146
{
3147 3148
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3149

3150
    assert(tcg_enabled());
3151 3152
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3153 3154 3155 3156 3157 3158
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3159
    d = address_space_to_dispatch(cpuas->as);
3160
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3161
    tlb_flush(cpuas->cpu);
3162 3163
}

A
Avi Kivity 已提交
3164 3165
static void memory_map_init(void)
{
3166
    system_memory = g_malloc(sizeof(*system_memory));
3167

3168
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3169
    address_space_init(&address_space_memory, system_memory, "memory");
3170

3171
    system_io = g_malloc(sizeof(*system_io));
3172 3173
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3174
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3175 3176 3177 3178 3179 3180 3181
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3182 3183 3184 3185 3186
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3187 3188
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3189 3190
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3191
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3192
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3193
{
3194 3195
    int flags;
    target_ulong l, page;
3196
    void * p;
B
bellard 已提交
3197 3198 3199 3200 3201 3202 3203 3204

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3205
            return -1;
B
bellard 已提交
3206 3207
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3208
                return -1;
3209
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3210
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3211
                return -1;
A
aurel32 已提交
3212 3213
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3214 3215
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3216
                return -1;
3217
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3218
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3219
                return -1;
A
aurel32 已提交
3220
            memcpy(buf, p, l);
A
aurel32 已提交
3221
            unlock_user(p, addr, 0);
B
bellard 已提交
3222 3223 3224 3225 3226
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3227
    return 0;
B
bellard 已提交
3228
}
B
bellard 已提交
3229

B
bellard 已提交
3230
#else
3231

3232
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3233
                                     hwaddr length)
3234
{
3235
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3236 3237
    addr += memory_region_get_ram_addr(mr);

3238 3239 3240 3241 3242 3243 3244 3245 3246
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3247
        assert(tcg_enabled());
3248 3249
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3250
    }
3251
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3252 3253
}

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3267
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3268
{
3269
    unsigned access_size_max = mr->ops->valid.max_access_size;
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3283
    }
3284 3285 3286 3287

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3288
    }
3289
    l = pow2floor(l);
3290 3291

    return l;
3292 3293
}

3294
static bool prepare_mmio_access(MemoryRegion *mr)
3295
{
3296 3297 3298 3299 3300 3301 3302 3303
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3304
    if (mr->flush_coalesced_mmio) {
3305 3306 3307
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3308
        qemu_flush_coalesced_mmio_buffer();
3309 3310 3311
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3312
    }
3313 3314

    return release_lock;
3315 3316
}

3317
/* Called within RCU critical section.  */
3318 3319 3320
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3321
                                           hwaddr len, hwaddr addr1,
3322
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3323 3324
{
    uint8_t *ptr;
3325
    uint64_t val;
3326
    MemTxResult result = MEMTX_OK;
3327
    bool release_lock = false;
3328

3329
    for (;;) {
3330 3331 3332 3333 3334
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3335 3336
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3337
        } else {
3338
            /* RAM case */
3339
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3340 3341
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3342
        }
3343 3344 3345 3346 3347 3348

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3349 3350 3351
        len -= l;
        buf += l;
        addr += l;
3352 3353 3354 3355 3356 3357

        if (!len) {
            break;
        }

        l = len;
3358
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3359
    }
3360

3361
    return result;
B
bellard 已提交
3362
}
B
bellard 已提交
3363

3364
/* Called from RCU critical section.  */
3365
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3366
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3367
{
3368 3369 3370 3371 3372
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3373
    l = len;
3374
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3375 3376
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3377 3378 3379 3380 3381

    return result;
}

/* Called within RCU critical section.  */
3382 3383
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3384
                                   hwaddr len, hwaddr addr1, hwaddr l,
3385
                                   MemoryRegion *mr)
3386 3387 3388 3389 3390
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3391

3392
    for (;;) {
3393 3394 3395 3396
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3397 3398
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3399 3400
        } else {
            /* RAM case */
3401
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3413 3414 3415 3416 3417 3418

        if (!len) {
            break;
        }

        l = len;
3419
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3420 3421 3422 3423 3424
    }

    return result;
}

3425 3426
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3427
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3428 3429 3430 3431
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3432

3433
    l = len;
3434
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3435 3436
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3437 3438
}

3439
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3440
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3455 3456
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3457
                                const uint8_t *buf, hwaddr len)
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3472
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3473
                             uint8_t *buf, hwaddr len, bool is_write)
3474 3475 3476 3477 3478 3479 3480 3481
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3482
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3483
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3484
{
3485 3486
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3487 3488
}

3489 3490 3491 3492 3493
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3494 3495 3496 3497
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3498
                                                           hwaddr len,
3499
                                                           enum write_rom_type type)
B
bellard 已提交
3500
{
3501
    hwaddr l;
B
bellard 已提交
3502
    uint8_t *ptr;
3503
    hwaddr addr1;
3504
    MemoryRegion *mr;
3505

3506
    rcu_read_lock();
B
bellard 已提交
3507
    while (len > 0) {
3508
        l = len;
3509
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3510

3511 3512
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3513
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3514 3515
        } else {
            /* ROM/RAM case */
3516
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3517 3518 3519
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3520
                invalidate_and_set_dirty(mr, addr1, l);
3521 3522 3523 3524 3525
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3526 3527 3528 3529 3530
        }
        len -= l;
        buf += l;
        addr += l;
    }
3531
    rcu_read_unlock();
3532
    return MEMTX_OK;
B
bellard 已提交
3533 3534
}

3535
/* used for ROM loading : can write in RAM and ROM */
3536 3537
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3538
                                    const uint8_t *buf, hwaddr len)
3539
{
3540 3541
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3542 3543
}

3544
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3556 3557 3558
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3559 3560
}

3561
typedef struct {
3562
    MemoryRegion *mr;
3563
    void *buffer;
A
Avi Kivity 已提交
3564 3565
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3566
    bool in_use;
3567 3568 3569 3570
} BounceBuffer;

static BounceBuffer bounce;

3571
typedef struct MapClient {
3572
    QEMUBH *bh;
B
Blue Swirl 已提交
3573
    QLIST_ENTRY(MapClient) link;
3574 3575
} MapClient;

3576
QemuMutex map_client_list_lock;
3577
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3578
    = QLIST_HEAD_INITIALIZER(map_client_list);
3579

3580 3581 3582 3583 3584 3585
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3586 3587 3588 3589 3590 3591
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3592 3593
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3594 3595 3596
    }
}

3597
void cpu_register_map_client(QEMUBH *bh)
3598
{
3599
    MapClient *client = g_malloc(sizeof(*client));
3600

3601
    qemu_mutex_lock(&map_client_list_lock);
3602
    client->bh = bh;
B
Blue Swirl 已提交
3603
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3604 3605 3606
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3607
    qemu_mutex_unlock(&map_client_list_lock);
3608 3609
}

3610
void cpu_exec_init_all(void)
3611
{
3612
    qemu_mutex_init(&ram_list.mutex);
3613 3614 3615 3616 3617 3618 3619 3620
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3621
    io_mem_init();
3622
    memory_map_init();
3623
    qemu_mutex_init(&map_client_list_lock);
3624 3625
}

3626
void cpu_unregister_map_client(QEMUBH *bh)
3627 3628 3629
{
    MapClient *client;

3630 3631 3632 3633 3634 3635
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3636
    }
3637
    qemu_mutex_unlock(&map_client_list_lock);
3638 3639 3640 3641
}

static void cpu_notify_map_clients(void)
{
3642
    qemu_mutex_lock(&map_client_list_lock);
3643
    cpu_notify_map_clients_locked();
3644
    qemu_mutex_unlock(&map_client_list_lock);
3645 3646
}

3647
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3648
                                  bool is_write, MemTxAttrs attrs)
3649
{
3650
    MemoryRegion *mr;
3651 3652 3653 3654
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3655
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3656 3657
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3658
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3669
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3670
                                hwaddr len, bool is_write,
3671
                                MemTxAttrs attrs)
3672
{
3673 3674 3675 3676 3677
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3678
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3679 3680
    rcu_read_unlock();
    return result;
3681 3682
}

3683
static hwaddr
3684
flatview_extend_translation(FlatView *fv, hwaddr addr,
3685 3686 3687
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3702
        this_mr = flatview_translate(fv, addr, &xlat,
3703
                                     &len, is_write, attrs);
3704 3705 3706 3707 3708 3709
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3710 3711 3712 3713
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3714 3715
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3716
 */
A
Avi Kivity 已提交
3717
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3718 3719
                        hwaddr addr,
                        hwaddr *plen,
3720 3721
                        bool is_write,
                        MemTxAttrs attrs)
3722
{
A
Avi Kivity 已提交
3723
    hwaddr len = *plen;
3724 3725
    hwaddr l, xlat;
    MemoryRegion *mr;
3726
    void *ptr;
3727
    FlatView *fv;
3728

3729 3730 3731
    if (len == 0) {
        return NULL;
    }
3732

3733
    l = len;
3734
    rcu_read_lock();
3735
    fv = address_space_to_flatview(as);
3736
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3737

3738
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3739
        if (atomic_xchg(&bounce.in_use, true)) {
3740
            rcu_read_unlock();
3741
            return NULL;
3742
        }
3743 3744 3745
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3746 3747
        bounce.addr = addr;
        bounce.len = l;
3748 3749 3750

        memory_region_ref(mr);
        bounce.mr = mr;
3751
        if (!is_write) {
3752
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3753
                               bounce.buffer, l);
3754
        }
3755

3756
        rcu_read_unlock();
3757 3758 3759 3760 3761
        *plen = l;
        return bounce.buffer;
    }


3762
    memory_region_ref(mr);
3763
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3764
                                        l, is_write, attrs);
3765
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3766 3767 3768
    rcu_read_unlock();

    return ptr;
3769 3770
}

A
Avi Kivity 已提交
3771
/* Unmaps a memory region previously mapped by address_space_map().
3772 3773 3774
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3775 3776
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3777 3778
{
    if (buffer != bounce.buffer) {
3779 3780 3781
        MemoryRegion *mr;
        ram_addr_t addr1;

3782
        mr = memory_region_from_host(buffer, &addr1);
3783
        assert(mr != NULL);
3784
        if (is_write) {
3785
            invalidate_and_set_dirty(mr, addr1, access_len);
3786
        }
3787
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3788
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3789
        }
3790
        memory_region_unref(mr);
3791 3792 3793
        return;
    }
    if (is_write) {
3794 3795
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3796
    }
3797
    qemu_vfree(bounce.buffer);
3798
    bounce.buffer = NULL;
3799
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3800
    atomic_mb_set(&bounce.in_use, false);
3801
    cpu_notify_map_clients();
3802
}
B
bellard 已提交
3803

A
Avi Kivity 已提交
3804 3805
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3806 3807
                              int is_write)
{
3808 3809
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3810 3811
}

A
Avi Kivity 已提交
3812 3813
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3814 3815 3816 3817
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3818 3819 3820 3821 3822 3823 3824
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3825

P
Paolo Bonzini 已提交
3826 3827 3828 3829 3830 3831
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3846 3847 3848 3849
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3850
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3851 3852
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3853 3854 3855 3856 3857 3858 3859 3860
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3861 3862 3863 3864 3865 3866
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3867 3868 3869 3870
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3871 3872 3873 3874
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3895
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3914
                                            &target_as, attrs);
3915 3916 3917 3918 3919 3920 3921 3922
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3923
                                   void *buf, hwaddr len)
3924 3925 3926 3927 3928
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3929 3930
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3941
                                    const void *buf, hwaddr len)
3942 3943 3944 3945 3946
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3947 3948
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3949 3950 3951
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3952 3953 3954 3955
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3956 3957 3958 3959
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3960 3961
#include "memory_ldst.inc.c"

3962
/* virtual memory access for debug (includes writing to ROM) */
3963
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3964
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3965
{
A
Avi Kivity 已提交
3966
    hwaddr phys_addr;
3967
    target_ulong l, page;
B
bellard 已提交
3968

3969
    cpu_synchronize_state(cpu);
B
bellard 已提交
3970
    while (len > 0) {
3971 3972 3973
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3974
        page = addr & TARGET_PAGE_MASK;
3975 3976
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3977 3978 3979 3980 3981 3982
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3983
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3984
        if (is_write) {
3985
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3986
                                    attrs, buf, l);
3987
        } else {
3988
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3989
                             attrs, buf, l, 0);
3990
        }
B
bellard 已提交
3991 3992 3993 3994 3995 3996
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3997 3998 3999 4000 4001

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
4002
size_t qemu_target_page_size(void)
4003
{
4004
    return TARGET_PAGE_SIZE;
4005 4006
}

4007 4008 4009 4010 4011 4012 4013 4014 4015
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
4016
#endif
B
bellard 已提交
4017

4018
bool target_words_bigendian(void)
4019 4020 4021 4022 4023 4024 4025 4026
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

4027
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
4028
bool cpu_physical_memory_is_io(hwaddr phys_addr)
4029
{
4030
    MemoryRegion*mr;
4031
    hwaddr l = 1;
4032
    bool res;
4033

4034
    rcu_read_lock();
4035
    mr = address_space_translate(&address_space_memory,
4036 4037
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
4038

4039 4040 4041
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
4042
}
4043

4044
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4045 4046
{
    RAMBlock *block;
4047
    int ret = 0;
4048

M
Mike Day 已提交
4049
    rcu_read_lock();
P
Peter Xu 已提交
4050
    RAMBLOCK_FOREACH(block) {
4051
        ret = func(block, opaque);
4052 4053 4054
        if (ret) {
            break;
        }
4055
    }
M
Mike Day 已提交
4056
    rcu_read_unlock();
4057
    return ret;
4058
}
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
4081
        bool need_madvise, need_fallocate;
4082 4083 4084 4085 4086 4087 4088 4089 4090
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
4101 4102 4103 4104
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4118 4119
#endif
        }
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4138 4139
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4140 4141
            goto err;
#endif
4142
        }
4143 4144
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
4155 4156 4157 4158 4159
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

4160
#endif
Y
Yang Zhong 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4174 4175 4176

#if !defined(CONFIG_USER_ONLY)

4177
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4178 4179
{
    if (start == end - 1) {
4180
        qemu_printf("\t%3d      ", start);
4181
    } else {
4182
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4183
    }
4184
    qemu_printf(" skip=%d ", skip);
4185
    if (ptr == PHYS_MAP_NODE_NIL) {
4186
        qemu_printf(" ptr=NIL");
4187
    } else if (!skip) {
4188
        qemu_printf(" ptr=#%d", ptr);
4189
    } else {
4190
        qemu_printf(" ptr=[%d]", ptr);
4191
    }
4192
    qemu_printf("\n");
4193 4194 4195 4196 4197
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4198
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4199 4200 4201
{
    int i;

4202 4203
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4204 4205 4206 4207 4208 4209

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4210 4211
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4222
            qemu_printf(" alias=%s", s->mr->alias->name ?
4223 4224
                    s->mr->alias->name : "noname");
        }
4225
        qemu_printf("\n");
4226 4227
    }

4228
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4229 4230 4231 4232 4233 4234
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4235
        qemu_printf("      [%d]\n", i);
4236 4237 4238 4239 4240 4241 4242 4243

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4244
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4245 4246 4247 4248 4249 4250

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4251
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4252 4253 4254 4255 4256
        }
    }
}

#endif