exec.c 122.4 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qapi/error.h"
B
bellard 已提交
21

22
#include "qemu/cutils.h"
B
bellard 已提交
23
#include "cpu.h"
24
#include "exec/exec-all.h"
25
#include "exec/target_page.h"
B
bellard 已提交
26
#include "tcg.h"
27
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
28
#include "hw/qdev-properties.h"
29
#if !defined(CONFIG_USER_ONLY)
30
#include "hw/boards.h"
31
#include "hw/xen/xen.h"
32
#endif
33
#include "sysemu/kvm.h"
34
#include "sysemu/sysemu.h"
35 36
#include "qemu/timer.h"
#include "qemu/config-file.h"
37
#include "qemu/error-report.h"
38
#if defined(CONFIG_USER_ONLY)
39
#include "qemu.h"
J
Jun Nakajima 已提交
40
#else /* !CONFIG_USER_ONLY */
41 42
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
43
#include "exec/ioport.h"
44
#include "sysemu/dma.h"
45
#include "sysemu/numa.h"
46
#include "sysemu/hw_accel.h"
47
#include "exec/address-spaces.h"
48
#include "sysemu/xen-mapcache.h"
49
#include "trace-root.h"
50

51 52 53 54
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

55
#endif
M
Mike Day 已提交
56
#include "qemu/rcu_queue.h"
57
#include "qemu/main-loop.h"
58
#include "translate-all.h"
59
#include "sysemu/replay.h"
60

61
#include "exec/memory-internal.h"
62
#include "exec/ram_addr.h"
63
#include "exec/log.h"
64

65 66
#include "migration/vmstate.h"

67
#include "qemu/range.h"
68 69 70
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
71

72 73
#include "monitor/monitor.h"

74
//#define DEBUG_SUBPAGE
T
ths 已提交
75

76
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
77 78 79
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
80
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
81 82

static MemoryRegion *system_memory;
83
static MemoryRegion *system_io;
A
Avi Kivity 已提交
84

85 86
AddressSpace address_space_io;
AddressSpace address_space_memory;
87

88
MemoryRegion io_mem_rom, io_mem_notdirty;
89
static MemoryRegion io_mem_unassigned;
90
#endif
91

92 93 94 95 96
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

97 98
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
99 100
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
101
__thread CPUState *current_cpu;
P
pbrook 已提交
102
/* 0 = Do not count executed instructions.
T
ths 已提交
103
   1 = Precise instruction counting.
P
pbrook 已提交
104
   2 = Adaptive rate instruction counting.  */
105
int use_icount;
B
bellard 已提交
106

Y
Yang Zhong 已提交
107 108 109
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

129
#if !defined(CONFIG_USER_ONLY)
130

131 132 133 134 135 136 137 138 139 140
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

141 142 143
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
144
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
146
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
147
    uint32_t ptr : 26;
148 149
};

150 151
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

152
/* Size of the L2 (and L3, etc) page tables.  */
153
#define ADDR_SPACE_BITS 64
154

M
Michael S. Tsirkin 已提交
155
#define P_L2_BITS 9
156 157 158 159 160
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
161

162
typedef struct PhysPageMap {
163 164
    struct rcu_head rcu;

165 166 167 168 169 170 171 172
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

173
struct AddressSpaceDispatch {
174
    MemoryRegionSection *mru_section;
175 176 177 178
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
179
    PhysPageMap map;
180 181
};

182 183 184
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
185
    FlatView *fv;
186
    hwaddr base;
187
    uint16_t sub_section[];
188 189
} subpage_t;

190 191 192 193
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
194

195
static void io_mem_init(void);
A
Avi Kivity 已提交
196
static void memory_map_init(void);
197
static void tcg_commit(MemoryListener *listener);
198

199
static MemoryRegion io_mem_watch;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

215 216 217 218 219 220
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

221
#endif
B
bellard 已提交
222

223
#if !defined(CONFIG_USER_ONLY)
224

225
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
226
{
227
    static unsigned alloc_hint = 16;
228
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
229
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
230 231
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
232
        alloc_hint = map->nodes_nb_alloc;
233
    }
234 235
}

236
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
237 238
{
    unsigned i;
239
    uint32_t ret;
240 241
    PhysPageEntry e;
    PhysPageEntry *p;
242

243
    ret = map->nodes_nb++;
244
    p = map->nodes[ret];
245
    assert(ret != PHYS_MAP_NODE_NIL);
246
    assert(ret != map->nodes_nb_alloc);
247 248 249

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
250
    for (i = 0; i < P_L2_SIZE; ++i) {
251
        memcpy(&p[i], &e, sizeof(e));
252
    }
253
    return ret;
254 255
}

256 257
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
258
                                int level)
259 260
{
    PhysPageEntry *p;
261
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
262

M
Michael S. Tsirkin 已提交
263
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
264
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
265
    }
266
    p = map->nodes[lp->ptr];
267
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
268

269
    while (*nb && lp < &p[P_L2_SIZE]) {
270
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
271
            lp->skip = 0;
272
            lp->ptr = leaf;
273 274
            *index += step;
            *nb -= step;
275
        } else {
276
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
277 278
        }
        ++lp;
279 280 281
    }
}

A
Avi Kivity 已提交
282
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
283
                          hwaddr index, hwaddr nb,
284
                          uint16_t leaf)
285
{
286
    /* Wildly overreserve - it doesn't matter much. */
287
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
288

289
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
290 291
}

292 293 294
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
295
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
315
            phys_page_compact(&p[i], nodes);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

345
void address_space_dispatch_compact(AddressSpaceDispatch *d)
346 347
{
    if (d->phys_map.skip) {
348
        phys_page_compact(&d->phys_map, d->map.nodes);
349 350 351
    }
}

F
Fam Zheng 已提交
352 353 354 355 356 357
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
358
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
359
           range_covers_byte(section->offset_within_address_space,
360
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
361 362
}

363
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
364
{
365 366 367
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
368
    hwaddr index = addr >> TARGET_PAGE_BITS;
369
    int i;
370

M
Michael S. Tsirkin 已提交
371
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
372
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
373
            return &sections[PHYS_SECTION_UNASSIGNED];
374
        }
375
        p = nodes[lp.ptr];
376
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
377
    }
378

F
Fam Zheng 已提交
379
    if (section_covers_addr(&sections[lp.ptr], addr)) {
380 381 382 383
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
384 385
}

386
/* Called from RCU critical section */
387
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
388 389
                                                        hwaddr addr,
                                                        bool resolve_subpage)
390
{
391
    MemoryRegionSection *section = atomic_read(&d->mru_section);
392 393
    subpage_t *subpage;

394 395
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
396
        section = phys_page_find(d, addr);
397
        atomic_set(&d->mru_section, section);
398
    }
399 400
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
401
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
402 403
    }
    return section;
404 405
}

406
/* Called from RCU critical section */
407
static MemoryRegionSection *
408
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
409
                                 hwaddr *plen, bool resolve_subpage)
410 411
{
    MemoryRegionSection *section;
412
    MemoryRegion *mr;
413
    Int128 diff;
414

415
    section = address_space_lookup_region(d, addr, resolve_subpage);
416 417 418 419 420 421
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

422
    mr = section->mr;
423 424 425 426 427 428 429 430 431 432 433 434

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
435
    if (memory_region_is_ram(mr)) {
436
        diff = int128_sub(section->size, int128_make64(addr));
437 438
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
439 440
    return section;
}
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
459
 * @attrs: transaction attributes
460 461 462 463 464 465 466 467 468 469
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
470 471
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
472 473 474 475 476 477 478
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
479 480 481 482 483 484 485 486 487
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
530
 * @target_as: the address space targeted by the IOMMU
531
 * @attrs: memory transaction attributes
532 533 534
 *
 * This function is called from RCU critical section
 */
535 536 537
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
538 539
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
540 541
                                                 bool is_write,
                                                 bool is_mmio,
542 543
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
544 545
{
    MemoryRegionSection *section;
546
    IOMMUMemoryRegion *iommu_mr;
547 548
    hwaddr plen = (hwaddr)(-1);

549 550
    if (!plen_out) {
        plen_out = &plen;
551
    }
552

553 554 555
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
556

557 558 559 560 561
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
562
                                             target_as, attrs);
563
    }
564
    if (page_mask_out) {
565 566
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
567 568
    }

569
    return *section;
570 571 572
}

/* Called from RCU critical section */
573
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
574
                                            bool is_write, MemTxAttrs attrs)
575
{
576
    MemoryRegionSection section;
577
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
578

579 580 581 582 583
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
584 585
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
586

587 588 589 590
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
591

592 593 594 595 596
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
597
        .target_as = as,
598 599 600
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
601 602 603 604 605 606 607 608 609
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
610
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
611 612
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
613 614 615
{
    MemoryRegion *mr;
    MemoryRegionSection section;
616
    AddressSpace *as = NULL;
617 618

    /* This can be MMIO, so setup MMIO bit. */
619
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
620
                                    is_write, true, &as, attrs);
621 622
    mr = section.mr;

623
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
624
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
625
        *plen = MIN(page, *plen);
626 627
    }

A
Avi Kivity 已提交
628
    return mr;
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
668
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
669 670 671 672 673 674 675
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
676 677
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
709
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
710
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
711
        g_free(notifier);
712 713 714 715
    }
    g_array_free(cpu->iommu_notifiers, true);
}

716
/* Called from RCU critical section */
717
MemoryRegionSection *
718
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
719 720
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
721
{
A
Avi Kivity 已提交
722
    MemoryRegionSection *section;
723 724 725 726
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
727
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
764

765
    assert(!memory_region_is_iommu(section->mr));
766
    *xlat = addr;
A
Avi Kivity 已提交
767
    return section;
768 769 770

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
771
}
772
#endif
B
bellard 已提交
773

774
#if !defined(CONFIG_USER_ONLY)
775 776

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
777
{
778
    CPUState *cpu = opaque;
B
bellard 已提交
779

780 781
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
782
    cpu->interrupt_request &= ~0x01;
783
    tlb_flush(cpu);
784

785 786 787 788 789 790 791
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

792
    return 0;
B
bellard 已提交
793
}
B
bellard 已提交
794

795 796 797 798
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

799
    cpu->exception_index = -1;
800 801 802 803 804 805 806 807

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

808
    return tcg_enabled() && cpu->exception_index != -1;
809 810 811 812 813 814
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
815
    .needed = cpu_common_exception_index_needed,
816 817 818 819 820 821
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

840
const VMStateDescription vmstate_cpu_common = {
841 842 843
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
844
    .pre_load = cpu_common_pre_load,
845
    .post_load = cpu_common_post_load,
846
    .fields = (VMStateField[]) {
847 848
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
849
        VMSTATE_END_OF_LIST()
850
    },
851 852
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
853
        &vmstate_cpu_common_crash_occurred,
854
        NULL
855 856
    }
};
857

858
#endif
B
bellard 已提交
859

860
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
861
{
A
Andreas Färber 已提交
862
    CPUState *cpu;
B
bellard 已提交
863

A
Andreas Färber 已提交
864
    CPU_FOREACH(cpu) {
865
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
866
            return cpu;
867
        }
B
bellard 已提交
868
    }
869

A
Andreas Färber 已提交
870
    return NULL;
B
bellard 已提交
871 872
}

873
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
874 875
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
876
{
877
    CPUAddressSpace *newas;
P
Peter Xu 已提交
878
    AddressSpace *as = g_new0(AddressSpace, 1);
879
    char *as_name;
P
Peter Xu 已提交
880 881

    assert(mr);
882 883 884
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
885 886 887 888

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

889 890 891 892 893
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

894 895
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
896

897 898
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
899
    }
900

901 902 903
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
904
    if (tcg_enabled()) {
905 906
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
907
    }
908
}
909 910 911 912 913 914

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
915 916
#endif

917
void cpu_exec_unrealizefn(CPUState *cpu)
918
{
919 920
    CPUClass *cc = CPU_GET_CLASS(cpu);

921
    cpu_list_remove(cpu);
922 923 924 925 926 927 928

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
929 930 931
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
932 933
}

F
Fam Zheng 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
948
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
949
{
950
    cpu->as = NULL;
951
    cpu->num_ases = 0;
952

953 954
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
955 956
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
957
#endif
L
Laurent Vivier 已提交
958 959
}

960
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
961
{
962
    CPUClass *cc = CPU_GET_CLASS(cpu);
963
    static bool tcg_target_initialized;
964

965
    cpu_list_add(cpu);
966

967 968
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
969 970
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
971
    tlb_init(cpu);
972

973
#ifndef CONFIG_USER_ONLY
974
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
975
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
976
    }
977
    if (cc->vmsd != NULL) {
978
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
979
    }
980

981
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
982
#endif
B
bellard 已提交
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
const char *parse_cpu_model(const char *cpu_model)
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

    model_pieces = g_strsplit(cpu_model, ",", 2);

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1008
#if defined(CONFIG_USER_ONLY)
1009
void tb_invalidate_phys_addr(target_ulong addr)
1010
{
1011
    mmap_lock();
1012
    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1013 1014
    mmap_unlock();
}
1015 1016 1017 1018 1019

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1020
#else
1021 1022 1023 1024 1025 1026
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1027 1028 1029 1030
    if (!tcg_enabled()) {
        return;
    }

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    rcu_read_lock();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        rcu_read_unlock();
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
    rcu_read_unlock();
}

1043 1044 1045 1046 1047 1048 1049 1050
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1051
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1052
    }
1053
}
1054
#endif
B
bellard 已提交
1055

1056
#if defined(CONFIG_USER_ONLY)
1057
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1058 1059 1060 1061

{
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

1072
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1073 1074 1075 1076 1077
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
1078
/* Add a watchpoint.  */
1079
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1080
                          int flags, CPUWatchpoint **watchpoint)
1081
{
1082
    CPUWatchpoint *wp;
1083

1084
    /* forbid ranges which are empty or run off the end of the address space */
1085
    if (len == 0 || (addr + len - 1) < addr) {
1086 1087
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1088 1089
        return -EINVAL;
    }
1090
    wp = g_malloc(sizeof(*wp));
1091 1092

    wp->vaddr = addr;
1093
    wp->len = len;
1094 1095
    wp->flags = flags;

1096
    /* keep all GDB-injected watchpoints in front */
1097 1098 1099 1100 1101
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1102

1103
    tlb_flush_page(cpu, addr);
1104 1105 1106 1107

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1108 1109
}

1110
/* Remove a specific watchpoint.  */
1111
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1112
                          int flags)
1113
{
1114
    CPUWatchpoint *wp;
1115

1116
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1117
        if (addr == wp->vaddr && len == wp->len
1118
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1119
            cpu_watchpoint_remove_by_ref(cpu, wp);
1120 1121 1122
            return 0;
        }
    }
1123
    return -ENOENT;
1124 1125
}

1126
/* Remove a specific watchpoint by reference.  */
1127
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1128
{
1129
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1130

1131
    tlb_flush_page(cpu, watchpoint->vaddr);
1132

1133
    g_free(watchpoint);
1134 1135 1136
}

/* Remove all matching watchpoints.  */
1137
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1138
{
1139
    CPUWatchpoint *wp, *next;
1140

1141
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1142 1143 1144
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1145
    }
1146
}
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1168
#endif
1169

1170
/* Add a breakpoint.  */
1171
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1172
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1173
{
1174
    CPUBreakpoint *bp;
1175

1176
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1177

1178 1179 1180
    bp->pc = pc;
    bp->flags = flags;

1181
    /* keep all GDB-injected breakpoints in front */
1182
    if (flags & BP_GDB) {
1183
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1184
    } else {
1185
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1186
    }
1187

1188
    breakpoint_invalidate(cpu, pc);
1189

1190
    if (breakpoint) {
1191
        *breakpoint = bp;
1192
    }
B
bellard 已提交
1193 1194 1195
    return 0;
}

1196
/* Remove a specific breakpoint.  */
1197
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1198 1199 1200
{
    CPUBreakpoint *bp;

1201
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1202
        if (bp->pc == pc && bp->flags == flags) {
1203
            cpu_breakpoint_remove_by_ref(cpu, bp);
1204 1205
            return 0;
        }
1206
    }
1207
    return -ENOENT;
1208 1209
}

1210
/* Remove a specific breakpoint by reference.  */
1211
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1212
{
1213 1214 1215
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1216

1217
    g_free(breakpoint);
1218 1219 1220
}

/* Remove all matching breakpoints. */
1221
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1222
{
1223
    CPUBreakpoint *bp, *next;
1224

1225
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1226 1227 1228
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1229
    }
B
bellard 已提交
1230 1231
}

B
bellard 已提交
1232 1233
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1234
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1235
{
1236 1237 1238
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1239
            kvm_update_guest_debug(cpu, 0);
1240
        } else {
S
Stuart Brady 已提交
1241
            /* must flush all the translated code to avoid inconsistencies */
1242
            /* XXX: only flush what is necessary */
1243
            tb_flush(cpu);
1244
        }
B
bellard 已提交
1245 1246 1247
    }
}

1248
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1249 1250
{
    va_list ap;
P
pbrook 已提交
1251
    va_list ap2;
B
bellard 已提交
1252 1253

    va_start(ap, fmt);
P
pbrook 已提交
1254
    va_copy(ap2, ap);
B
bellard 已提交
1255 1256 1257
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1258
    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259
    if (qemu_log_separate()) {
1260
        qemu_log_lock();
1261 1262 1263
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1264
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1265
        qemu_log_flush();
1266
        qemu_log_unlock();
1267
        qemu_log_close();
1268
    }
P
pbrook 已提交
1269
    va_end(ap2);
1270
    va_end(ap);
1271
    replay_finish();
1272 1273 1274 1275 1276
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1277
        act.sa_flags = 0;
1278 1279 1280
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1281 1282 1283
    abort();
}

1284
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1285
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1286 1287 1288 1289
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1290
    block = atomic_rcu_read(&ram_list.mru_block);
1291
    if (block && addr - block->offset < block->max_length) {
1292
        return block;
P
Paolo Bonzini 已提交
1293
    }
P
Peter Xu 已提交
1294
    RAMBLOCK_FOREACH(block) {
1295
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1296 1297 1298 1299 1300 1301 1302 1303
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1320 1321 1322 1323
    ram_list.mru_block = block;
    return block;
}

1324
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1325
{
1326
    CPUState *cpu;
P
Paolo Bonzini 已提交
1327
    ram_addr_t start1;
1328 1329 1330
    RAMBlock *block;
    ram_addr_t end;

1331
    assert(tcg_enabled());
1332 1333
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1334

M
Mike Day 已提交
1335
    rcu_read_lock();
P
Paolo Bonzini 已提交
1336 1337
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1338
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1339 1340 1341
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1342
    rcu_read_unlock();
J
Juan Quintela 已提交
1343 1344
}

P
pbrook 已提交
1345
/* Note: start and end must be within the same ram block.  */
1346 1347 1348
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1349
{
1350
    DirtyMemoryBlocks *blocks;
1351
    unsigned long end, page;
1352
    bool dirty = false;
1353 1354 1355 1356

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1357

1358 1359
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1376 1377

    if (dirty && tcg_enabled()) {
1378
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1379
    }
1380 1381

    return dirty;
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
     (ram_addr_t start, ram_addr_t length, unsigned client)
{
    DirtyMemoryBlocks *blocks;
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1453
/* Called from RCU critical section */
1454
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1455 1456 1457 1458 1459
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1460
{
A
Avi Kivity 已提交
1461
    hwaddr iotlb;
B
Blue Swirl 已提交
1462 1463
    CPUWatchpoint *wp;

1464
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1465
        /* Normal RAM.  */
1466
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1467
        if (!section->readonly) {
1468
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1469
        } else {
1470
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1471 1472
        }
    } else {
1473 1474
        AddressSpaceDispatch *d;

1475
        d = flatview_to_dispatch(section->fv);
1476
        iotlb = section - d->map.sections;
1477
        iotlb += xlat;
B
Blue Swirl 已提交
1478 1479 1480 1481
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1482
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1483
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1484 1485
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1486
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1487 1488 1489 1490 1491 1492 1493 1494
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1495 1496
#endif /* defined(CONFIG_USER_ONLY) */

1497
#if !defined(CONFIG_USER_ONLY)
1498

A
Anthony Liguori 已提交
1499
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1500
                             uint16_t section);
1501
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1502

1503
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1504
                               qemu_anon_ram_alloc;
1505 1506 1507 1508 1509 1510

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1511
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1512 1513 1514 1515
{
    phys_mem_alloc = alloc;
}

1516 1517
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1518
{
1519 1520 1521 1522
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1523
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1524

1525 1526 1527 1528
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1529
    }
1530
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1531
    memory_region_ref(section->mr);
1532
    return map->sections_nb++;
1533 1534
}

1535 1536
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1537 1538
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1539 1540
    memory_region_unref(mr);

D
Don Slutz 已提交
1541
    if (have_sub_page) {
1542
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1543
        object_unref(OBJECT(&subpage->iomem));
1544 1545 1546 1547
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1548
static void phys_sections_free(PhysPageMap *map)
1549
{
1550 1551
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1552 1553
        phys_section_destroy(section->mr);
    }
1554 1555
    g_free(map->sections);
    g_free(map->nodes);
1556 1557
}

1558
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1559
{
1560
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1561
    subpage_t *subpage;
A
Avi Kivity 已提交
1562
    hwaddr base = section->offset_within_address_space
1563
        & TARGET_PAGE_MASK;
1564
    MemoryRegionSection *existing = phys_page_find(d, base);
1565 1566
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1567
        .size = int128_make64(TARGET_PAGE_SIZE),
1568
    };
A
Avi Kivity 已提交
1569
    hwaddr start, end;
1570

1571
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1572

1573
    if (!(existing->mr->subpage)) {
1574 1575
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1576
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1577
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1578
                      phys_section_add(&d->map, &subsection));
1579
    } else {
1580
        subpage = container_of(existing->mr, subpage_t, iomem);
1581 1582
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1583
    end = start + int128_get64(section->size) - 1;
1584 1585
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1586 1587 1588
}


1589
static void register_multipage(FlatView *fv,
1590
                               MemoryRegionSection *section)
1591
{
1592
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1593
    hwaddr start_addr = section->offset_within_address_space;
1594
    uint16_t section_index = phys_section_add(&d->map, section);
1595 1596
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1597

1598 1599
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1600 1601
}

1602
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1603
{
1604
    MemoryRegionSection now = *section, remain = *section;
1605
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1606

1607 1608 1609 1610
    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
                       - now.offset_within_address_space;

1611
        now.size = int128_min(int128_make64(left), now.size);
1612
        register_subpage(fv, &now);
1613
    } else {
1614
        now.size = int128_zero();
1615
    }
1616 1617 1618 1619
    while (int128_ne(remain.size, now.size)) {
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1620
        now = remain;
1621
        if (int128_lt(remain.size, page_size)) {
1622
            register_subpage(fv, &now);
1623
        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1624
            now.size = page_size;
1625
            register_subpage(fv, &now);
1626
        } else {
1627
            now.size = int128_and(now.size, int128_neg(page_size));
1628
            register_multipage(fv, &now);
1629
        }
1630 1631 1632
    }
}

1633 1634 1635 1636 1637 1638
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
static int find_max_supported_pagesize(Object *obj, void *opaque)
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1681 1682
        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));

1683 1684
        if (hpsize < *hpsize_min) {
            *hpsize_min = hpsize;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        }
    }

    return 0;
}

long qemu_getrampagesize(void)
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

1697
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
#else
long qemu_getrampagesize(void)
{
    return getpagesize();
}
#endif

1741
#ifdef CONFIG_POSIX
1742 1743 1744 1745 1746 1747 1748 1749 1750
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1751 1752 1753 1754
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1755 1756
{
    char *filename;
1757 1758
    char *sanitized_name;
    char *c;
1759
    int fd = -1;
1760

1761
    *created = false;
1762 1763 1764 1765 1766
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1767
        }
1768 1769 1770 1771
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1772
                *created = true;
1773 1774 1775 1776 1777
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1778
            sanitized_name = g_strdup(region_name);
1779 1780 1781 1782 1783
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1784

1785 1786 1787
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1788

1789 1790 1791 1792 1793 1794 1795
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1796
        }
1797 1798 1799 1800
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1801
            return -1;
1802 1803 1804 1805 1806
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1807
    }
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
    void *area;

1820
    block->page_size = qemu_fd_getpagesize(fd);
1821 1822 1823 1824 1825
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1826 1827 1828 1829
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1830 1831
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1832 1833 1834 1835 1836
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1837

1838
    if (memory < block->page_size) {
1839
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1840 1841
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1842
        return NULL;
1843 1844
    }

1845
    memory = ROUND_UP(memory, block->page_size);
1846 1847 1848 1849 1850 1851

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1852 1853 1854 1855 1856 1857 1858 1859
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1860
     */
1861
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1862
        perror("ftruncate");
1863
    }
1864

1865 1866
    area = qemu_ram_mmap(fd, memory, block->mr->align,
                         block->flags & RAM_SHARED);
1867
    if (area == MAP_FAILED) {
1868
        error_setg_errno(errp, errno,
1869
                         "unable to map backing store for guest RAM");
1870
        return NULL;
1871
    }
1872 1873

    if (mem_prealloc) {
1874
        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1875
        if (errp && *errp) {
1876
            qemu_ram_munmap(fd, area, memory);
1877
            return NULL;
1878
        }
1879 1880
    }

A
Alex Williamson 已提交
1881
    block->fd = fd;
1882 1883 1884 1885
    return area;
}
#endif

1886 1887 1888 1889
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1890
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1891 1892
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1893
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1894

1895 1896
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1897
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1898
        return 0;
M
Mike Day 已提交
1899
    }
A
Alex Williamson 已提交
1900

P
Peter Xu 已提交
1901
    RAMBLOCK_FOREACH(block) {
1902
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1903

1904 1905 1906
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1907
        candidate = block->offset + block->max_length;
1908
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1909

1910 1911 1912
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1913
        RAMBLOCK_FOREACH(next_block) {
1914
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1915 1916 1917
                next = MIN(next, next_block->offset);
            }
        }
1918 1919 1920 1921 1922 1923 1924 1925

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1926
        }
1927 1928

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1929
    }
A
Alex Williamson 已提交
1930 1931 1932 1933 1934 1935 1936

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1937 1938
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
1939 1940 1941
    return offset;
}

1942
static unsigned long last_ram_page(void)
1943 1944 1945 1946
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
1947
    rcu_read_lock();
P
Peter Xu 已提交
1948
    RAMBLOCK_FOREACH(block) {
1949
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1950
    }
M
Mike Day 已提交
1951
    rcu_read_unlock();
1952
    return last >> TARGET_PAGE_BITS;
1953 1954
}

1955 1956 1957 1958 1959
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1960
    if (!machine_dump_guest_core(current_machine)) {
1961 1962 1963 1964 1965 1966 1967 1968 1969
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1970 1971 1972 1973 1974
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

1975 1976 1977 1978 1979
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2006
/* Called with iothread lock held.  */
G
Gonglei 已提交
2007
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2008
{
G
Gonglei 已提交
2009
    RAMBlock *block;
2010

2011 2012
    assert(new_block);
    assert(!new_block->idstr[0]);
2013

2014 2015
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2016 2017
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2018
            g_free(id);
2019 2020 2021 2022
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2023
    rcu_read_lock();
P
Peter Xu 已提交
2024
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2025 2026
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2027 2028 2029 2030 2031
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2032
    rcu_read_unlock();
2033 2034
}

2035
/* Called with iothread lock held.  */
G
Gonglei 已提交
2036
void qemu_ram_unset_idstr(RAMBlock *block)
2037
{
2038 2039 2040 2041
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2042 2043 2044 2045 2046
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2047 2048 2049 2050 2051
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2052 2053 2054 2055 2056 2057
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2058
    RAMBLOCK_FOREACH(block) {
2059 2060 2061 2062 2063 2064
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2065 2066
static int memory_try_enable_merging(void *addr, size_t len)
{
2067
    if (!machine_mem_merge(current_machine)) {
2068 2069 2070 2071 2072 2073 2074
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2075 2076 2077 2078 2079 2080 2081
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2082
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2083 2084 2085
{
    assert(block);

2086
    newsize = HOST_PAGE_ALIGN(newsize);
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2110 2111
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2112 2113 2114 2115 2116 2117 2118
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2160
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2161
{
2162
    RAMBlock *block;
M
Mike Day 已提交
2163
    RAMBlock *last_block = NULL;
2164
    ram_addr_t old_ram_size, new_ram_size;
2165
    Error *err = NULL;
2166

2167
    old_ram_size = last_ram_page();
2168

2169
    qemu_mutex_lock_ramlist();
2170
    new_block->offset = find_ram_offset(new_block->max_length);
2171 2172 2173

    if (!new_block->host) {
        if (xen_enabled()) {
2174
            xen_ram_alloc(new_block->offset, new_block->max_length,
2175 2176 2177 2178
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2179
                return;
2180
            }
2181
        } else {
2182
            new_block->host = phys_mem_alloc(new_block->max_length,
2183
                                             &new_block->mr->align, shared);
2184
            if (!new_block->host) {
2185 2186 2187 2188
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2189
                return;
2190
            }
2191
            memory_try_enable_merging(new_block->host, new_block->max_length);
2192
        }
2193
    }
P
pbrook 已提交
2194

L
Li Zhijian 已提交
2195 2196 2197
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2198
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2199
    }
M
Mike Day 已提交
2200 2201 2202 2203
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2204
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2205
        last_block = block;
2206
        if (block->max_length < new_block->max_length) {
2207 2208 2209 2210
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2211
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2212
    } else if (last_block) {
M
Mike Day 已提交
2213
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2214
    } else { /* list is empty */
M
Mike Day 已提交
2215
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2216
    }
2217
    ram_list.mru_block = NULL;
P
pbrook 已提交
2218

M
Mike Day 已提交
2219 2220
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2221
    ram_list.version++;
2222
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2223

2224
    cpu_physical_memory_set_dirty_range(new_block->offset,
2225 2226
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2227

2228 2229 2230
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2231
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2232
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2233
        ram_block_notify_add(new_block->host, new_block->max_length);
2234
    }
P
pbrook 已提交
2235
}
B
bellard 已提交
2236

2237
#ifdef CONFIG_POSIX
2238
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2239
                                 uint32_t ram_flags, int fd,
2240
                                 Error **errp)
2241 2242
{
    RAMBlock *new_block;
2243
    Error *local_err = NULL;
2244
    int64_t file_size;
2245

J
Junyan He 已提交
2246 2247 2248
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2249
    if (xen_enabled()) {
2250
        error_setg(errp, "-mem-path not supported with Xen");
2251
        return NULL;
2252 2253
    }

2254 2255 2256 2257 2258 2259
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2260 2261 2262 2263 2264 2265
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2266 2267
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2268
        return NULL;
2269 2270
    }

2271
    size = HOST_PAGE_ALIGN(size);
2272 2273 2274 2275 2276 2277 2278 2279
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2280 2281
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2282 2283
    new_block->used_length = size;
    new_block->max_length = size;
2284
    new_block->flags = ram_flags;
2285
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2286 2287
    if (!new_block->host) {
        g_free(new_block);
2288
        return NULL;
2289 2290
    }

2291
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2292 2293 2294
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2295
        return NULL;
2296
    }
2297
    return new_block;
2298 2299 2300 2301 2302

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2303
                                   uint32_t ram_flags, const char *mem_path,
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2315
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2316 2317 2318 2319 2320 2321 2322 2323 2324
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2325
}
2326
#endif
2327

2328
static
2329 2330 2331 2332
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2333
                                  void *host, bool resizeable, bool share,
2334
                                  MemoryRegion *mr, Error **errp)
2335 2336
{
    RAMBlock *new_block;
2337
    Error *local_err = NULL;
2338

2339 2340
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2341 2342
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2343
    new_block->resized = resized;
2344 2345
    new_block->used_length = size;
    new_block->max_length = max_size;
2346
    assert(max_size >= size);
2347
    new_block->fd = -1;
2348
    new_block->page_size = getpagesize();
2349 2350
    new_block->host = host;
    if (host) {
2351
        new_block->flags |= RAM_PREALLOC;
2352
    }
2353 2354 2355
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2356
    ram_block_add(new_block, &local_err, share);
2357 2358 2359
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2360
        return NULL;
2361
    }
2362
    return new_block;
2363 2364
}

2365
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2366 2367
                                   MemoryRegion *mr, Error **errp)
{
2368 2369
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2370 2371
}

2372 2373
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2374
{
2375 2376
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2377 2378
}

2379
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2380 2381 2382 2383 2384
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2385 2386
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2387 2388
}

P
Paolo Bonzini 已提交
2389 2390 2391 2392 2393 2394 2395 2396
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2397
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2398 2399 2400 2401 2402 2403 2404 2405
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2406
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2407
{
2408 2409 2410 2411
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2412 2413 2414 2415
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2416
    qemu_mutex_lock_ramlist();
2417 2418 2419 2420 2421 2422
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2423
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2424 2425
}

H
Huang Ying 已提交
2426 2427 2428 2429 2430 2431 2432 2433
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2434
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2435
        offset = addr - block->offset;
2436
        if (offset < block->max_length) {
2437
            vaddr = ramblock_ptr(block, offset);
2438
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2439
                ;
2440 2441
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2442 2443
            } else {
                flags = MAP_FIXED;
2444
                if (block->fd >= 0) {
2445 2446
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2447 2448
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2449
                } else {
2450 2451 2452 2453 2454 2455 2456
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2457 2458 2459 2460 2461
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2462 2463 2464
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2465 2466
                    exit(1);
                }
2467
                memory_try_enable_merging(vaddr, length);
2468
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2469 2470 2471 2472 2473 2474
            }
        }
    }
}
#endif /* !_WIN32 */

2475
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2476 2477 2478
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2479
 *
2480
 * Called within RCU critical section.
2481
 */
2482
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2483
{
2484 2485 2486 2487
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2488
        addr -= block->offset;
2489
    }
2490 2491

    if (xen_enabled() && block->host == NULL) {
2492 2493 2494 2495 2496
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2497
            return xen_map_cache(addr, 0, 0, false);
2498
        }
2499

2500
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2501
    }
2502
    return ramblock_ptr(block, addr);
2503 2504
}

2505
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2506
 * but takes a size argument.
M
Mike Day 已提交
2507
 *
2508
 * Called within RCU critical section.
2509
 */
2510
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2511
                                 hwaddr *size, bool lock)
2512
{
2513
    RAMBlock *block = ram_block;
2514 2515 2516
    if (*size == 0) {
        return NULL;
    }
2517

2518 2519
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2520
        addr -= block->offset;
2521
    }
2522
    *size = MIN(*size, block->max_length - addr);
2523 2524 2525 2526 2527 2528 2529

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2530
            return xen_map_cache(addr, *size, lock, lock);
2531 2532
        }

2533
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2534
    }
2535

2536
    return ramblock_ptr(block, addr);
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2559 2560 2561 2562 2563 2564 2565
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2566 2567
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2568
{
P
pbrook 已提交
2569 2570 2571
    RAMBlock *block;
    uint8_t *host = ptr;

2572
    if (xen_enabled()) {
2573
        ram_addr_t ram_addr;
M
Mike Day 已提交
2574
        rcu_read_lock();
2575 2576
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2577
        if (block) {
2578
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2579
        }
M
Mike Day 已提交
2580
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2581
        return block;
2582 2583
    }

M
Mike Day 已提交
2584 2585
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2586
    if (block && block->host && host - block->host < block->max_length) {
2587 2588 2589
        goto found;
    }

P
Peter Xu 已提交
2590
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2591 2592 2593 2594
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2595
        if (host - block->host < block->max_length) {
2596
            goto found;
A
Alex Williamson 已提交
2597
        }
P
pbrook 已提交
2598
    }
J
Jun Nakajima 已提交
2599

M
Mike Day 已提交
2600
    rcu_read_unlock();
2601
    return NULL;
2602 2603

found:
D
Dr. David Alan Gilbert 已提交
2604 2605 2606 2607
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2608
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2609 2610 2611
    return block;
}

D
Dr. David Alan Gilbert 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2623
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2624 2625 2626 2627 2628 2629 2630 2631
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2632 2633
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2634
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2635 2636
{
    RAMBlock *block;
2637
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2638

2639
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2640
    if (!block) {
2641
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2642 2643
    }

2644
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2645
}
A
Alex Williamson 已提交
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
E
Emilio G. Cota 已提交
2658
    ndi->pages = NULL;
2659

2660
    assert(tcg_enabled());
2661
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
E
Emilio G. Cota 已提交
2662 2663
        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2664
    }
2665 2666 2667 2668 2669
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
E
Emilio G. Cota 已提交
2670
    if (ndi->pages) {
2671
        assert(tcg_enabled());
E
Emilio G. Cota 已提交
2672 2673
        page_collection_unlock(ndi->pages);
        ndi->pages = NULL;
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2697
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2698
    memory_notdirty_write_complete(&ndi);
2699 2700
}

2701
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2702 2703
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2704 2705 2706 2707
{
    return is_write;
}

2708 2709
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2710
    .valid.accepts = notdirty_mem_accepts,
2711
    .endianness = DEVICE_NATIVE_ENDIAN,
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2722 2723
};

P
pbrook 已提交
2724
/* Generate a debug exception if a watchpoint has been hit.  */
2725
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2726
{
2727
    CPUState *cpu = current_cpu;
2728
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2729
    target_ulong vaddr;
2730
    CPUWatchpoint *wp;
P
pbrook 已提交
2731

2732
    assert(tcg_enabled());
2733
    if (cpu->watchpoint_hit) {
2734 2735 2736
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2737
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2738 2739
        return;
    }
2740
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2741
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2742
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2743 2744
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2745 2746 2747 2748 2749 2750
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2751
            wp->hitattrs = attrs;
2752
            if (!cpu->watchpoint_hit) {
2753 2754 2755 2756 2757
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2758
                cpu->watchpoint_hit = wp;
2759

E
Emilio G. Cota 已提交
2760
                mmap_lock();
2761
                tb_check_watchpoint(cpu);
2762
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2763
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2764
                    mmap_unlock();
2765
                    cpu_loop_exit(cpu);
2766
                } else {
2767 2768
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2769
                    mmap_unlock();
2770
                    cpu_loop_exit_noexc(cpu);
2771
                }
2772
            }
2773 2774
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2775 2776 2777 2778
        }
    }
}

2779 2780 2781
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2782 2783
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2784
{
2785 2786
    MemTxResult res;
    uint64_t data;
2787 2788
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2789 2790

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2791
    switch (size) {
2792
    case 1:
2793
        data = address_space_ldub(as, addr, attrs, &res);
2794 2795
        break;
    case 2:
2796
        data = address_space_lduw(as, addr, attrs, &res);
2797 2798
        break;
    case 4:
2799
        data = address_space_ldl(as, addr, attrs, &res);
2800
        break;
2801 2802 2803
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2804 2805
    default: abort();
    }
2806 2807
    *pdata = data;
    return res;
2808 2809
}

2810 2811 2812
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2813
{
2814
    MemTxResult res;
2815 2816
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2817 2818

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2819
    switch (size) {
2820
    case 1:
2821
        address_space_stb(as, addr, val, attrs, &res);
2822 2823
        break;
    case 2:
2824
        address_space_stw(as, addr, val, attrs, &res);
2825 2826
        break;
    case 4:
2827
        address_space_stl(as, addr, val, attrs, &res);
2828
        break;
2829 2830 2831
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2832 2833
    default: abort();
    }
2834
    return res;
2835 2836
}

2837
static const MemoryRegionOps watch_mem_ops = {
2838 2839
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2840
    .endianness = DEVICE_NATIVE_ENDIAN,
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2851 2852
};

2853
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2854
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2855
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2856 2857
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2858
                                  bool is_write, MemTxAttrs attrs);
2859

2860 2861
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2862
{
2863
    subpage_t *subpage = opaque;
2864
    uint8_t buf[8];
2865
    MemTxResult res;
2866

2867
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2868
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2869
           subpage, len, addr);
2870
#endif
2871
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2872 2873
    if (res) {
        return res;
2874
    }
2875 2876
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2877 2878
}

2879 2880
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2881
{
2882
    subpage_t *subpage = opaque;
2883
    uint8_t buf[8];
2884

2885
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2886
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2887 2888
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2889
#endif
2890
    stn_p(buf, len, value);
2891
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2892 2893
}

2894
static bool subpage_accepts(void *opaque, hwaddr addr,
2895 2896
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2897
{
2898
    subpage_t *subpage = opaque;
2899
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2900
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2901
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2902 2903
#endif

2904
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2905
                                 len, is_write, attrs);
2906 2907
}

2908
static const MemoryRegionOps subpage_ops = {
2909 2910
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2911 2912 2913 2914
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2915
    .valid.accepts = subpage_accepts,
2916
    .endianness = DEVICE_NATIVE_ENDIAN,
2917 2918
};

A
Anthony Liguori 已提交
2919
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2920
                             uint16_t section)
2921 2922 2923 2924 2925 2926 2927 2928
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2929 2930
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2931 2932
#endif
    for (; idx <= eidx; idx++) {
2933
        mmio->sub_section[idx] = section;
2934 2935 2936 2937 2938
    }

    return 0;
}

2939
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2940
{
A
Anthony Liguori 已提交
2941
    subpage_t *mmio;
2942

2943
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2944
    mmio->fv = fv;
2945
    mmio->base = base;
2946
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2947
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2948
    mmio->iomem.subpage = true;
2949
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2950 2951
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2952
#endif
2953
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2954 2955 2956 2957

    return mmio;
}

2958
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2959
{
2960
    assert(fv);
2961
    MemoryRegionSection section = {
2962
        .fv = fv,
2963 2964 2965
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2966
        .size = int128_2_64(),
2967 2968
    };

2969
    return phys_section_add(map, &section);
2970 2971
}

2972 2973 2974 2975 2976 2977 2978
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2979 2980
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

3004 3005
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
3006
{
3007 3008
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3009
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3010
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
3011

3012
    return &sections[index & ~TARGET_PAGE_MASK];
3013 3014
}

A
Avi Kivity 已提交
3015 3016
static void io_mem_init(void)
{
3017 3018
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
3019
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3020
                          NULL, UINT64_MAX);
3021 3022 3023 3024

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
3025
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3026
                          NULL, UINT64_MAX);
3027 3028
    memory_region_clear_global_locking(&io_mem_notdirty);

3029
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3030
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
3031 3032
}

3033
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3034
{
3035 3036 3037
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

3038
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3039
    assert(n == PHYS_SECTION_UNASSIGNED);
3040
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3041
    assert(n == PHYS_SECTION_NOTDIRTY);
3042
    n = dummy_section(&d->map, fv, &io_mem_rom);
3043
    assert(n == PHYS_SECTION_ROM);
3044
    n = dummy_section(&d->map, fv, &io_mem_watch);
3045
    assert(n == PHYS_SECTION_WATCH);
3046

M
Michael S. Tsirkin 已提交
3047
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3048 3049

    return d;
3050 3051
}

3052
void address_space_dispatch_free(AddressSpaceDispatch *d)
3053 3054 3055 3056 3057
{
    phys_sections_free(&d->map);
    g_free(d);
}

3058
static void tcg_commit(MemoryListener *listener)
3059
{
3060 3061
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3062

3063
    assert(tcg_enabled());
3064 3065
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3066 3067 3068 3069 3070 3071
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3072
    d = address_space_to_dispatch(cpuas->as);
3073
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3074
    tlb_flush(cpuas->cpu);
3075 3076
}

A
Avi Kivity 已提交
3077 3078
static void memory_map_init(void)
{
3079
    system_memory = g_malloc(sizeof(*system_memory));
3080

3081
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3082
    address_space_init(&address_space_memory, system_memory, "memory");
3083

3084
    system_io = g_malloc(sizeof(*system_io));
3085 3086
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3087
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3088 3089 3090 3091 3092 3093 3094
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3095 3096 3097 3098 3099
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3100 3101
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3102 3103
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3104
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3105
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3106
{
3107 3108
    int flags;
    target_ulong l, page;
3109
    void * p;
B
bellard 已提交
3110 3111 3112 3113 3114 3115 3116 3117

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3118
            return -1;
B
bellard 已提交
3119 3120
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3121
                return -1;
3122
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3123
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3124
                return -1;
A
aurel32 已提交
3125 3126
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3127 3128
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3129
                return -1;
3130
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3131
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3132
                return -1;
A
aurel32 已提交
3133
            memcpy(buf, p, l);
A
aurel32 已提交
3134
            unlock_user(p, addr, 0);
B
bellard 已提交
3135 3136 3137 3138 3139
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3140
    return 0;
B
bellard 已提交
3141
}
B
bellard 已提交
3142

B
bellard 已提交
3143
#else
3144

3145
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3146
                                     hwaddr length)
3147
{
3148
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3149 3150
    addr += memory_region_get_ram_addr(mr);

3151 3152 3153 3154 3155 3156 3157 3158 3159
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3160
        assert(tcg_enabled());
3161 3162
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3163
    }
3164
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3165 3166
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3180
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3181
{
3182
    unsigned access_size_max = mr->ops->valid.max_access_size;
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3196
    }
3197 3198 3199 3200

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3201
    }
3202
    l = pow2floor(l);
3203 3204

    return l;
3205 3206
}

3207
static bool prepare_mmio_access(MemoryRegion *mr)
3208
{
3209 3210 3211 3212 3213 3214 3215 3216
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3217
    if (mr->flush_coalesced_mmio) {
3218 3219 3220
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3221
        qemu_flush_coalesced_mmio_buffer();
3222 3223 3224
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3225
    }
3226 3227

    return release_lock;
3228 3229
}

3230
/* Called within RCU critical section.  */
3231 3232 3233
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3234
                                           hwaddr len, hwaddr addr1,
3235
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3236 3237
{
    uint8_t *ptr;
3238
    uint64_t val;
3239
    MemTxResult result = MEMTX_OK;
3240
    bool release_lock = false;
3241

3242
    for (;;) {
3243 3244 3245 3246 3247
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3248 3249
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3250
        } else {
3251
            /* RAM case */
3252
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3253 3254
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3255
        }
3256 3257 3258 3259 3260 3261

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3262 3263 3264
        len -= l;
        buf += l;
        addr += l;
3265 3266 3267 3268 3269 3270

        if (!len) {
            break;
        }

        l = len;
3271
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3272
    }
3273

3274
    return result;
B
bellard 已提交
3275
}
B
bellard 已提交
3276

3277
/* Called from RCU critical section.  */
3278
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3279
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3280
{
3281 3282 3283 3284 3285
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3286
    l = len;
3287
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3288 3289
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3290 3291 3292 3293 3294

    return result;
}

/* Called within RCU critical section.  */
3295 3296
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3297
                                   hwaddr len, hwaddr addr1, hwaddr l,
3298
                                   MemoryRegion *mr)
3299 3300 3301 3302 3303
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3304

3305
    for (;;) {
3306 3307 3308 3309
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3310 3311
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3312 3313
        } else {
            /* RAM case */
3314
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3326 3327 3328 3329 3330 3331

        if (!len) {
            break;
        }

        l = len;
3332
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3333 3334 3335 3336 3337
    }

    return result;
}

3338 3339
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3340
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3341 3342 3343 3344
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3345

3346
    l = len;
3347
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3348 3349
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3350 3351
}

3352
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3353
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3368 3369
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3370
                                const uint8_t *buf, hwaddr len)
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3385
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3386
                             uint8_t *buf, hwaddr len, bool is_write)
3387 3388 3389 3390 3391 3392 3393 3394
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3395
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3396
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3397
{
3398 3399
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3400 3401
}

3402 3403 3404 3405 3406
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3407 3408 3409 3410
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3411
                                                           hwaddr len,
3412
                                                           enum write_rom_type type)
B
bellard 已提交
3413
{
3414
    hwaddr l;
B
bellard 已提交
3415
    uint8_t *ptr;
3416
    hwaddr addr1;
3417
    MemoryRegion *mr;
3418

3419
    rcu_read_lock();
B
bellard 已提交
3420
    while (len > 0) {
3421
        l = len;
3422
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3423

3424 3425
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3426
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3427 3428
        } else {
            /* ROM/RAM case */
3429
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3430 3431 3432
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3433
                invalidate_and_set_dirty(mr, addr1, l);
3434 3435 3436 3437 3438
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3439 3440 3441 3442 3443
        }
        len -= l;
        buf += l;
        addr += l;
    }
3444
    rcu_read_unlock();
3445
    return MEMTX_OK;
B
bellard 已提交
3446 3447
}

3448
/* used for ROM loading : can write in RAM and ROM */
3449 3450
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3451
                                    const uint8_t *buf, hwaddr len)
3452
{
3453 3454
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3455 3456
}

3457
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3469 3470 3471
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3472 3473
}

3474
typedef struct {
3475
    MemoryRegion *mr;
3476
    void *buffer;
A
Avi Kivity 已提交
3477 3478
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3479
    bool in_use;
3480 3481 3482 3483
} BounceBuffer;

static BounceBuffer bounce;

3484
typedef struct MapClient {
3485
    QEMUBH *bh;
B
Blue Swirl 已提交
3486
    QLIST_ENTRY(MapClient) link;
3487 3488
} MapClient;

3489
QemuMutex map_client_list_lock;
3490
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3491
    = QLIST_HEAD_INITIALIZER(map_client_list);
3492

3493 3494 3495 3496 3497 3498
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3499 3500 3501 3502 3503 3504
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3505 3506
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3507 3508 3509
    }
}

3510
void cpu_register_map_client(QEMUBH *bh)
3511
{
3512
    MapClient *client = g_malloc(sizeof(*client));
3513

3514
    qemu_mutex_lock(&map_client_list_lock);
3515
    client->bh = bh;
B
Blue Swirl 已提交
3516
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3517 3518 3519
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3520
    qemu_mutex_unlock(&map_client_list_lock);
3521 3522
}

3523
void cpu_exec_init_all(void)
3524
{
3525
    qemu_mutex_init(&ram_list.mutex);
3526 3527 3528 3529 3530 3531 3532 3533
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3534
    io_mem_init();
3535
    memory_map_init();
3536
    qemu_mutex_init(&map_client_list_lock);
3537 3538
}

3539
void cpu_unregister_map_client(QEMUBH *bh)
3540 3541 3542
{
    MapClient *client;

3543 3544 3545 3546 3547 3548
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3549
    }
3550
    qemu_mutex_unlock(&map_client_list_lock);
3551 3552 3553 3554
}

static void cpu_notify_map_clients(void)
{
3555
    qemu_mutex_lock(&map_client_list_lock);
3556
    cpu_notify_map_clients_locked();
3557
    qemu_mutex_unlock(&map_client_list_lock);
3558 3559
}

3560
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3561
                                  bool is_write, MemTxAttrs attrs)
3562
{
3563
    MemoryRegion *mr;
3564 3565 3566 3567
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3568
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3569 3570
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3571
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3582
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3583
                                hwaddr len, bool is_write,
3584
                                MemTxAttrs attrs)
3585
{
3586 3587 3588 3589 3590
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3591
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3592 3593
    rcu_read_unlock();
    return result;
3594 3595
}

3596
static hwaddr
3597
flatview_extend_translation(FlatView *fv, hwaddr addr,
3598 3599 3600
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3615
        this_mr = flatview_translate(fv, addr, &xlat,
3616
                                     &len, is_write, attrs);
3617 3618 3619 3620 3621 3622
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3623 3624 3625 3626
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3627 3628
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3629
 */
A
Avi Kivity 已提交
3630
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3631 3632
                        hwaddr addr,
                        hwaddr *plen,
3633 3634
                        bool is_write,
                        MemTxAttrs attrs)
3635
{
A
Avi Kivity 已提交
3636
    hwaddr len = *plen;
3637 3638
    hwaddr l, xlat;
    MemoryRegion *mr;
3639
    void *ptr;
3640
    FlatView *fv;
3641

3642 3643 3644
    if (len == 0) {
        return NULL;
    }
3645

3646
    l = len;
3647
    rcu_read_lock();
3648
    fv = address_space_to_flatview(as);
3649
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3650

3651
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3652
        if (atomic_xchg(&bounce.in_use, true)) {
3653
            rcu_read_unlock();
3654
            return NULL;
3655
        }
3656 3657 3658
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3659 3660
        bounce.addr = addr;
        bounce.len = l;
3661 3662 3663

        memory_region_ref(mr);
        bounce.mr = mr;
3664
        if (!is_write) {
3665
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3666
                               bounce.buffer, l);
3667
        }
3668

3669
        rcu_read_unlock();
3670 3671 3672 3673 3674
        *plen = l;
        return bounce.buffer;
    }


3675
    memory_region_ref(mr);
3676
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3677
                                        l, is_write, attrs);
3678
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3679 3680 3681
    rcu_read_unlock();

    return ptr;
3682 3683
}

A
Avi Kivity 已提交
3684
/* Unmaps a memory region previously mapped by address_space_map().
3685 3686 3687
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3688 3689
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3690 3691
{
    if (buffer != bounce.buffer) {
3692 3693 3694
        MemoryRegion *mr;
        ram_addr_t addr1;

3695
        mr = memory_region_from_host(buffer, &addr1);
3696
        assert(mr != NULL);
3697
        if (is_write) {
3698
            invalidate_and_set_dirty(mr, addr1, access_len);
3699
        }
3700
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3701
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3702
        }
3703
        memory_region_unref(mr);
3704 3705 3706
        return;
    }
    if (is_write) {
3707 3708
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3709
    }
3710
    qemu_vfree(bounce.buffer);
3711
    bounce.buffer = NULL;
3712
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3713
    atomic_mb_set(&bounce.in_use, false);
3714
    cpu_notify_map_clients();
3715
}
B
bellard 已提交
3716

A
Avi Kivity 已提交
3717 3718
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3719 3720
                              int is_write)
{
3721 3722
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3723 3724
}

A
Avi Kivity 已提交
3725 3726
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3727 3728 3729 3730
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3731 3732 3733 3734 3735 3736 3737
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3738

P
Paolo Bonzini 已提交
3739 3740 3741 3742 3743 3744
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3759 3760 3761 3762
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3763
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3764 3765
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3766 3767 3768 3769 3770 3771 3772 3773
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3774 3775 3776 3777 3778 3779
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3780 3781 3782 3783
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3784 3785 3786 3787
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3808
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3827
                                            &target_as, attrs);
3828 3829 3830 3831 3832 3833 3834 3835
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3836
                                   void *buf, hwaddr len)
3837 3838 3839 3840 3841
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3842 3843
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3854
                                    const void *buf, hwaddr len)
3855 3856 3857 3858 3859
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3860 3861
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3862 3863 3864
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3865 3866 3867 3868
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3869 3870 3871 3872
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3873 3874
#include "memory_ldst.inc.c"

3875
/* virtual memory access for debug (includes writing to ROM) */
3876
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3877
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3878
{
A
Avi Kivity 已提交
3879
    hwaddr phys_addr;
3880
    target_ulong l, page;
B
bellard 已提交
3881

3882
    cpu_synchronize_state(cpu);
B
bellard 已提交
3883
    while (len > 0) {
3884 3885 3886
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3887
        page = addr & TARGET_PAGE_MASK;
3888 3889
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3890 3891 3892 3893 3894 3895
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3896
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3897
        if (is_write) {
3898
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3899
                                    attrs, buf, l);
3900
        } else {
3901
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3902
                             attrs, buf, l, 0);
3903
        }
B
bellard 已提交
3904 3905 3906 3907 3908 3909
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3910 3911 3912 3913 3914

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3915
size_t qemu_target_page_size(void)
3916
{
3917
    return TARGET_PAGE_SIZE;
3918 3919
}

3920 3921 3922 3923 3924 3925 3926 3927 3928
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3929
#endif
B
bellard 已提交
3930

3931
bool target_words_bigendian(void)
3932 3933 3934 3935 3936 3937 3938 3939
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3940
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3941
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3942
{
3943
    MemoryRegion*mr;
3944
    hwaddr l = 1;
3945
    bool res;
3946

3947
    rcu_read_lock();
3948
    mr = address_space_translate(&address_space_memory,
3949 3950
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3951

3952 3953 3954
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3955
}
3956

3957
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3958 3959
{
    RAMBlock *block;
3960
    int ret = 0;
3961

M
Mike Day 已提交
3962
    rcu_read_lock();
P
Peter Xu 已提交
3963
    RAMBLOCK_FOREACH(block) {
3964 3965 3966 3967 3968
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
3969
    }
M
Mike Day 已提交
3970
    rcu_read_unlock();
3971
    return ret;
3972
}
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
{
    RAMBlock *block;
    int ret = 0;

    rcu_read_lock();
    RAMBLOCK_FOREACH(block) {
        if (!qemu_ram_is_migratable(block)) {
            continue;
        }
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
    }
    rcu_read_unlock();
    return ret;
}

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
4015
        bool need_madvise, need_fallocate;
4016 4017 4018 4019 4020 4021 4022 4023 4024
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
4035 4036 4037 4038
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4052 4053
#endif
        }
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4072 4073
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4074 4075
            goto err;
#endif
4076
        }
4077 4078
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
4089 4090 4091 4092 4093
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

4094
#endif
Y
Yang Zhong 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

#if !defined(CONFIG_USER_ONLY)

static void mtree_print_phys_entries(fprintf_function mon, void *f,
                                     int start, int end, int skip, int ptr)
{
    if (start == end - 1) {
        mon(f, "\t%3d      ", start);
    } else {
        mon(f, "\t%3d..%-3d ", start, end - 1);
    }
    mon(f, " skip=%d ", skip);
    if (ptr == PHYS_MAP_NODE_NIL) {
        mon(f, " ptr=NIL");
    } else if (!skip) {
        mon(f, " ptr=#%d", ptr);
    } else {
        mon(f, " ptr=[%d]", ptr);
    }
    mon(f, "\n");
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

void mtree_print_dispatch(fprintf_function mon, void *f,
                          AddressSpaceDispatch *d, MemoryRegion *root)
{
    int i;

    mon(f, "  Dispatch\n");
    mon(f, "    Physical sections\n");

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
            mon(f, " alias=%s", s->mr->alias->name ?
                    s->mr->alias->name : "noname");
        }
        mon(f, "\n");
    }

    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

        mon(f, "      [%d]\n", i);

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
        }
    }
}

#endif