exec.c 123.7 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45 46
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
47
#include "exec/ioport.h"
48
#include "sysemu/dma.h"
49
#include "sysemu/numa.h"
50
#include "sysemu/hw_accel.h"
51
#include "exec/address-spaces.h"
52
#include "sysemu/xen-mapcache.h"
53
#include "trace-root.h"
54

55 56 57 58
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

59
#endif
M
Mike Day 已提交
60
#include "qemu/rcu_queue.h"
61
#include "qemu/main-loop.h"
62
#include "translate-all.h"
63
#include "sysemu/replay.h"
64

65
#include "exec/memory-internal.h"
66
#include "exec/ram_addr.h"
67
#include "exec/log.h"
68

69 70
#include "migration/vmstate.h"

71
#include "qemu/range.h"
72 73 74
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
75

76 77
#include "monitor/monitor.h"

78
//#define DEBUG_SUBPAGE
T
ths 已提交
79

80
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
81 82 83
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
84
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
85 86

static MemoryRegion *system_memory;
87
static MemoryRegion *system_io;
A
Avi Kivity 已提交
88

89 90
AddressSpace address_space_io;
AddressSpace address_space_memory;
91

92
MemoryRegion io_mem_rom, io_mem_notdirty;
93
static MemoryRegion io_mem_unassigned;
94
#endif
95

96 97 98 99 100
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

101 102
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
103 104
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
105
__thread CPUState *current_cpu;
P
pbrook 已提交
106
/* 0 = Do not count executed instructions.
T
ths 已提交
107
   1 = Precise instruction counting.
P
pbrook 已提交
108
   2 = Adaptive rate instruction counting.  */
109
int use_icount;
B
bellard 已提交
110

Y
Yang Zhong 已提交
111 112 113
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

133
#if !defined(CONFIG_USER_ONLY)
134

135 136 137 138 139 140 141 142 143 144
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

145 146 147
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
148
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
149
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
150
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
151
    uint32_t ptr : 26;
152 153
};

154 155
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

156
/* Size of the L2 (and L3, etc) page tables.  */
157
#define ADDR_SPACE_BITS 64
158

M
Michael S. Tsirkin 已提交
159
#define P_L2_BITS 9
160 161 162 163 164
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
165

166
typedef struct PhysPageMap {
167 168
    struct rcu_head rcu;

169 170 171 172 173 174 175 176
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

177
struct AddressSpaceDispatch {
178
    MemoryRegionSection *mru_section;
179 180 181 182
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
183
    PhysPageMap map;
184 185
};

186 187 188
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
189
    FlatView *fv;
190
    hwaddr base;
191
    uint16_t sub_section[];
192 193
} subpage_t;

194 195 196 197
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
198

199
static void io_mem_init(void);
A
Avi Kivity 已提交
200
static void memory_map_init(void);
201
static void tcg_commit(MemoryListener *listener);
202

203
static MemoryRegion io_mem_watch;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

219 220 221 222 223 224
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

225
#endif
B
bellard 已提交
226

227
#if !defined(CONFIG_USER_ONLY)
228

229
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230
{
231
    static unsigned alloc_hint = 16;
232
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 235
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236
        alloc_hint = map->nodes_nb_alloc;
237
    }
238 239
}

240
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 242
{
    unsigned i;
243
    uint32_t ret;
244 245
    PhysPageEntry e;
    PhysPageEntry *p;
246

247
    ret = map->nodes_nb++;
248
    p = map->nodes[ret];
249
    assert(ret != PHYS_MAP_NODE_NIL);
250
    assert(ret != map->nodes_nb_alloc);
251 252 253

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254
    for (i = 0; i < P_L2_SIZE; ++i) {
255
        memcpy(&p[i], &e, sizeof(e));
256
    }
257
    return ret;
258 259
}

260 261
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
262
                                int level)
263 264
{
    PhysPageEntry *p;
265
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266

M
Michael S. Tsirkin 已提交
267
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
269
    }
270
    p = map->nodes[lp->ptr];
271
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272

273
    while (*nb && lp < &p[P_L2_SIZE]) {
274
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
275
            lp->skip = 0;
276
            lp->ptr = leaf;
277 278
            *index += step;
            *nb -= step;
279
        } else {
280
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 282
        }
        ++lp;
283 284 285
    }
}

A
Avi Kivity 已提交
286
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
287
                          hwaddr index, hwaddr nb,
288
                          uint16_t leaf)
289
{
290
    /* Wildly overreserve - it doesn't matter much. */
291
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292

293
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
294 295
}

296 297 298
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
299
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
319
            phys_page_compact(&p[i], nodes);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

349
void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 351
{
    if (d->phys_map.skip) {
352
        phys_page_compact(&d->phys_map, d->map.nodes);
353 354 355
    }
}

F
Fam Zheng 已提交
356 357 358 359 360 361
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
362
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
363
           range_covers_byte(section->offset_within_address_space,
364
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
365 366
}

367
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
368
{
369 370 371
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
372
    hwaddr index = addr >> TARGET_PAGE_BITS;
373
    int i;
374

M
Michael S. Tsirkin 已提交
375
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
377
            return &sections[PHYS_SECTION_UNASSIGNED];
378
        }
379
        p = nodes[lp.ptr];
380
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
381
    }
382

F
Fam Zheng 已提交
383
    if (section_covers_addr(&sections[lp.ptr], addr)) {
384 385 386 387
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
388 389
}

390
/* Called from RCU critical section */
391
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 393
                                                        hwaddr addr,
                                                        bool resolve_subpage)
394
{
395
    MemoryRegionSection *section = atomic_read(&d->mru_section);
396 397
    subpage_t *subpage;

398 399
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
400
        section = phys_page_find(d, addr);
401
        atomic_set(&d->mru_section, section);
402
    }
403 404
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
405
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 407
    }
    return section;
408 409
}

410
/* Called from RCU critical section */
411
static MemoryRegionSection *
412
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413
                                 hwaddr *plen, bool resolve_subpage)
414 415
{
    MemoryRegionSection *section;
416
    MemoryRegion *mr;
417
    Int128 diff;
418

419
    section = address_space_lookup_region(d, addr, resolve_subpage);
420 421 422 423 424 425
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

426
    mr = section->mr;
427 428 429 430 431 432 433 434 435 436 437 438

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
439
    if (memory_region_is_ram(mr)) {
440
        diff = int128_sub(section->size, int128_make64(addr));
441 442
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
443 444
    return section;
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
463
 * @attrs: transaction attributes
464 465 466 467 468 469 470 471 472 473
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
474 475
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
476 477 478 479 480 481 482
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 484 485 486 487 488 489 490 491
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
534
 * @target_as: the address space targeted by the IOMMU
535
 * @attrs: memory transaction attributes
536 537 538
 *
 * This function is called from RCU critical section
 */
539 540 541
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
542 543
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
544 545
                                                 bool is_write,
                                                 bool is_mmio,
546 547
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
548 549
{
    MemoryRegionSection *section;
550
    IOMMUMemoryRegion *iommu_mr;
551 552
    hwaddr plen = (hwaddr)(-1);

553 554
    if (!plen_out) {
        plen_out = &plen;
555
    }
556

557 558 559
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
560

561 562 563 564 565
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
566
                                             target_as, attrs);
567
    }
568
    if (page_mask_out) {
569 570
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
571 572
    }

573
    return *section;
574 575 576
}

/* Called from RCU critical section */
577
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578
                                            bool is_write, MemTxAttrs attrs)
579
{
580
    MemoryRegionSection section;
581
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
582

583 584 585 586 587
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 589
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
590

591 592 593 594
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
595

596 597 598 599 600
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
601
        .target_as = as,
602 603 604
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
605 606 607 608 609 610 611 612 613
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
614
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 616
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
617 618 619
{
    MemoryRegion *mr;
    MemoryRegionSection section;
620
    AddressSpace *as = NULL;
621 622

    /* This can be MMIO, so setup MMIO bit. */
623
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624
                                    is_write, true, &as, attrs);
625 626
    mr = section.mr;

627
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629
        *plen = MIN(page, *plen);
630 631
    }

A
Avi Kivity 已提交
632
    return mr;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 674 675 676 677 678 679
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 681
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715
        g_free(notifier);
716 717 718 719
    }
    g_array_free(cpu->iommu_notifiers, true);
}

720
/* Called from RCU critical section */
721
MemoryRegionSection *
722
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 724
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
725
{
A
Avi Kivity 已提交
726
    MemoryRegionSection *section;
727 728 729 730
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
731
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
768

769
    assert(!memory_region_is_iommu(section->mr));
770
    *xlat = addr;
A
Avi Kivity 已提交
771
    return section;
772 773 774

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775
}
776
#endif
B
bellard 已提交
777

778
#if !defined(CONFIG_USER_ONLY)
779 780

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
781
{
782
    CPUState *cpu = opaque;
B
bellard 已提交
783

784 785
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
786
    cpu->interrupt_request &= ~0x01;
787
    tlb_flush(cpu);
788

789 790 791 792 793 794 795
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

796
    return 0;
B
bellard 已提交
797
}
B
bellard 已提交
798

799 800 801 802
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

803
    cpu->exception_index = -1;
804 805 806 807 808 809 810 811

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

812
    return tcg_enabled() && cpu->exception_index != -1;
813 814 815 816 817 818
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
819
    .needed = cpu_common_exception_index_needed,
820 821 822 823 824 825
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

844
const VMStateDescription vmstate_cpu_common = {
845 846 847
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
848
    .pre_load = cpu_common_pre_load,
849
    .post_load = cpu_common_post_load,
850
    .fields = (VMStateField[]) {
851 852
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
853
        VMSTATE_END_OF_LIST()
854
    },
855 856
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
857
        &vmstate_cpu_common_crash_occurred,
858
        NULL
859 860
    }
};
861

862
#endif
B
bellard 已提交
863

864
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
865
{
A
Andreas Färber 已提交
866
    CPUState *cpu;
B
bellard 已提交
867

A
Andreas Färber 已提交
868
    CPU_FOREACH(cpu) {
869
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
870
            return cpu;
871
        }
B
bellard 已提交
872
    }
873

A
Andreas Färber 已提交
874
    return NULL;
B
bellard 已提交
875 876
}

877
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
878 879
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
880
{
881
    CPUAddressSpace *newas;
P
Peter Xu 已提交
882
    AddressSpace *as = g_new0(AddressSpace, 1);
883
    char *as_name;
P
Peter Xu 已提交
884 885

    assert(mr);
886 887 888
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
889 890 891 892

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

893 894 895 896 897
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

898 899
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
900

901 902
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903
    }
904

905 906 907
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
908
    if (tcg_enabled()) {
909 910
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
911
    }
912
}
913 914 915 916 917 918

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
919 920
#endif

921
void cpu_exec_unrealizefn(CPUState *cpu)
922
{
923 924
    CPUClass *cc = CPU_GET_CLASS(cpu);

925
    cpu_list_remove(cpu);
926 927 928 929 930 931 932

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
933 934 935
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
936 937
}

F
Fam Zheng 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
952
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
953
{
954
    cpu->as = NULL;
955
    cpu->num_ases = 0;
956

957 958
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
959 960
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
961
#endif
L
Laurent Vivier 已提交
962 963
}

964
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
965
{
966
    CPUClass *cc = CPU_GET_CLASS(cpu);
967
    static bool tcg_target_initialized;
968

969
    cpu_list_add(cpu);
970

971 972
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
973 974
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
975
    tlb_init(cpu);
976

977
#ifndef CONFIG_USER_ONLY
978
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
979
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
980
    }
981
    if (cc->vmsd != NULL) {
982
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
983
    }
984

985
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
986
#endif
B
bellard 已提交
987 988
}

989
const char *parse_cpu_option(const char *cpu_option)
990 991 992 993 994 995
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

996
    model_pieces = g_strsplit(cpu_option, ",", 2);
997 998 999 1000
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1016
#if defined(CONFIG_USER_ONLY)
1017
void tb_invalidate_phys_addr(target_ulong addr)
1018
{
1019
    mmap_lock();
1020
    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1021 1022
    mmap_unlock();
}
1023 1024 1025 1026 1027

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1028
#else
1029 1030 1031 1032 1033 1034
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1035 1036 1037 1038
    if (!tcg_enabled()) {
        return;
    }

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    rcu_read_lock();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        rcu_read_unlock();
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
    rcu_read_unlock();
}

1051 1052 1053 1054 1055 1056 1057 1058
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1059
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1060
    }
1061
}
1062
#endif
B
bellard 已提交
1063

1064
#if defined(CONFIG_USER_ONLY)
1065
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1066 1067 1068 1069

{
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

1080
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1081 1082 1083 1084 1085
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
1086
/* Add a watchpoint.  */
1087
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1088
                          int flags, CPUWatchpoint **watchpoint)
1089
{
1090
    CPUWatchpoint *wp;
1091

1092
    /* forbid ranges which are empty or run off the end of the address space */
1093
    if (len == 0 || (addr + len - 1) < addr) {
1094 1095
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1096 1097
        return -EINVAL;
    }
1098
    wp = g_malloc(sizeof(*wp));
1099 1100

    wp->vaddr = addr;
1101
    wp->len = len;
1102 1103
    wp->flags = flags;

1104
    /* keep all GDB-injected watchpoints in front */
1105 1106 1107 1108 1109
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1110

1111
    tlb_flush_page(cpu, addr);
1112 1113 1114 1115

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1116 1117
}

1118
/* Remove a specific watchpoint.  */
1119
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1120
                          int flags)
1121
{
1122
    CPUWatchpoint *wp;
1123

1124
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1125
        if (addr == wp->vaddr && len == wp->len
1126
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1127
            cpu_watchpoint_remove_by_ref(cpu, wp);
1128 1129 1130
            return 0;
        }
    }
1131
    return -ENOENT;
1132 1133
}

1134
/* Remove a specific watchpoint by reference.  */
1135
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1136
{
1137
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1138

1139
    tlb_flush_page(cpu, watchpoint->vaddr);
1140

1141
    g_free(watchpoint);
1142 1143 1144
}

/* Remove all matching watchpoints.  */
1145
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1146
{
1147
    CPUWatchpoint *wp, *next;
1148

1149
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1150 1151 1152
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1153
    }
1154
}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1176
#endif
1177

1178
/* Add a breakpoint.  */
1179
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1180
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1181
{
1182
    CPUBreakpoint *bp;
1183

1184
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1185

1186 1187 1188
    bp->pc = pc;
    bp->flags = flags;

1189
    /* keep all GDB-injected breakpoints in front */
1190
    if (flags & BP_GDB) {
1191
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1192
    } else {
1193
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1194
    }
1195

1196
    breakpoint_invalidate(cpu, pc);
1197

1198
    if (breakpoint) {
1199
        *breakpoint = bp;
1200
    }
B
bellard 已提交
1201 1202 1203
    return 0;
}

1204
/* Remove a specific breakpoint.  */
1205
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1206 1207 1208
{
    CPUBreakpoint *bp;

1209
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1210
        if (bp->pc == pc && bp->flags == flags) {
1211
            cpu_breakpoint_remove_by_ref(cpu, bp);
1212 1213
            return 0;
        }
1214
    }
1215
    return -ENOENT;
1216 1217
}

1218
/* Remove a specific breakpoint by reference.  */
1219
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1220
{
1221 1222 1223
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1224

1225
    g_free(breakpoint);
1226 1227 1228
}

/* Remove all matching breakpoints. */
1229
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1230
{
1231
    CPUBreakpoint *bp, *next;
1232

1233
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1234 1235 1236
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1237
    }
B
bellard 已提交
1238 1239
}

B
bellard 已提交
1240 1241
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1242
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1243
{
1244 1245 1246
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1247
            kvm_update_guest_debug(cpu, 0);
1248
        } else {
S
Stuart Brady 已提交
1249
            /* must flush all the translated code to avoid inconsistencies */
1250
            /* XXX: only flush what is necessary */
1251
            tb_flush(cpu);
1252
        }
B
bellard 已提交
1253 1254 1255
    }
}

1256
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1257 1258
{
    va_list ap;
P
pbrook 已提交
1259
    va_list ap2;
B
bellard 已提交
1260 1261

    va_start(ap, fmt);
P
pbrook 已提交
1262
    va_copy(ap2, ap);
B
bellard 已提交
1263 1264 1265
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1266
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1267
    if (qemu_log_separate()) {
1268
        qemu_log_lock();
1269 1270 1271
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1272
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1273
        qemu_log_flush();
1274
        qemu_log_unlock();
1275
        qemu_log_close();
1276
    }
P
pbrook 已提交
1277
    va_end(ap2);
1278
    va_end(ap);
1279
    replay_finish();
1280 1281 1282 1283 1284
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1285
        act.sa_flags = 0;
1286 1287 1288
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1289 1290 1291
    abort();
}

1292
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1293
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1294 1295 1296 1297
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1298
    block = atomic_rcu_read(&ram_list.mru_block);
1299
    if (block && addr - block->offset < block->max_length) {
1300
        return block;
P
Paolo Bonzini 已提交
1301
    }
P
Peter Xu 已提交
1302
    RAMBLOCK_FOREACH(block) {
1303
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1304 1305 1306 1307 1308 1309 1310 1311
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1328 1329 1330 1331
    ram_list.mru_block = block;
    return block;
}

1332
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1333
{
1334
    CPUState *cpu;
P
Paolo Bonzini 已提交
1335
    ram_addr_t start1;
1336 1337 1338
    RAMBlock *block;
    ram_addr_t end;

1339
    assert(tcg_enabled());
1340 1341
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1342

M
Mike Day 已提交
1343
    rcu_read_lock();
P
Paolo Bonzini 已提交
1344 1345
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1346
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1347 1348 1349
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1350
    rcu_read_unlock();
J
Juan Quintela 已提交
1351 1352
}

P
pbrook 已提交
1353
/* Note: start and end must be within the same ram block.  */
1354 1355 1356
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1357
{
1358
    DirtyMemoryBlocks *blocks;
1359
    unsigned long end, page;
1360
    bool dirty = false;
1361 1362 1363 1364

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1365

1366 1367
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1384 1385

    if (dirty && tcg_enabled()) {
1386
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1387
    }
1388 1389

    return dirty;
1390 1391
}

1392
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1393
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1394 1395
{
    DirtyMemoryBlocks *blocks;
1396
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1462
/* Called from RCU critical section */
1463
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1464 1465 1466 1467 1468
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1469
{
A
Avi Kivity 已提交
1470
    hwaddr iotlb;
B
Blue Swirl 已提交
1471 1472
    CPUWatchpoint *wp;

1473
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1474
        /* Normal RAM.  */
1475
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1476
        if (!section->readonly) {
1477
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1478
        } else {
1479
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1480 1481
        }
    } else {
1482 1483
        AddressSpaceDispatch *d;

1484
        d = flatview_to_dispatch(section->fv);
1485
        iotlb = section - d->map.sections;
1486
        iotlb += xlat;
B
Blue Swirl 已提交
1487 1488 1489 1490
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1491
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1492
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1493 1494
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1495
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1496 1497 1498 1499 1500 1501 1502 1503
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1504 1505
#endif /* defined(CONFIG_USER_ONLY) */

1506
#if !defined(CONFIG_USER_ONLY)
1507

A
Anthony Liguori 已提交
1508
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1509
                             uint16_t section);
1510
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1511

1512
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1513
                               qemu_anon_ram_alloc;
1514 1515 1516 1517 1518 1519

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1520
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1521 1522 1523 1524
{
    phys_mem_alloc = alloc;
}

1525 1526
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1527
{
1528 1529 1530 1531
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1532
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1533

1534 1535 1536 1537
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1538
    }
1539
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1540
    memory_region_ref(section->mr);
1541
    return map->sections_nb++;
1542 1543
}

1544 1545
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1546 1547
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1548 1549
    memory_region_unref(mr);

D
Don Slutz 已提交
1550
    if (have_sub_page) {
1551
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1552
        object_unref(OBJECT(&subpage->iomem));
1553 1554 1555 1556
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1557
static void phys_sections_free(PhysPageMap *map)
1558
{
1559 1560
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1561 1562
        phys_section_destroy(section->mr);
    }
1563 1564
    g_free(map->sections);
    g_free(map->nodes);
1565 1566
}

1567
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1568
{
1569
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1570
    subpage_t *subpage;
A
Avi Kivity 已提交
1571
    hwaddr base = section->offset_within_address_space
1572
        & TARGET_PAGE_MASK;
1573
    MemoryRegionSection *existing = phys_page_find(d, base);
1574 1575
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1576
        .size = int128_make64(TARGET_PAGE_SIZE),
1577
    };
A
Avi Kivity 已提交
1578
    hwaddr start, end;
1579

1580
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1581

1582
    if (!(existing->mr->subpage)) {
1583 1584
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1585
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1586
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1587
                      phys_section_add(&d->map, &subsection));
1588
    } else {
1589
        subpage = container_of(existing->mr, subpage_t, iomem);
1590 1591
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1592
    end = start + int128_get64(section->size) - 1;
1593 1594
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1595 1596 1597
}


1598
static void register_multipage(FlatView *fv,
1599
                               MemoryRegionSection *section)
1600
{
1601
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1602
    hwaddr start_addr = section->offset_within_address_space;
1603
    uint16_t section_index = phys_section_add(&d->map, section);
1604 1605
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1606

1607 1608
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1609 1610
}

1611 1612 1613 1614 1615 1616 1617
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1618
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1619
{
1620
    MemoryRegionSection remain = *section;
1621
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1622

1623 1624 1625 1626
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1627

1628
        MemoryRegionSection now = remain;
1629
        now.size = int128_min(int128_make64(left), now.size);
1630
        register_subpage(fv, &now);
1631 1632 1633
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1634 1635 1636
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1637 1638 1639 1640 1641 1642 1643 1644 1645
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1646
        }
1647 1648 1649
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1650
    }
1651 1652 1653

    /* register last subpage */
    register_subpage(fv, &remain);
1654 1655
}

1656 1657 1658 1659 1660 1661
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1692 1693 1694 1695 1696 1697 1698
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1699
static int find_min_backend_pagesize(Object *obj, void *opaque)
1700 1701 1702 1703
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1704 1705
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1706

1707
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1708
            *hpsize_min = hpsize;
1709 1710 1711 1712 1713 1714
        }
    }

    return 0;
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1736 1737 1738 1739 1740
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

1741
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1755
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1790
#else
1791 1792 1793 1794 1795
long qemu_minrampagesize(void)
{
    return getpagesize();
}
long qemu_maxrampagesize(void)
1796 1797 1798 1799 1800
{
    return getpagesize();
}
#endif

1801
#ifdef CONFIG_POSIX
1802 1803 1804 1805 1806 1807 1808 1809 1810
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1811 1812 1813 1814
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1815 1816
{
    char *filename;
1817 1818
    char *sanitized_name;
    char *c;
1819
    int fd = -1;
1820

1821
    *created = false;
1822 1823 1824 1825 1826
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1827
        }
1828 1829 1830 1831
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1832
                *created = true;
1833 1834 1835 1836 1837
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1838
            sanitized_name = g_strdup(region_name);
1839 1840 1841 1842 1843
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1844

1845 1846 1847
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1848

1849 1850 1851 1852 1853 1854 1855
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1856
        }
1857 1858 1859 1860
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1861
            return -1;
1862 1863 1864 1865 1866
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1867
    }
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1878
    MachineState *ms = MACHINE(qdev_get_machine());
1879 1880
    void *area;

1881
    block->page_size = qemu_fd_getpagesize(fd);
1882 1883 1884 1885 1886
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1887 1888 1889 1890
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1891 1892
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1893 1894 1895 1896 1897
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1898

1899
    if (memory < block->page_size) {
1900
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1901 1902
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1903
        return NULL;
1904 1905
    }

1906
    memory = ROUND_UP(memory, block->page_size);
1907 1908 1909 1910 1911 1912

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1913 1914 1915 1916 1917 1918 1919 1920
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1921
     */
1922
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1923
        perror("ftruncate");
1924
    }
1925

1926
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1927
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1928
    if (area == MAP_FAILED) {
1929
        error_setg_errno(errp, errno,
1930
                         "unable to map backing store for guest RAM");
1931
        return NULL;
1932
    }
1933 1934

    if (mem_prealloc) {
1935
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1936
        if (errp && *errp) {
1937
            qemu_ram_munmap(fd, area, memory);
1938
            return NULL;
1939
        }
1940 1941
    }

A
Alex Williamson 已提交
1942
    block->fd = fd;
1943 1944 1945 1946
    return area;
}
#endif

1947 1948 1949 1950
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1951
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1952 1953
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1954
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1955

1956 1957
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1958
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1959
        return 0;
M
Mike Day 已提交
1960
    }
A
Alex Williamson 已提交
1961

P
Peter Xu 已提交
1962
    RAMBLOCK_FOREACH(block) {
1963
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1964

1965 1966 1967
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1968
        candidate = block->offset + block->max_length;
1969
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1970

1971 1972 1973
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1974
        RAMBLOCK_FOREACH(next_block) {
1975
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1976 1977 1978
                next = MIN(next, next_block->offset);
            }
        }
1979 1980 1981 1982 1983 1984 1985 1986

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1987
        }
1988 1989

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1990
    }
A
Alex Williamson 已提交
1991 1992 1993 1994 1995 1996 1997

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1998 1999
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
2000 2001 2002
    return offset;
}

2003
static unsigned long last_ram_page(void)
2004 2005 2006 2007
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
2008
    rcu_read_lock();
P
Peter Xu 已提交
2009
    RAMBLOCK_FOREACH(block) {
2010
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
2011
    }
M
Mike Day 已提交
2012
    rcu_read_unlock();
2013
    return last >> TARGET_PAGE_BITS;
2014 2015
}

2016 2017 2018 2019 2020
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2021
    if (!machine_dump_guest_core(current_machine)) {
2022 2023 2024 2025 2026 2027 2028 2029 2030
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
2031 2032 2033 2034 2035
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2051 2052 2053 2054 2055
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2082
/* Called with iothread lock held.  */
G
Gonglei 已提交
2083
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2084
{
G
Gonglei 已提交
2085
    RAMBlock *block;
2086

2087 2088
    assert(new_block);
    assert(!new_block->idstr[0]);
2089

2090 2091
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2092 2093
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2094
            g_free(id);
2095 2096 2097 2098
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2099
    rcu_read_lock();
P
Peter Xu 已提交
2100
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2101 2102
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2103 2104 2105 2106 2107
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2108
    rcu_read_unlock();
2109 2110
}

2111
/* Called with iothread lock held.  */
G
Gonglei 已提交
2112
void qemu_ram_unset_idstr(RAMBlock *block)
2113
{
2114 2115 2116 2117
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2118 2119 2120 2121 2122
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2123 2124 2125 2126 2127
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2128 2129 2130 2131 2132 2133
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2134
    RAMBLOCK_FOREACH(block) {
2135 2136 2137 2138 2139 2140
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2141 2142
static int memory_try_enable_merging(void *addr, size_t len)
{
2143
    if (!machine_mem_merge(current_machine)) {
2144 2145 2146 2147 2148 2149 2150
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2151 2152 2153 2154 2155 2156 2157
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2158
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2159 2160 2161
{
    assert(block);

2162
    newsize = HOST_PAGE_ALIGN(newsize);
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2186 2187
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2188 2189 2190 2191 2192 2193 2194
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2236
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2237
{
2238
    RAMBlock *block;
M
Mike Day 已提交
2239
    RAMBlock *last_block = NULL;
2240
    ram_addr_t old_ram_size, new_ram_size;
2241
    Error *err = NULL;
2242

2243
    old_ram_size = last_ram_page();
2244

2245
    qemu_mutex_lock_ramlist();
2246
    new_block->offset = find_ram_offset(new_block->max_length);
2247 2248 2249

    if (!new_block->host) {
        if (xen_enabled()) {
2250
            xen_ram_alloc(new_block->offset, new_block->max_length,
2251 2252 2253 2254
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2255
                return;
2256
            }
2257
        } else {
2258
            new_block->host = phys_mem_alloc(new_block->max_length,
2259
                                             &new_block->mr->align, shared);
2260
            if (!new_block->host) {
2261 2262 2263 2264
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2265
                return;
2266
            }
2267
            memory_try_enable_merging(new_block->host, new_block->max_length);
2268
        }
2269
    }
P
pbrook 已提交
2270

L
Li Zhijian 已提交
2271 2272 2273
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2274
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2275
    }
M
Mike Day 已提交
2276 2277 2278 2279
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2280
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2281
        last_block = block;
2282
        if (block->max_length < new_block->max_length) {
2283 2284 2285 2286
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2287
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2288
    } else if (last_block) {
M
Mike Day 已提交
2289
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2290
    } else { /* list is empty */
M
Mike Day 已提交
2291
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2292
    }
2293
    ram_list.mru_block = NULL;
P
pbrook 已提交
2294

M
Mike Day 已提交
2295 2296
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2297
    ram_list.version++;
2298
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2299

2300
    cpu_physical_memory_set_dirty_range(new_block->offset,
2301 2302
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2303

2304 2305 2306
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2307
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2308
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2309
        ram_block_notify_add(new_block->host, new_block->max_length);
2310
    }
P
pbrook 已提交
2311
}
B
bellard 已提交
2312

2313
#ifdef CONFIG_POSIX
2314
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2315
                                 uint32_t ram_flags, int fd,
2316
                                 Error **errp)
2317 2318
{
    RAMBlock *new_block;
2319
    Error *local_err = NULL;
2320
    int64_t file_size;
2321

J
Junyan He 已提交
2322 2323 2324
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2325
    if (xen_enabled()) {
2326
        error_setg(errp, "-mem-path not supported with Xen");
2327
        return NULL;
2328 2329
    }

2330 2331 2332 2333 2334 2335
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2336 2337 2338 2339 2340 2341
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2342 2343
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2344
        return NULL;
2345 2346
    }

2347
    size = HOST_PAGE_ALIGN(size);
2348 2349 2350 2351 2352 2353 2354 2355
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2356 2357
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2358 2359
    new_block->used_length = size;
    new_block->max_length = size;
2360
    new_block->flags = ram_flags;
2361
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2362 2363
    if (!new_block->host) {
        g_free(new_block);
2364
        return NULL;
2365 2366
    }

2367
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2368 2369 2370
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2371
        return NULL;
2372
    }
2373
    return new_block;
2374 2375 2376 2377 2378

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2379
                                   uint32_t ram_flags, const char *mem_path,
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2391
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2392 2393 2394 2395 2396 2397 2398 2399 2400
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2401
}
2402
#endif
2403

2404
static
2405 2406 2407 2408
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2409
                                  void *host, bool resizeable, bool share,
2410
                                  MemoryRegion *mr, Error **errp)
2411 2412
{
    RAMBlock *new_block;
2413
    Error *local_err = NULL;
2414

2415 2416
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2417 2418
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2419
    new_block->resized = resized;
2420 2421
    new_block->used_length = size;
    new_block->max_length = max_size;
2422
    assert(max_size >= size);
2423
    new_block->fd = -1;
2424
    new_block->page_size = getpagesize();
2425 2426
    new_block->host = host;
    if (host) {
2427
        new_block->flags |= RAM_PREALLOC;
2428
    }
2429 2430 2431
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2432
    ram_block_add(new_block, &local_err, share);
2433 2434 2435
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2436
        return NULL;
2437
    }
2438
    return new_block;
2439 2440
}

2441
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2442 2443
                                   MemoryRegion *mr, Error **errp)
{
2444 2445
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2446 2447
}

2448 2449
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2450
{
2451 2452
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2453 2454
}

2455
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2456 2457 2458 2459 2460
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2461 2462
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2463 2464
}

P
Paolo Bonzini 已提交
2465 2466 2467 2468 2469 2470 2471 2472
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2473
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2474 2475 2476 2477 2478 2479 2480 2481
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2482
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2483
{
2484 2485 2486 2487
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2488 2489 2490 2491
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2492
    qemu_mutex_lock_ramlist();
2493 2494 2495 2496 2497 2498
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2499
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2500 2501
}

H
Huang Ying 已提交
2502 2503 2504 2505 2506 2507 2508 2509
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2510
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2511
        offset = addr - block->offset;
2512
        if (offset < block->max_length) {
2513
            vaddr = ramblock_ptr(block, offset);
2514
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2515
                ;
2516 2517
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2518 2519
            } else {
                flags = MAP_FIXED;
2520
                if (block->fd >= 0) {
2521 2522
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2523 2524
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2525
                } else {
2526 2527 2528 2529 2530 2531 2532
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2533 2534 2535 2536 2537
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2538 2539 2540
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2541 2542
                    exit(1);
                }
2543
                memory_try_enable_merging(vaddr, length);
2544
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2545 2546 2547 2548 2549 2550
            }
        }
    }
}
#endif /* !_WIN32 */

2551
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2552 2553 2554
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2555
 *
2556
 * Called within RCU critical section.
2557
 */
2558
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2559
{
2560 2561 2562 2563
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2564
        addr -= block->offset;
2565
    }
2566 2567

    if (xen_enabled() && block->host == NULL) {
2568 2569 2570 2571 2572
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2573
            return xen_map_cache(addr, 0, 0, false);
2574
        }
2575

2576
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2577
    }
2578
    return ramblock_ptr(block, addr);
2579 2580
}

2581
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2582
 * but takes a size argument.
M
Mike Day 已提交
2583
 *
2584
 * Called within RCU critical section.
2585
 */
2586
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2587
                                 hwaddr *size, bool lock)
2588
{
2589
    RAMBlock *block = ram_block;
2590 2591 2592
    if (*size == 0) {
        return NULL;
    }
2593

2594 2595
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2596
        addr -= block->offset;
2597
    }
2598
    *size = MIN(*size, block->max_length - addr);
2599 2600 2601 2602 2603 2604 2605

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2606
            return xen_map_cache(addr, *size, lock, lock);
2607 2608
        }

2609
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2610
    }
2611

2612
    return ramblock_ptr(block, addr);
2613 2614
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2635 2636 2637 2638 2639 2640 2641
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2642 2643
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2644
{
P
pbrook 已提交
2645 2646 2647
    RAMBlock *block;
    uint8_t *host = ptr;

2648
    if (xen_enabled()) {
2649
        ram_addr_t ram_addr;
M
Mike Day 已提交
2650
        rcu_read_lock();
2651 2652
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2653
        if (block) {
2654
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2655
        }
M
Mike Day 已提交
2656
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2657
        return block;
2658 2659
    }

M
Mike Day 已提交
2660 2661
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2662
    if (block && block->host && host - block->host < block->max_length) {
2663 2664 2665
        goto found;
    }

P
Peter Xu 已提交
2666
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2667 2668 2669 2670
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2671
        if (host - block->host < block->max_length) {
2672
            goto found;
A
Alex Williamson 已提交
2673
        }
P
pbrook 已提交
2674
    }
J
Jun Nakajima 已提交
2675

M
Mike Day 已提交
2676
    rcu_read_unlock();
2677
    return NULL;
2678 2679

found:
D
Dr. David Alan Gilbert 已提交
2680 2681 2682 2683
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2684
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2685 2686 2687
    return block;
}

D
Dr. David Alan Gilbert 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2699
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2700 2701 2702 2703 2704 2705 2706 2707
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2708 2709
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2710
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2711 2712
{
    RAMBlock *block;
2713
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2714

2715
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2716
    if (!block) {
2717
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2718 2719
    }

2720
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2721
}
A
Alex Williamson 已提交
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
E
Emilio G. Cota 已提交
2734
    ndi->pages = NULL;
2735

2736
    assert(tcg_enabled());
2737
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
E
Emilio G. Cota 已提交
2738 2739
        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2740
    }
2741 2742 2743 2744 2745
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
E
Emilio G. Cota 已提交
2746
    if (ndi->pages) {
2747
        assert(tcg_enabled());
E
Emilio G. Cota 已提交
2748 2749
        page_collection_unlock(ndi->pages);
        ndi->pages = NULL;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2773
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2774
    memory_notdirty_write_complete(&ndi);
2775 2776
}

2777
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2778 2779
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2780 2781 2782 2783
{
    return is_write;
}

2784 2785
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2786
    .valid.accepts = notdirty_mem_accepts,
2787
    .endianness = DEVICE_NATIVE_ENDIAN,
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2798 2799
};

P
pbrook 已提交
2800
/* Generate a debug exception if a watchpoint has been hit.  */
2801
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2802
{
2803
    CPUState *cpu = current_cpu;
2804
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2805
    target_ulong vaddr;
2806
    CPUWatchpoint *wp;
P
pbrook 已提交
2807

2808
    assert(tcg_enabled());
2809
    if (cpu->watchpoint_hit) {
2810 2811 2812
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2813
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2814 2815
        return;
    }
2816
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2817
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2818
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2819 2820
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2821 2822 2823 2824 2825 2826
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2827
            wp->hitattrs = attrs;
2828
            if (!cpu->watchpoint_hit) {
2829 2830 2831 2832 2833
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2834
                cpu->watchpoint_hit = wp;
2835

E
Emilio G. Cota 已提交
2836
                mmap_lock();
2837
                tb_check_watchpoint(cpu);
2838
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2839
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2840
                    mmap_unlock();
2841
                    cpu_loop_exit(cpu);
2842
                } else {
2843 2844
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2845
                    mmap_unlock();
2846
                    cpu_loop_exit_noexc(cpu);
2847
                }
2848
            }
2849 2850
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2851 2852 2853 2854
        }
    }
}

2855 2856 2857
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2858 2859
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2860
{
2861 2862
    MemTxResult res;
    uint64_t data;
2863 2864
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2865 2866

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2867
    switch (size) {
2868
    case 1:
2869
        data = address_space_ldub(as, addr, attrs, &res);
2870 2871
        break;
    case 2:
2872
        data = address_space_lduw(as, addr, attrs, &res);
2873 2874
        break;
    case 4:
2875
        data = address_space_ldl(as, addr, attrs, &res);
2876
        break;
2877 2878 2879
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2880 2881
    default: abort();
    }
2882 2883
    *pdata = data;
    return res;
2884 2885
}

2886 2887 2888
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2889
{
2890
    MemTxResult res;
2891 2892
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2893 2894

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2895
    switch (size) {
2896
    case 1:
2897
        address_space_stb(as, addr, val, attrs, &res);
2898 2899
        break;
    case 2:
2900
        address_space_stw(as, addr, val, attrs, &res);
2901 2902
        break;
    case 4:
2903
        address_space_stl(as, addr, val, attrs, &res);
2904
        break;
2905 2906 2907
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2908 2909
    default: abort();
    }
2910
    return res;
2911 2912
}

2913
static const MemoryRegionOps watch_mem_ops = {
2914 2915
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2916
    .endianness = DEVICE_NATIVE_ENDIAN,
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2927 2928
};

2929
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2930
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2931
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2932 2933
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2934
                                  bool is_write, MemTxAttrs attrs);
2935

2936 2937
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2938
{
2939
    subpage_t *subpage = opaque;
2940
    uint8_t buf[8];
2941
    MemTxResult res;
2942

2943
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2944
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2945
           subpage, len, addr);
2946
#endif
2947
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2948 2949
    if (res) {
        return res;
2950
    }
2951 2952
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2953 2954
}

2955 2956
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2957
{
2958
    subpage_t *subpage = opaque;
2959
    uint8_t buf[8];
2960

2961
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2962
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2963 2964
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2965
#endif
2966
    stn_p(buf, len, value);
2967
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2968 2969
}

2970
static bool subpage_accepts(void *opaque, hwaddr addr,
2971 2972
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2973
{
2974
    subpage_t *subpage = opaque;
2975
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2976
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2977
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2978 2979
#endif

2980
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2981
                                 len, is_write, attrs);
2982 2983
}

2984
static const MemoryRegionOps subpage_ops = {
2985 2986
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2987 2988 2989 2990
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2991
    .valid.accepts = subpage_accepts,
2992
    .endianness = DEVICE_NATIVE_ENDIAN,
2993 2994
};

A
Anthony Liguori 已提交
2995
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2996
                             uint16_t section)
2997 2998 2999 3000 3001 3002 3003 3004
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
3005 3006
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
3007 3008
#endif
    for (; idx <= eidx; idx++) {
3009
        mmio->sub_section[idx] = section;
3010 3011 3012 3013 3014
    }

    return 0;
}

3015
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3016
{
A
Anthony Liguori 已提交
3017
    subpage_t *mmio;
3018

3019
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3020
    mmio->fv = fv;
3021
    mmio->base = base;
3022
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
3023
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
3024
    mmio->iomem.subpage = true;
3025
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
3026 3027
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
3028
#endif
3029
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3030 3031 3032 3033

    return mmio;
}

3034
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3035
{
3036
    assert(fv);
3037
    MemoryRegionSection section = {
3038
        .fv = fv,
3039 3040 3041
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
3042
        .size = int128_2_64(),
3043 3044
    };

3045
    return phys_section_add(map, &section);
3046 3047
}

3048 3049 3050 3051 3052 3053 3054
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3055 3056
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

3080 3081
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
3082
{
3083 3084
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3085
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3086
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
3087

3088
    return &sections[index & ~TARGET_PAGE_MASK];
3089 3090
}

A
Avi Kivity 已提交
3091 3092
static void io_mem_init(void)
{
3093 3094
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
3095
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3096
                          NULL, UINT64_MAX);
3097 3098 3099 3100

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
3101
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3102
                          NULL, UINT64_MAX);
3103 3104
    memory_region_clear_global_locking(&io_mem_notdirty);

3105
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3106
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
3107 3108
}

3109
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3110
{
3111 3112 3113
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

3114
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3115
    assert(n == PHYS_SECTION_UNASSIGNED);
3116
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3117
    assert(n == PHYS_SECTION_NOTDIRTY);
3118
    n = dummy_section(&d->map, fv, &io_mem_rom);
3119
    assert(n == PHYS_SECTION_ROM);
3120
    n = dummy_section(&d->map, fv, &io_mem_watch);
3121
    assert(n == PHYS_SECTION_WATCH);
3122

M
Michael S. Tsirkin 已提交
3123
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3124 3125

    return d;
3126 3127
}

3128
void address_space_dispatch_free(AddressSpaceDispatch *d)
3129 3130 3131 3132 3133
{
    phys_sections_free(&d->map);
    g_free(d);
}

3134
static void tcg_commit(MemoryListener *listener)
3135
{
3136 3137
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3138

3139
    assert(tcg_enabled());
3140 3141
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3142 3143 3144 3145 3146 3147
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3148
    d = address_space_to_dispatch(cpuas->as);
3149
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3150
    tlb_flush(cpuas->cpu);
3151 3152
}

A
Avi Kivity 已提交
3153 3154
static void memory_map_init(void)
{
3155
    system_memory = g_malloc(sizeof(*system_memory));
3156

3157
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3158
    address_space_init(&address_space_memory, system_memory, "memory");
3159

3160
    system_io = g_malloc(sizeof(*system_io));
3161 3162
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3163
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3164 3165 3166 3167 3168 3169 3170
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3171 3172 3173 3174 3175
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3176 3177
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3178 3179
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3180
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3181
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3182
{
3183 3184
    int flags;
    target_ulong l, page;
3185
    void * p;
B
bellard 已提交
3186 3187 3188 3189 3190 3191 3192 3193

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3194
            return -1;
B
bellard 已提交
3195 3196
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3197
                return -1;
3198
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3199
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3200
                return -1;
A
aurel32 已提交
3201 3202
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3203 3204
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3205
                return -1;
3206
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3207
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3208
                return -1;
A
aurel32 已提交
3209
            memcpy(buf, p, l);
A
aurel32 已提交
3210
            unlock_user(p, addr, 0);
B
bellard 已提交
3211 3212 3213 3214 3215
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3216
    return 0;
B
bellard 已提交
3217
}
B
bellard 已提交
3218

B
bellard 已提交
3219
#else
3220

3221
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3222
                                     hwaddr length)
3223
{
3224
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3225 3226
    addr += memory_region_get_ram_addr(mr);

3227 3228 3229 3230 3231 3232 3233 3234 3235
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3236
        assert(tcg_enabled());
3237 3238
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3239
    }
3240
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3241 3242
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3256
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3257
{
3258
    unsigned access_size_max = mr->ops->valid.max_access_size;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3272
    }
3273 3274 3275 3276

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3277
    }
3278
    l = pow2floor(l);
3279 3280

    return l;
3281 3282
}

3283
static bool prepare_mmio_access(MemoryRegion *mr)
3284
{
3285 3286 3287 3288 3289 3290 3291 3292
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3293
    if (mr->flush_coalesced_mmio) {
3294 3295 3296
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3297
        qemu_flush_coalesced_mmio_buffer();
3298 3299 3300
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3301
    }
3302 3303

    return release_lock;
3304 3305
}

3306
/* Called within RCU critical section.  */
3307 3308 3309
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3310
                                           hwaddr len, hwaddr addr1,
3311
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3312 3313
{
    uint8_t *ptr;
3314
    uint64_t val;
3315
    MemTxResult result = MEMTX_OK;
3316
    bool release_lock = false;
3317

3318
    for (;;) {
3319 3320 3321 3322 3323
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3324 3325
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3326
        } else {
3327
            /* RAM case */
3328
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3329 3330
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3331
        }
3332 3333 3334 3335 3336 3337

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3338 3339 3340
        len -= l;
        buf += l;
        addr += l;
3341 3342 3343 3344 3345 3346

        if (!len) {
            break;
        }

        l = len;
3347
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3348
    }
3349

3350
    return result;
B
bellard 已提交
3351
}
B
bellard 已提交
3352

3353
/* Called from RCU critical section.  */
3354
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3355
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3356
{
3357 3358 3359 3360 3361
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3362
    l = len;
3363
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3364 3365
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3366 3367 3368 3369 3370

    return result;
}

/* Called within RCU critical section.  */
3371 3372
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3373
                                   hwaddr len, hwaddr addr1, hwaddr l,
3374
                                   MemoryRegion *mr)
3375 3376 3377 3378 3379
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3380

3381
    for (;;) {
3382 3383 3384 3385
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3386 3387
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3388 3389
        } else {
            /* RAM case */
3390
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3402 3403 3404 3405 3406 3407

        if (!len) {
            break;
        }

        l = len;
3408
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3409 3410 3411 3412 3413
    }

    return result;
}

3414 3415
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3416
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3417 3418 3419 3420
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3421

3422
    l = len;
3423
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3424 3425
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3426 3427
}

3428
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3429
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3444 3445
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3446
                                const uint8_t *buf, hwaddr len)
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3461
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3462
                             uint8_t *buf, hwaddr len, bool is_write)
3463 3464 3465 3466 3467 3468 3469 3470
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3471
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3472
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3473
{
3474 3475
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3476 3477
}

3478 3479 3480 3481 3482
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3483 3484 3485 3486
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3487
                                                           hwaddr len,
3488
                                                           enum write_rom_type type)
B
bellard 已提交
3489
{
3490
    hwaddr l;
B
bellard 已提交
3491
    uint8_t *ptr;
3492
    hwaddr addr1;
3493
    MemoryRegion *mr;
3494

3495
    rcu_read_lock();
B
bellard 已提交
3496
    while (len > 0) {
3497
        l = len;
3498
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3499

3500 3501
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3502
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3503 3504
        } else {
            /* ROM/RAM case */
3505
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3506 3507 3508
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3509
                invalidate_and_set_dirty(mr, addr1, l);
3510 3511 3512 3513 3514
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3515 3516 3517 3518 3519
        }
        len -= l;
        buf += l;
        addr += l;
    }
3520
    rcu_read_unlock();
3521
    return MEMTX_OK;
B
bellard 已提交
3522 3523
}

3524
/* used for ROM loading : can write in RAM and ROM */
3525 3526
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3527
                                    const uint8_t *buf, hwaddr len)
3528
{
3529 3530
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3531 3532
}

3533
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3545 3546 3547
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3548 3549
}

3550
typedef struct {
3551
    MemoryRegion *mr;
3552
    void *buffer;
A
Avi Kivity 已提交
3553 3554
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3555
    bool in_use;
3556 3557 3558 3559
} BounceBuffer;

static BounceBuffer bounce;

3560
typedef struct MapClient {
3561
    QEMUBH *bh;
B
Blue Swirl 已提交
3562
    QLIST_ENTRY(MapClient) link;
3563 3564
} MapClient;

3565
QemuMutex map_client_list_lock;
3566
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3567
    = QLIST_HEAD_INITIALIZER(map_client_list);
3568

3569 3570 3571 3572 3573 3574
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3575 3576 3577 3578 3579 3580
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3581 3582
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3583 3584 3585
    }
}

3586
void cpu_register_map_client(QEMUBH *bh)
3587
{
3588
    MapClient *client = g_malloc(sizeof(*client));
3589

3590
    qemu_mutex_lock(&map_client_list_lock);
3591
    client->bh = bh;
B
Blue Swirl 已提交
3592
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3593 3594 3595
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3596
    qemu_mutex_unlock(&map_client_list_lock);
3597 3598
}

3599
void cpu_exec_init_all(void)
3600
{
3601
    qemu_mutex_init(&ram_list.mutex);
3602 3603 3604 3605 3606 3607 3608 3609
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3610
    io_mem_init();
3611
    memory_map_init();
3612
    qemu_mutex_init(&map_client_list_lock);
3613 3614
}

3615
void cpu_unregister_map_client(QEMUBH *bh)
3616 3617 3618
{
    MapClient *client;

3619 3620 3621 3622 3623 3624
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3625
    }
3626
    qemu_mutex_unlock(&map_client_list_lock);
3627 3628 3629 3630
}

static void cpu_notify_map_clients(void)
{
3631
    qemu_mutex_lock(&map_client_list_lock);
3632
    cpu_notify_map_clients_locked();
3633
    qemu_mutex_unlock(&map_client_list_lock);
3634 3635
}

3636
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3637
                                  bool is_write, MemTxAttrs attrs)
3638
{
3639
    MemoryRegion *mr;
3640 3641 3642 3643
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3644
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3645 3646
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3647
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3658
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3659
                                hwaddr len, bool is_write,
3660
                                MemTxAttrs attrs)
3661
{
3662 3663 3664 3665 3666
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3667
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3668 3669
    rcu_read_unlock();
    return result;
3670 3671
}

3672
static hwaddr
3673
flatview_extend_translation(FlatView *fv, hwaddr addr,
3674 3675 3676
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3691
        this_mr = flatview_translate(fv, addr, &xlat,
3692
                                     &len, is_write, attrs);
3693 3694 3695 3696 3697 3698
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3699 3700 3701 3702
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3703 3704
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3705
 */
A
Avi Kivity 已提交
3706
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3707 3708
                        hwaddr addr,
                        hwaddr *plen,
3709 3710
                        bool is_write,
                        MemTxAttrs attrs)
3711
{
A
Avi Kivity 已提交
3712
    hwaddr len = *plen;
3713 3714
    hwaddr l, xlat;
    MemoryRegion *mr;
3715
    void *ptr;
3716
    FlatView *fv;
3717

3718 3719 3720
    if (len == 0) {
        return NULL;
    }
3721

3722
    l = len;
3723
    rcu_read_lock();
3724
    fv = address_space_to_flatview(as);
3725
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3726

3727
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3728
        if (atomic_xchg(&bounce.in_use, true)) {
3729
            rcu_read_unlock();
3730
            return NULL;
3731
        }
3732 3733 3734
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3735 3736
        bounce.addr = addr;
        bounce.len = l;
3737 3738 3739

        memory_region_ref(mr);
        bounce.mr = mr;
3740
        if (!is_write) {
3741
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3742
                               bounce.buffer, l);
3743
        }
3744

3745
        rcu_read_unlock();
3746 3747 3748 3749 3750
        *plen = l;
        return bounce.buffer;
    }


3751
    memory_region_ref(mr);
3752
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3753
                                        l, is_write, attrs);
3754
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3755 3756 3757
    rcu_read_unlock();

    return ptr;
3758 3759
}

A
Avi Kivity 已提交
3760
/* Unmaps a memory region previously mapped by address_space_map().
3761 3762 3763
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3764 3765
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3766 3767
{
    if (buffer != bounce.buffer) {
3768 3769 3770
        MemoryRegion *mr;
        ram_addr_t addr1;

3771
        mr = memory_region_from_host(buffer, &addr1);
3772
        assert(mr != NULL);
3773
        if (is_write) {
3774
            invalidate_and_set_dirty(mr, addr1, access_len);
3775
        }
3776
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3777
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3778
        }
3779
        memory_region_unref(mr);
3780 3781 3782
        return;
    }
    if (is_write) {
3783 3784
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3785
    }
3786
    qemu_vfree(bounce.buffer);
3787
    bounce.buffer = NULL;
3788
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3789
    atomic_mb_set(&bounce.in_use, false);
3790
    cpu_notify_map_clients();
3791
}
B
bellard 已提交
3792

A
Avi Kivity 已提交
3793 3794
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3795 3796
                              int is_write)
{
3797 3798
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3799 3800
}

A
Avi Kivity 已提交
3801 3802
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3803 3804 3805 3806
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3807 3808 3809 3810 3811 3812 3813
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3814

P
Paolo Bonzini 已提交
3815 3816 3817 3818 3819 3820
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3835 3836 3837 3838
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3839
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3840 3841
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3842 3843 3844 3845 3846 3847 3848 3849
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3850 3851 3852 3853 3854 3855
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3856 3857 3858 3859
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3860 3861 3862 3863
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3884
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3903
                                            &target_as, attrs);
3904 3905 3906 3907 3908 3909 3910 3911
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3912
                                   void *buf, hwaddr len)
3913 3914 3915 3916 3917
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3918 3919
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3930
                                    const void *buf, hwaddr len)
3931 3932 3933 3934 3935
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3936 3937
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3938 3939 3940
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3941 3942 3943 3944
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3945 3946 3947 3948
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3949 3950
#include "memory_ldst.inc.c"

3951
/* virtual memory access for debug (includes writing to ROM) */
3952
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3953
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3954
{
A
Avi Kivity 已提交
3955
    hwaddr phys_addr;
3956
    target_ulong l, page;
B
bellard 已提交
3957

3958
    cpu_synchronize_state(cpu);
B
bellard 已提交
3959
    while (len > 0) {
3960 3961 3962
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3963
        page = addr & TARGET_PAGE_MASK;
3964 3965
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3966 3967 3968 3969 3970 3971
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3972
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3973
        if (is_write) {
3974
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3975
                                    attrs, buf, l);
3976
        } else {
3977
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3978
                             attrs, buf, l, 0);
3979
        }
B
bellard 已提交
3980 3981 3982 3983 3984 3985
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3986 3987 3988 3989 3990

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3991
size_t qemu_target_page_size(void)
3992
{
3993
    return TARGET_PAGE_SIZE;
3994 3995
}

3996 3997 3998 3999 4000 4001 4002 4003 4004
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
4005
#endif
B
bellard 已提交
4006

4007
bool target_words_bigendian(void)
4008 4009 4010 4011 4012 4013 4014 4015
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

4016
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
4017
bool cpu_physical_memory_is_io(hwaddr phys_addr)
4018
{
4019
    MemoryRegion*mr;
4020
    hwaddr l = 1;
4021
    bool res;
4022

4023
    rcu_read_lock();
4024
    mr = address_space_translate(&address_space_memory,
4025 4026
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
4027

4028 4029 4030
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
4031
}
4032

4033
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4034 4035
{
    RAMBlock *block;
4036
    int ret = 0;
4037

M
Mike Day 已提交
4038
    rcu_read_lock();
P
Peter Xu 已提交
4039
    RAMBLOCK_FOREACH(block) {
4040
        ret = func(block, opaque);
4041 4042 4043
        if (ret) {
            break;
        }
4044
    }
M
Mike Day 已提交
4045
    rcu_read_unlock();
4046
    return ret;
4047
}
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
4070
        bool need_madvise, need_fallocate;
4071 4072 4073 4074 4075 4076 4077 4078 4079
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
4090 4091 4092 4093
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4107 4108
#endif
        }
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4127 4128
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4129 4130
            goto err;
#endif
4131
        }
4132 4133
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
4144 4145 4146 4147 4148
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

4149
#endif
Y
Yang Zhong 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4163 4164 4165

#if !defined(CONFIG_USER_ONLY)

4166
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4167 4168
{
    if (start == end - 1) {
4169
        qemu_printf("\t%3d      ", start);
4170
    } else {
4171
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4172
    }
4173
    qemu_printf(" skip=%d ", skip);
4174
    if (ptr == PHYS_MAP_NODE_NIL) {
4175
        qemu_printf(" ptr=NIL");
4176
    } else if (!skip) {
4177
        qemu_printf(" ptr=#%d", ptr);
4178
    } else {
4179
        qemu_printf(" ptr=[%d]", ptr);
4180
    }
4181
    qemu_printf("\n");
4182 4183 4184 4185 4186
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4187
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4188 4189 4190
{
    int i;

4191 4192
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4193 4194 4195 4196 4197 4198

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4199 4200
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4211
            qemu_printf(" alias=%s", s->mr->alias->name ?
4212 4213
                    s->mr->alias->name : "noname");
        }
4214
        qemu_printf("\n");
4215 4216
    }

4217
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4218 4219 4220 4221 4222 4223
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4224
        qemu_printf("      [%d]\n", i);
4225 4226 4227 4228 4229 4230 4231 4232

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4233
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4234 4235 4236 4237 4238 4239

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4240
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4241 4242 4243 4244 4245
        }
    }
}

#endif