exec.c 121.8 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qapi/error.h"
B
bellard 已提交
21

22
#include "qemu/cutils.h"
B
bellard 已提交
23
#include "cpu.h"
24
#include "exec/exec-all.h"
25
#include "exec/target_page.h"
B
bellard 已提交
26
#include "tcg.h"
27
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
28
#include "hw/qdev-properties.h"
29
#if !defined(CONFIG_USER_ONLY)
30
#include "hw/boards.h"
31
#include "hw/xen/xen.h"
32
#endif
33
#include "sysemu/kvm.h"
34
#include "sysemu/sysemu.h"
35 36
#include "qemu/timer.h"
#include "qemu/config-file.h"
37
#include "qemu/error-report.h"
38
#if defined(CONFIG_USER_ONLY)
39
#include "qemu.h"
J
Jun Nakajima 已提交
40
#else /* !CONFIG_USER_ONLY */
41 42
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
43
#include "exec/ioport.h"
44
#include "sysemu/dma.h"
45
#include "sysemu/numa.h"
46
#include "sysemu/hw_accel.h"
47
#include "exec/address-spaces.h"
48
#include "sysemu/xen-mapcache.h"
49
#include "trace-root.h"
50

51 52 53 54
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

55
#endif
M
Mike Day 已提交
56
#include "qemu/rcu_queue.h"
57
#include "qemu/main-loop.h"
58
#include "translate-all.h"
59
#include "sysemu/replay.h"
60

61
#include "exec/memory-internal.h"
62
#include "exec/ram_addr.h"
63
#include "exec/log.h"
64

65 66
#include "migration/vmstate.h"

67
#include "qemu/range.h"
68 69 70
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
71

72 73
#include "monitor/monitor.h"

74
//#define DEBUG_SUBPAGE
T
ths 已提交
75

76
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
77 78 79
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
80
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
81 82

static MemoryRegion *system_memory;
83
static MemoryRegion *system_io;
A
Avi Kivity 已提交
84

85 86
AddressSpace address_space_io;
AddressSpace address_space_memory;
87

88
MemoryRegion io_mem_rom, io_mem_notdirty;
89
static MemoryRegion io_mem_unassigned;
90

91 92 93
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
#define RAM_PREALLOC   (1 << 0)

94 95 96
/* RAM is mmap-ed with MAP_SHARED */
#define RAM_SHARED     (1 << 1)

97 98 99 100 101
/* Only a portion of RAM (used_length) is actually used, and migrated.
 * This used_length size can change across reboots.
 */
#define RAM_RESIZEABLE (1 << 2)

102 103 104 105 106
/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 * zero the page and wake waiting processes.
 * (Set during postcopy)
 */
#define RAM_UF_ZEROPAGE (1 << 3)
107 108 109

/* RAM can be migrated */
#define RAM_MIGRATABLE (1 << 4)
110
#endif
111

112 113 114 115 116
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

A
Andreas Färber 已提交
117
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
B
bellard 已提交
118 119
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
120
__thread CPUState *current_cpu;
P
pbrook 已提交
121
/* 0 = Do not count executed instructions.
T
ths 已提交
122
   1 = Precise instruction counting.
P
pbrook 已提交
123
   2 = Adaptive rate instruction counting.  */
124
int use_icount;
B
bellard 已提交
125

Y
Yang Zhong 已提交
126 127 128
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

148
#if !defined(CONFIG_USER_ONLY)
149

150 151 152 153 154 155 156 157 158 159
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

160 161 162
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
163
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
165
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166
    uint32_t ptr : 26;
167 168
};

169 170
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

171
/* Size of the L2 (and L3, etc) page tables.  */
172
#define ADDR_SPACE_BITS 64
173

M
Michael S. Tsirkin 已提交
174
#define P_L2_BITS 9
175 176 177 178 179
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
180

181
typedef struct PhysPageMap {
182 183
    struct rcu_head rcu;

184 185 186 187 188 189 190 191
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

192
struct AddressSpaceDispatch {
193
    MemoryRegionSection *mru_section;
194 195 196 197
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
198
    PhysPageMap map;
199 200
};

201 202 203
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
204
    FlatView *fv;
205
    hwaddr base;
206
    uint16_t sub_section[];
207 208
} subpage_t;

209 210 211 212
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
213

214
static void io_mem_init(void);
A
Avi Kivity 已提交
215
static void memory_map_init(void);
216
static void tcg_commit(MemoryListener *listener);
217

218
static MemoryRegion io_mem_watch;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

234 235 236 237 238 239
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

240
#endif
B
bellard 已提交
241

242
#if !defined(CONFIG_USER_ONLY)
243

244
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
245
{
246
    static unsigned alloc_hint = 16;
247
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 250
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251
        alloc_hint = map->nodes_nb_alloc;
252
    }
253 254
}

255
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
256 257
{
    unsigned i;
258
    uint32_t ret;
259 260
    PhysPageEntry e;
    PhysPageEntry *p;
261

262
    ret = map->nodes_nb++;
263
    p = map->nodes[ret];
264
    assert(ret != PHYS_MAP_NODE_NIL);
265
    assert(ret != map->nodes_nb_alloc);
266 267 268

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269
    for (i = 0; i < P_L2_SIZE; ++i) {
270
        memcpy(&p[i], &e, sizeof(e));
271
    }
272
    return ret;
273 274
}

275 276
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
277
                                int level)
278 279
{
    PhysPageEntry *p;
280
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
281

M
Michael S. Tsirkin 已提交
282
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
284
    }
285
    p = map->nodes[lp->ptr];
286
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
287

288
    while (*nb && lp < &p[P_L2_SIZE]) {
289
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
290
            lp->skip = 0;
291
            lp->ptr = leaf;
292 293
            *index += step;
            *nb -= step;
294
        } else {
295
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
296 297
        }
        ++lp;
298 299 300
    }
}

A
Avi Kivity 已提交
301
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
302
                          hwaddr index, hwaddr nb,
303
                          uint16_t leaf)
304
{
305
    /* Wildly overreserve - it doesn't matter much. */
306
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
307

308
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
309 310
}

311 312 313
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
314
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
334
            phys_page_compact(&p[i], nodes);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

364
void address_space_dispatch_compact(AddressSpaceDispatch *d)
365 366
{
    if (d->phys_map.skip) {
367
        phys_page_compact(&d->phys_map, d->map.nodes);
368 369 370
    }
}

F
Fam Zheng 已提交
371 372 373 374 375 376
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
377
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
378
           range_covers_byte(section->offset_within_address_space,
379
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
380 381
}

382
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
383
{
384 385 386
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
387
    hwaddr index = addr >> TARGET_PAGE_BITS;
388
    int i;
389

M
Michael S. Tsirkin 已提交
390
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
392
            return &sections[PHYS_SECTION_UNASSIGNED];
393
        }
394
        p = nodes[lp.ptr];
395
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
396
    }
397

F
Fam Zheng 已提交
398
    if (section_covers_addr(&sections[lp.ptr], addr)) {
399 400 401 402
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
403 404
}

B
Blue Swirl 已提交
405 406
bool memory_region_is_unassigned(MemoryRegion *mr)
{
P
Paolo Bonzini 已提交
407
    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408
        && mr != &io_mem_watch;
B
bellard 已提交
409
}
410

411
/* Called from RCU critical section */
412
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 414
                                                        hwaddr addr,
                                                        bool resolve_subpage)
415
{
416
    MemoryRegionSection *section = atomic_read(&d->mru_section);
417 418
    subpage_t *subpage;

419 420
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
421
        section = phys_page_find(d, addr);
422
        atomic_set(&d->mru_section, section);
423
    }
424 425
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
426
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
427 428
    }
    return section;
429 430
}

431
/* Called from RCU critical section */
432
static MemoryRegionSection *
433
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434
                                 hwaddr *plen, bool resolve_subpage)
435 436
{
    MemoryRegionSection *section;
437
    MemoryRegion *mr;
438
    Int128 diff;
439

440
    section = address_space_lookup_region(d, addr, resolve_subpage);
441 442 443 444 445 446
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

447
    mr = section->mr;
448 449 450 451 452 453 454 455 456 457 458 459

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
460
    if (memory_region_is_ram(mr)) {
461
        diff = int128_sub(section->size, int128_make64(addr));
462 463
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
464 465
    return section;
}
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
484
 * @attrs: transaction attributes
485 486 487 488 489 490 491 492 493 494
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
495 496
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
497 498 499 500 501 502 503
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
504 505 506 507 508 509 510 511 512
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
555
 * @target_as: the address space targeted by the IOMMU
556
 * @attrs: memory transaction attributes
557 558 559
 *
 * This function is called from RCU critical section
 */
560 561 562
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
563 564
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
565 566
                                                 bool is_write,
                                                 bool is_mmio,
567 568
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
569 570
{
    MemoryRegionSection *section;
571
    IOMMUMemoryRegion *iommu_mr;
572 573
    hwaddr plen = (hwaddr)(-1);

574 575
    if (!plen_out) {
        plen_out = &plen;
576
    }
577

578 579 580
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
581

582 583 584 585 586
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
587
                                             target_as, attrs);
588
    }
589
    if (page_mask_out) {
590 591
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
592 593
    }

594
    return *section;
595 596 597
}

/* Called from RCU critical section */
598
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
599
                                            bool is_write, MemTxAttrs attrs)
600
{
601
    MemoryRegionSection section;
602
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
603

604 605 606 607 608
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
609 610
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
611

612 613 614 615
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
616

617 618 619 620 621
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
622
        .target_as = as,
623 624 625
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
626 627 628 629 630 631 632 633 634
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
635
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
636 637
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
638 639 640
{
    MemoryRegion *mr;
    MemoryRegionSection section;
641
    AddressSpace *as = NULL;
642 643

    /* This can be MMIO, so setup MMIO bit. */
644
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
645
                                    is_write, true, &as, attrs);
646 647
    mr = section.mr;

648
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
649
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
650
        *plen = MIN(page, *plen);
651 652
    }

A
Avi Kivity 已提交
653
    return mr;
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
    }
    g_array_free(cpu->iommu_notifiers, true);
}

739
/* Called from RCU critical section */
740
MemoryRegionSection *
741
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
742 743
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
744
{
A
Avi Kivity 已提交
745
    MemoryRegionSection *section;
746 747 748 749
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
750
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
751

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
787

788
    assert(!memory_region_is_iommu(section->mr));
789
    *xlat = addr;
A
Avi Kivity 已提交
790
    return section;
791 792 793

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
794
}
795
#endif
B
bellard 已提交
796

797
#if !defined(CONFIG_USER_ONLY)
798 799

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
800
{
801
    CPUState *cpu = opaque;
B
bellard 已提交
802

803 804
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
805
    cpu->interrupt_request &= ~0x01;
806
    tlb_flush(cpu);
807

808 809 810 811 812 813 814
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

815
    return 0;
B
bellard 已提交
816
}
B
bellard 已提交
817

818 819 820 821
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

822
    cpu->exception_index = -1;
823 824 825 826 827 828 829 830

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

831
    return tcg_enabled() && cpu->exception_index != -1;
832 833 834 835 836 837
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
838
    .needed = cpu_common_exception_index_needed,
839 840 841 842 843 844
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

863
const VMStateDescription vmstate_cpu_common = {
864 865 866
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
867
    .pre_load = cpu_common_pre_load,
868
    .post_load = cpu_common_post_load,
869
    .fields = (VMStateField[]) {
870 871
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
872
        VMSTATE_END_OF_LIST()
873
    },
874 875
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
876
        &vmstate_cpu_common_crash_occurred,
877
        NULL
878 879
    }
};
880

881
#endif
B
bellard 已提交
882

883
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
884
{
A
Andreas Färber 已提交
885
    CPUState *cpu;
B
bellard 已提交
886

A
Andreas Färber 已提交
887
    CPU_FOREACH(cpu) {
888
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
889
            return cpu;
890
        }
B
bellard 已提交
891
    }
892

A
Andreas Färber 已提交
893
    return NULL;
B
bellard 已提交
894 895
}

896
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
897 898
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
899
{
900
    CPUAddressSpace *newas;
P
Peter Xu 已提交
901
    AddressSpace *as = g_new0(AddressSpace, 1);
902
    char *as_name;
P
Peter Xu 已提交
903 904

    assert(mr);
905 906 907
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
908 909 910 911

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

912 913 914 915 916
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

917 918
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
919

920 921
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
922
    }
923

924 925 926
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
927
    if (tcg_enabled()) {
928 929
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
930
    }
931
}
932 933 934 935 936 937

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
938 939
#endif

940
void cpu_exec_unrealizefn(CPUState *cpu)
941
{
942 943
    CPUClass *cc = CPU_GET_CLASS(cpu);

944
    cpu_list_remove(cpu);
945 946 947 948 949 950 951

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
952 953 954
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
955 956
}

F
Fam Zheng 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
971
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
972
{
973
    cpu->as = NULL;
974
    cpu->num_ases = 0;
975

976 977
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
978 979
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
980
#endif
L
Laurent Vivier 已提交
981 982
}

983
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
984
{
985
    CPUClass *cc = CPU_GET_CLASS(cpu);
986
    static bool tcg_target_initialized;
987

988
    cpu_list_add(cpu);
989

990 991
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
992 993 994
        cc->tcg_initialize();
    }

995
#ifndef CONFIG_USER_ONLY
996
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
997
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
998
    }
999
    if (cc->vmsd != NULL) {
1000
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1001
    }
1002 1003

    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1004
#endif
B
bellard 已提交
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
const char *parse_cpu_model(const char *cpu_model)
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

    model_pieces = g_strsplit(cpu_model, ",", 2);

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1030
#if defined(CONFIG_USER_ONLY)
1031
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1032
{
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    mmap_lock();
    tb_lock();
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
    tb_unlock();
    mmap_unlock();
}
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1048
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1049
    }
1050
}
1051
#endif
B
bellard 已提交
1052

1053
#if defined(CONFIG_USER_ONLY)
1054
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1055 1056 1057 1058

{
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

1069
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1070 1071 1072 1073 1074
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
1075
/* Add a watchpoint.  */
1076
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1077
                          int flags, CPUWatchpoint **watchpoint)
1078
{
1079
    CPUWatchpoint *wp;
1080

1081
    /* forbid ranges which are empty or run off the end of the address space */
1082
    if (len == 0 || (addr + len - 1) < addr) {
1083 1084
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1085 1086
        return -EINVAL;
    }
1087
    wp = g_malloc(sizeof(*wp));
1088 1089

    wp->vaddr = addr;
1090
    wp->len = len;
1091 1092
    wp->flags = flags;

1093
    /* keep all GDB-injected watchpoints in front */
1094 1095 1096 1097 1098
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1099

1100
    tlb_flush_page(cpu, addr);
1101 1102 1103 1104

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1105 1106
}

1107
/* Remove a specific watchpoint.  */
1108
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1109
                          int flags)
1110
{
1111
    CPUWatchpoint *wp;
1112

1113
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1114
        if (addr == wp->vaddr && len == wp->len
1115
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1116
            cpu_watchpoint_remove_by_ref(cpu, wp);
1117 1118 1119
            return 0;
        }
    }
1120
    return -ENOENT;
1121 1122
}

1123
/* Remove a specific watchpoint by reference.  */
1124
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1125
{
1126
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1127

1128
    tlb_flush_page(cpu, watchpoint->vaddr);
1129

1130
    g_free(watchpoint);
1131 1132 1133
}

/* Remove all matching watchpoints.  */
1134
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1135
{
1136
    CPUWatchpoint *wp, *next;
1137

1138
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1139 1140 1141
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1142
    }
1143
}
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1165
#endif
1166

1167
/* Add a breakpoint.  */
1168
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1169
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1170
{
1171
    CPUBreakpoint *bp;
1172

1173
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1174

1175 1176 1177
    bp->pc = pc;
    bp->flags = flags;

1178
    /* keep all GDB-injected breakpoints in front */
1179
    if (flags & BP_GDB) {
1180
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1181
    } else {
1182
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1183
    }
1184

1185
    breakpoint_invalidate(cpu, pc);
1186

1187
    if (breakpoint) {
1188
        *breakpoint = bp;
1189
    }
B
bellard 已提交
1190 1191 1192
    return 0;
}

1193
/* Remove a specific breakpoint.  */
1194
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1195 1196 1197
{
    CPUBreakpoint *bp;

1198
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1199
        if (bp->pc == pc && bp->flags == flags) {
1200
            cpu_breakpoint_remove_by_ref(cpu, bp);
1201 1202
            return 0;
        }
1203
    }
1204
    return -ENOENT;
1205 1206
}

1207
/* Remove a specific breakpoint by reference.  */
1208
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1209
{
1210 1211 1212
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1213

1214
    g_free(breakpoint);
1215 1216 1217
}

/* Remove all matching breakpoints. */
1218
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1219
{
1220
    CPUBreakpoint *bp, *next;
1221

1222
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1223 1224 1225
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1226
    }
B
bellard 已提交
1227 1228
}

B
bellard 已提交
1229 1230
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1231
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1232
{
1233 1234 1235
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1236
            kvm_update_guest_debug(cpu, 0);
1237
        } else {
S
Stuart Brady 已提交
1238
            /* must flush all the translated code to avoid inconsistencies */
1239
            /* XXX: only flush what is necessary */
1240
            tb_flush(cpu);
1241
        }
B
bellard 已提交
1242 1243 1244
    }
}

1245
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1246 1247
{
    va_list ap;
P
pbrook 已提交
1248
    va_list ap2;
B
bellard 已提交
1249 1250

    va_start(ap, fmt);
P
pbrook 已提交
1251
    va_copy(ap2, ap);
B
bellard 已提交
1252 1253 1254
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1255
    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1256
    if (qemu_log_separate()) {
1257
        qemu_log_lock();
1258 1259 1260
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1261
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1262
        qemu_log_flush();
1263
        qemu_log_unlock();
1264
        qemu_log_close();
1265
    }
P
pbrook 已提交
1266
    va_end(ap2);
1267
    va_end(ap);
1268
    replay_finish();
1269 1270 1271 1272 1273
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1274
        act.sa_flags = 0;
1275 1276 1277
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1278 1279 1280
    abort();
}

1281
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1282
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1283 1284 1285 1286
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1287
    block = atomic_rcu_read(&ram_list.mru_block);
1288
    if (block && addr - block->offset < block->max_length) {
1289
        return block;
P
Paolo Bonzini 已提交
1290
    }
P
Peter Xu 已提交
1291
    RAMBLOCK_FOREACH(block) {
1292
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1293 1294 1295 1296 1297 1298 1299 1300
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1317 1318 1319 1320
    ram_list.mru_block = block;
    return block;
}

1321
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1322
{
1323
    CPUState *cpu;
P
Paolo Bonzini 已提交
1324
    ram_addr_t start1;
1325 1326 1327 1328 1329
    RAMBlock *block;
    ram_addr_t end;

    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1330

M
Mike Day 已提交
1331
    rcu_read_lock();
P
Paolo Bonzini 已提交
1332 1333
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1334
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1335 1336 1337
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1338
    rcu_read_unlock();
J
Juan Quintela 已提交
1339 1340
}

P
pbrook 已提交
1341
/* Note: start and end must be within the same ram block.  */
1342 1343 1344
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1345
{
1346
    DirtyMemoryBlocks *blocks;
1347
    unsigned long end, page;
1348
    bool dirty = false;
1349 1350 1351 1352

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1353

1354 1355
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1372 1373

    if (dirty && tcg_enabled()) {
1374
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1375
    }
1376 1377

    return dirty;
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
     (ram_addr_t start, ram_addr_t length, unsigned client)
{
    DirtyMemoryBlocks *blocks;
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1449
/* Called from RCU critical section */
1450
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1451 1452 1453 1454 1455
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1456
{
A
Avi Kivity 已提交
1457
    hwaddr iotlb;
B
Blue Swirl 已提交
1458 1459
    CPUWatchpoint *wp;

1460
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1461
        /* Normal RAM.  */
1462
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1463
        if (!section->readonly) {
1464
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1465
        } else {
1466
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1467 1468
        }
    } else {
1469 1470
        AddressSpaceDispatch *d;

1471
        d = flatview_to_dispatch(section->fv);
1472
        iotlb = section - d->map.sections;
1473
        iotlb += xlat;
B
Blue Swirl 已提交
1474 1475 1476 1477
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1478
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1479
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1480 1481
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1482
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1483 1484 1485 1486 1487 1488 1489 1490
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1491 1492
#endif /* defined(CONFIG_USER_ONLY) */

1493
#if !defined(CONFIG_USER_ONLY)
1494

A
Anthony Liguori 已提交
1495
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1496
                             uint16_t section);
1497
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1498

1499
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1500
                               qemu_anon_ram_alloc;
1501 1502 1503 1504 1505 1506

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1507
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1508 1509 1510 1511
{
    phys_mem_alloc = alloc;
}

1512 1513
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1514
{
1515 1516 1517 1518
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1519
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1520

1521 1522 1523 1524
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1525
    }
1526
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1527
    memory_region_ref(section->mr);
1528
    return map->sections_nb++;
1529 1530
}

1531 1532
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1533 1534
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1535 1536
    memory_region_unref(mr);

D
Don Slutz 已提交
1537
    if (have_sub_page) {
1538
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1539
        object_unref(OBJECT(&subpage->iomem));
1540 1541 1542 1543
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1544
static void phys_sections_free(PhysPageMap *map)
1545
{
1546 1547
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1548 1549
        phys_section_destroy(section->mr);
    }
1550 1551
    g_free(map->sections);
    g_free(map->nodes);
1552 1553
}

1554
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1555
{
1556
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1557
    subpage_t *subpage;
A
Avi Kivity 已提交
1558
    hwaddr base = section->offset_within_address_space
1559
        & TARGET_PAGE_MASK;
1560
    MemoryRegionSection *existing = phys_page_find(d, base);
1561 1562
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1563
        .size = int128_make64(TARGET_PAGE_SIZE),
1564
    };
A
Avi Kivity 已提交
1565
    hwaddr start, end;
1566

1567
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1568

1569
    if (!(existing->mr->subpage)) {
1570 1571
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1572
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1573
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1574
                      phys_section_add(&d->map, &subsection));
1575
    } else {
1576
        subpage = container_of(existing->mr, subpage_t, iomem);
1577 1578
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1579
    end = start + int128_get64(section->size) - 1;
1580 1581
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1582 1583 1584
}


1585
static void register_multipage(FlatView *fv,
1586
                               MemoryRegionSection *section)
1587
{
1588
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1589
    hwaddr start_addr = section->offset_within_address_space;
1590
    uint16_t section_index = phys_section_add(&d->map, section);
1591 1592
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1593

1594 1595
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1596 1597
}

1598
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1599
{
1600
    MemoryRegionSection now = *section, remain = *section;
1601
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1602

1603 1604 1605 1606
    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
                       - now.offset_within_address_space;

1607
        now.size = int128_min(int128_make64(left), now.size);
1608
        register_subpage(fv, &now);
1609
    } else {
1610
        now.size = int128_zero();
1611
    }
1612 1613 1614 1615
    while (int128_ne(remain.size, now.size)) {
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1616
        now = remain;
1617
        if (int128_lt(remain.size, page_size)) {
1618
            register_subpage(fv, &now);
1619
        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1620
            now.size = page_size;
1621
            register_subpage(fv, &now);
1622
        } else {
1623
            now.size = int128_and(now.size, int128_neg(page_size));
1624
            register_multipage(fv, &now);
1625
        }
1626 1627 1628
    }
}

1629 1630 1631 1632 1633 1634
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
static int find_max_supported_pagesize(Object *obj, void *opaque)
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1677 1678
        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));

1679 1680
        if (hpsize < *hpsize_min) {
            *hpsize_min = hpsize;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
        }
    }

    return 0;
}

long qemu_getrampagesize(void)
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

1693
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
#else
long qemu_getrampagesize(void)
{
    return getpagesize();
}
#endif

1737
#ifdef __linux__
1738 1739 1740 1741 1742 1743 1744 1745 1746
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1747 1748 1749 1750
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1751 1752
{
    char *filename;
1753 1754
    char *sanitized_name;
    char *c;
1755
    int fd = -1;
1756

1757
    *created = false;
1758 1759 1760 1761 1762
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1763
        }
1764 1765 1766 1767
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1768
                *created = true;
1769 1770 1771 1772 1773
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1774
            sanitized_name = g_strdup(region_name);
1775 1776 1777 1778 1779
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1780

1781 1782 1783
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1784

1785 1786 1787 1788 1789 1790 1791
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1792
        }
1793 1794 1795 1796
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1797
            return -1;
1798 1799 1800 1801 1802
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1803
    }
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
    void *area;

1816
    block->page_size = qemu_fd_getpagesize(fd);
1817 1818 1819 1820 1821 1822 1823
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1824 1825 1826 1827 1828
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1829

1830
    if (memory < block->page_size) {
1831
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1832 1833
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1834
        return NULL;
1835 1836
    }

1837
    memory = ROUND_UP(memory, block->page_size);
1838 1839 1840 1841 1842 1843

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1844 1845 1846 1847 1848 1849 1850 1851
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1852
     */
1853
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1854
        perror("ftruncate");
1855
    }
1856

1857 1858
    area = qemu_ram_mmap(fd, memory, block->mr->align,
                         block->flags & RAM_SHARED);
1859
    if (area == MAP_FAILED) {
1860
        error_setg_errno(errp, errno,
1861
                         "unable to map backing store for guest RAM");
1862
        return NULL;
1863
    }
1864 1865

    if (mem_prealloc) {
1866
        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1867
        if (errp && *errp) {
1868 1869
            qemu_ram_munmap(area, memory);
            return NULL;
1870
        }
1871 1872
    }

A
Alex Williamson 已提交
1873
    block->fd = fd;
1874 1875 1876 1877
    return area;
}
#endif

1878 1879 1880 1881
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1882
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1883 1884
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1885
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1886

1887 1888
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1889
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1890
        return 0;
M
Mike Day 已提交
1891
    }
A
Alex Williamson 已提交
1892

P
Peter Xu 已提交
1893
    RAMBLOCK_FOREACH(block) {
1894
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1895

1896 1897 1898
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1899
        candidate = block->offset + block->max_length;
1900
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1901

1902 1903 1904
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1905
        RAMBLOCK_FOREACH(next_block) {
1906
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1907 1908 1909
                next = MIN(next, next_block->offset);
            }
        }
1910 1911 1912 1913 1914 1915 1916 1917

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1918
        }
1919 1920

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1921
    }
A
Alex Williamson 已提交
1922 1923 1924 1925 1926 1927 1928

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1929 1930
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
1931 1932 1933
    return offset;
}

1934
unsigned long last_ram_page(void)
1935 1936 1937 1938
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
1939
    rcu_read_lock();
P
Peter Xu 已提交
1940
    RAMBLOCK_FOREACH(block) {
1941
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1942
    }
M
Mike Day 已提交
1943
    rcu_read_unlock();
1944
    return last >> TARGET_PAGE_BITS;
1945 1946
}

1947 1948 1949 1950 1951
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1952
    if (!machine_dump_guest_core(current_machine)) {
1953 1954 1955 1956 1957 1958 1959 1960 1961
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1962 1963 1964 1965 1966
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

1967 1968 1969 1970 1971
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

1998
/* Called with iothread lock held.  */
G
Gonglei 已提交
1999
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2000
{
G
Gonglei 已提交
2001
    RAMBlock *block;
2002

2003 2004
    assert(new_block);
    assert(!new_block->idstr[0]);
2005

2006 2007
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2008 2009
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2010
            g_free(id);
2011 2012 2013 2014
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2015
    rcu_read_lock();
P
Peter Xu 已提交
2016
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2017 2018
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2019 2020 2021 2022 2023
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2024
    rcu_read_unlock();
2025 2026
}

2027
/* Called with iothread lock held.  */
G
Gonglei 已提交
2028
void qemu_ram_unset_idstr(RAMBlock *block)
2029
{
2030 2031 2032 2033
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2034 2035 2036 2037 2038
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2039 2040 2041 2042 2043
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2044 2045 2046 2047 2048 2049
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2050
    RAMBLOCK_FOREACH(block) {
2051 2052 2053 2054 2055 2056
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2057 2058
static int memory_try_enable_merging(void *addr, size_t len)
{
2059
    if (!machine_mem_merge(current_machine)) {
2060 2061 2062 2063 2064 2065 2066
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2067 2068 2069 2070 2071 2072 2073
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2074
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2075 2076 2077
{
    assert(block);

2078
    newsize = HOST_PAGE_ALIGN(newsize);
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2102 2103
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2104 2105 2106 2107 2108 2109 2110
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2152
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2153
{
2154
    RAMBlock *block;
M
Mike Day 已提交
2155
    RAMBlock *last_block = NULL;
2156
    ram_addr_t old_ram_size, new_ram_size;
2157
    Error *err = NULL;
2158

2159
    old_ram_size = last_ram_page();
2160

2161
    qemu_mutex_lock_ramlist();
2162
    new_block->offset = find_ram_offset(new_block->max_length);
2163 2164 2165

    if (!new_block->host) {
        if (xen_enabled()) {
2166
            xen_ram_alloc(new_block->offset, new_block->max_length,
2167 2168 2169 2170
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2171
                return;
2172
            }
2173
        } else {
2174
            new_block->host = phys_mem_alloc(new_block->max_length,
2175
                                             &new_block->mr->align, shared);
2176
            if (!new_block->host) {
2177 2178 2179 2180
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2181
                return;
2182
            }
2183
            memory_try_enable_merging(new_block->host, new_block->max_length);
2184
        }
2185
    }
P
pbrook 已提交
2186

L
Li Zhijian 已提交
2187 2188 2189
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2190
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2191
    }
M
Mike Day 已提交
2192 2193 2194 2195
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2196
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2197
        last_block = block;
2198
        if (block->max_length < new_block->max_length) {
2199 2200 2201 2202
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2203
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2204
    } else if (last_block) {
M
Mike Day 已提交
2205
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2206
    } else { /* list is empty */
M
Mike Day 已提交
2207
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2208
    }
2209
    ram_list.mru_block = NULL;
P
pbrook 已提交
2210

M
Mike Day 已提交
2211 2212
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2213
    ram_list.version++;
2214
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2215

2216
    cpu_physical_memory_set_dirty_range(new_block->offset,
2217 2218
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2219

2220 2221 2222
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2223
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2224
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2225
        ram_block_notify_add(new_block->host, new_block->max_length);
2226
    }
P
pbrook 已提交
2227
}
B
bellard 已提交
2228

2229
#ifdef __linux__
2230 2231 2232
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
                                 bool share, int fd,
                                 Error **errp)
2233 2234
{
    RAMBlock *new_block;
2235
    Error *local_err = NULL;
2236
    int64_t file_size;
2237 2238

    if (xen_enabled()) {
2239
        error_setg(errp, "-mem-path not supported with Xen");
2240
        return NULL;
2241 2242
    }

2243 2244 2245 2246 2247 2248
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2249 2250 2251 2252 2253 2254
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2255 2256
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2257
        return NULL;
2258 2259
    }

2260
    size = HOST_PAGE_ALIGN(size);
2261 2262 2263 2264 2265 2266 2267 2268
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2269 2270
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2271 2272
    new_block->used_length = size;
    new_block->max_length = size;
2273
    new_block->flags = share ? RAM_SHARED : 0;
2274
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2275 2276
    if (!new_block->host) {
        g_free(new_block);
2277
        return NULL;
2278 2279
    }

2280
    ram_block_add(new_block, &local_err, share);
2281 2282 2283
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2284
        return NULL;
2285
    }
2286
    return new_block;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
                                   bool share, const char *mem_path,
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2314
}
2315
#endif
2316

2317
static
2318 2319 2320 2321
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2322
                                  void *host, bool resizeable, bool share,
2323
                                  MemoryRegion *mr, Error **errp)
2324 2325
{
    RAMBlock *new_block;
2326
    Error *local_err = NULL;
2327

2328 2329
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2330 2331
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2332
    new_block->resized = resized;
2333 2334
    new_block->used_length = size;
    new_block->max_length = max_size;
2335
    assert(max_size >= size);
2336
    new_block->fd = -1;
2337
    new_block->page_size = getpagesize();
2338 2339
    new_block->host = host;
    if (host) {
2340
        new_block->flags |= RAM_PREALLOC;
2341
    }
2342 2343 2344
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2345
    ram_block_add(new_block, &local_err, share);
2346 2347 2348
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2349
        return NULL;
2350
    }
2351
    return new_block;
2352 2353
}

2354
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2355 2356
                                   MemoryRegion *mr, Error **errp)
{
2357 2358
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2359 2360
}

2361 2362
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2363
{
2364 2365
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2366 2367
}

2368
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2369 2370 2371 2372 2373
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2374 2375
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2376 2377
}

P
Paolo Bonzini 已提交
2378 2379 2380 2381 2382 2383 2384 2385
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2386
        qemu_ram_munmap(block->host, block->max_length);
P
Paolo Bonzini 已提交
2387 2388 2389 2390 2391 2392 2393 2394
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2395
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2396
{
2397 2398 2399 2400
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2401 2402 2403 2404
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2405
    qemu_mutex_lock_ramlist();
2406 2407 2408 2409 2410 2411
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2412
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2413 2414
}

H
Huang Ying 已提交
2415 2416 2417 2418 2419 2420 2421 2422
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2423
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2424
        offset = addr - block->offset;
2425
        if (offset < block->max_length) {
2426
            vaddr = ramblock_ptr(block, offset);
2427
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2428
                ;
2429 2430
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2431 2432
            } else {
                flags = MAP_FIXED;
2433
                if (block->fd >= 0) {
2434 2435
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2436 2437
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2438
                } else {
2439 2440 2441 2442 2443 2444 2445
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2446 2447 2448 2449 2450
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2451 2452 2453
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2454 2455
                    exit(1);
                }
2456
                memory_try_enable_merging(vaddr, length);
2457
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2458 2459 2460 2461 2462 2463
            }
        }
    }
}
#endif /* !_WIN32 */

2464
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2465 2466 2467
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2468
 *
2469
 * Called within RCU critical section.
2470
 */
2471
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2472
{
2473 2474 2475 2476
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2477
        addr -= block->offset;
2478
    }
2479 2480

    if (xen_enabled() && block->host == NULL) {
2481 2482 2483 2484 2485
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2486
            return xen_map_cache(addr, 0, 0, false);
2487
        }
2488

2489
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2490
    }
2491
    return ramblock_ptr(block, addr);
2492 2493
}

2494
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2495
 * but takes a size argument.
M
Mike Day 已提交
2496
 *
2497
 * Called within RCU critical section.
2498
 */
2499
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2500
                                 hwaddr *size, bool lock)
2501
{
2502
    RAMBlock *block = ram_block;
2503 2504 2505
    if (*size == 0) {
        return NULL;
    }
2506

2507 2508
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2509
        addr -= block->offset;
2510
    }
2511
    *size = MIN(*size, block->max_length - addr);
2512 2513 2514 2515 2516 2517 2518

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2519
            return xen_map_cache(addr, *size, lock, lock);
2520 2521
        }

2522
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2523
    }
2524

2525
    return ramblock_ptr(block, addr);
2526 2527
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2548 2549 2550 2551 2552 2553 2554
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2555 2556
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2557
{
P
pbrook 已提交
2558 2559 2560
    RAMBlock *block;
    uint8_t *host = ptr;

2561
    if (xen_enabled()) {
2562
        ram_addr_t ram_addr;
M
Mike Day 已提交
2563
        rcu_read_lock();
2564 2565
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2566
        if (block) {
2567
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2568
        }
M
Mike Day 已提交
2569
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2570
        return block;
2571 2572
    }

M
Mike Day 已提交
2573 2574
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2575
    if (block && block->host && host - block->host < block->max_length) {
2576 2577 2578
        goto found;
    }

P
Peter Xu 已提交
2579
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2580 2581 2582 2583
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2584
        if (host - block->host < block->max_length) {
2585
            goto found;
A
Alex Williamson 已提交
2586
        }
P
pbrook 已提交
2587
    }
J
Jun Nakajima 已提交
2588

M
Mike Day 已提交
2589
    rcu_read_unlock();
2590
    return NULL;
2591 2592

found:
D
Dr. David Alan Gilbert 已提交
2593 2594 2595 2596
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2597
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2598 2599 2600
    return block;
}

D
Dr. David Alan Gilbert 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2612
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2613 2614 2615 2616 2617 2618 2619 2620
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2621 2622
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2623
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2624 2625
{
    RAMBlock *block;
2626
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2627

2628
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2629
    if (!block) {
2630
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2631 2632
    }

2633
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2634
}
A
Alex Williamson 已提交
2635

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
    ndi->locked = false;
2648

2649
    assert(tcg_enabled());
2650
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2651
        ndi->locked = true;
2652
        tb_lock();
2653
        tb_invalidate_phys_page_fast(ram_addr, size);
2654
    }
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
    if (ndi->locked) {
        tb_unlock();
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2685
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2686
    memory_notdirty_write_complete(&ndi);
2687 2688
}

2689
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2690 2691
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2692 2693 2694 2695
{
    return is_write;
}

2696 2697
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2698
    .valid.accepts = notdirty_mem_accepts,
2699
    .endianness = DEVICE_NATIVE_ENDIAN,
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2710 2711
};

P
pbrook 已提交
2712
/* Generate a debug exception if a watchpoint has been hit.  */
2713
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2714
{
2715
    CPUState *cpu = current_cpu;
2716
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2717
    target_ulong vaddr;
2718
    CPUWatchpoint *wp;
P
pbrook 已提交
2719

2720
    assert(tcg_enabled());
2721
    if (cpu->watchpoint_hit) {
2722 2723 2724
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2725
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2726 2727
        return;
    }
2728
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2729
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2730
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2731 2732
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2733 2734 2735 2736 2737 2738
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2739
            wp->hitattrs = attrs;
2740
            if (!cpu->watchpoint_hit) {
2741 2742 2743 2744 2745
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2746
                cpu->watchpoint_hit = wp;
2747

2748 2749 2750
                /* Both tb_lock and iothread_mutex will be reset when
                 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
                 * back into the cpu_exec main loop.
2751 2752
                 */
                tb_lock();
2753
                tb_check_watchpoint(cpu);
2754
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2755
                    cpu->exception_index = EXCP_DEBUG;
2756
                    cpu_loop_exit(cpu);
2757
                } else {
2758 2759
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
2760
                    cpu_loop_exit_noexc(cpu);
2761
                }
2762
            }
2763 2764
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2765 2766 2767 2768
        }
    }
}

2769 2770 2771
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2772 2773
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2774
{
2775 2776
    MemTxResult res;
    uint64_t data;
2777 2778
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2779 2780

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2781
    switch (size) {
2782
    case 1:
2783
        data = address_space_ldub(as, addr, attrs, &res);
2784 2785
        break;
    case 2:
2786
        data = address_space_lduw(as, addr, attrs, &res);
2787 2788
        break;
    case 4:
2789
        data = address_space_ldl(as, addr, attrs, &res);
2790
        break;
2791 2792 2793
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2794 2795
    default: abort();
    }
2796 2797
    *pdata = data;
    return res;
2798 2799
}

2800 2801 2802
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2803
{
2804
    MemTxResult res;
2805 2806
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2807 2808

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2809
    switch (size) {
2810
    case 1:
2811
        address_space_stb(as, addr, val, attrs, &res);
2812 2813
        break;
    case 2:
2814
        address_space_stw(as, addr, val, attrs, &res);
2815 2816
        break;
    case 4:
2817
        address_space_stl(as, addr, val, attrs, &res);
2818
        break;
2819 2820 2821
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2822 2823
    default: abort();
    }
2824
    return res;
2825 2826
}

2827
static const MemoryRegionOps watch_mem_ops = {
2828 2829
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2830
    .endianness = DEVICE_NATIVE_ENDIAN,
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2841 2842
};

2843 2844
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
                                      MemTxAttrs attrs, uint8_t *buf, int len);
2845 2846 2847
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2848
                                  bool is_write, MemTxAttrs attrs);
2849

2850 2851
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2852
{
2853
    subpage_t *subpage = opaque;
2854
    uint8_t buf[8];
2855
    MemTxResult res;
2856

2857
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2858
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2859
           subpage, len, addr);
2860
#endif
2861
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2862 2863
    if (res) {
        return res;
2864
    }
2865 2866
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2867 2868
}

2869 2870
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2871
{
2872
    subpage_t *subpage = opaque;
2873
    uint8_t buf[8];
2874

2875
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2876
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2877 2878
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2879
#endif
2880
    stn_p(buf, len, value);
2881
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2882 2883
}

2884
static bool subpage_accepts(void *opaque, hwaddr addr,
2885 2886
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2887
{
2888
    subpage_t *subpage = opaque;
2889
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2890
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2891
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2892 2893
#endif

2894
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2895
                                 len, is_write, attrs);
2896 2897
}

2898
static const MemoryRegionOps subpage_ops = {
2899 2900
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2901 2902 2903 2904
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2905
    .valid.accepts = subpage_accepts,
2906
    .endianness = DEVICE_NATIVE_ENDIAN,
2907 2908
};

A
Anthony Liguori 已提交
2909
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2910
                             uint16_t section)
2911 2912 2913 2914 2915 2916 2917 2918
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2919 2920
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2921 2922
#endif
    for (; idx <= eidx; idx++) {
2923
        mmio->sub_section[idx] = section;
2924 2925 2926 2927 2928
    }

    return 0;
}

2929
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2930
{
A
Anthony Liguori 已提交
2931
    subpage_t *mmio;
2932

2933
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2934
    mmio->fv = fv;
2935
    mmio->base = base;
2936
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2937
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2938
    mmio->iomem.subpage = true;
2939
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2940 2941
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2942
#endif
2943
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2944 2945 2946 2947

    return mmio;
}

2948
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2949
{
2950
    assert(fv);
2951
    MemoryRegionSection section = {
2952
        .fv = fv,
2953 2954 2955
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2956
        .size = int128_2_64(),
2957 2958
    };

2959
    return phys_section_add(map, &section);
2960 2961
}

2962 2963 2964 2965 2966 2967 2968
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2969 2970
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

2994 2995
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2996
{
2997 2998
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2999
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3000
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
3001

3002
    return &sections[index & ~TARGET_PAGE_MASK];
3003 3004
}

A
Avi Kivity 已提交
3005 3006
static void io_mem_init(void)
{
3007 3008
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
3009
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3010
                          NULL, UINT64_MAX);
3011 3012 3013 3014

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
3015
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3016
                          NULL, UINT64_MAX);
3017 3018
    memory_region_clear_global_locking(&io_mem_notdirty);

3019
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3020
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
3021 3022
}

3023
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3024
{
3025 3026 3027
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

3028
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3029
    assert(n == PHYS_SECTION_UNASSIGNED);
3030
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3031
    assert(n == PHYS_SECTION_NOTDIRTY);
3032
    n = dummy_section(&d->map, fv, &io_mem_rom);
3033
    assert(n == PHYS_SECTION_ROM);
3034
    n = dummy_section(&d->map, fv, &io_mem_watch);
3035
    assert(n == PHYS_SECTION_WATCH);
3036

M
Michael S. Tsirkin 已提交
3037
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3038 3039

    return d;
3040 3041
}

3042
void address_space_dispatch_free(AddressSpaceDispatch *d)
3043 3044 3045 3046 3047
{
    phys_sections_free(&d->map);
    g_free(d);
}

3048
static void tcg_commit(MemoryListener *listener)
3049
{
3050 3051
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3052 3053 3054

    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3055 3056 3057 3058 3059 3060
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3061
    d = address_space_to_dispatch(cpuas->as);
3062
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3063
    tlb_flush(cpuas->cpu);
3064 3065
}

A
Avi Kivity 已提交
3066 3067
static void memory_map_init(void)
{
3068
    system_memory = g_malloc(sizeof(*system_memory));
3069

3070
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3071
    address_space_init(&address_space_memory, system_memory, "memory");
3072

3073
    system_io = g_malloc(sizeof(*system_io));
3074 3075
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3076
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3077 3078 3079 3080 3081 3082 3083
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3084 3085 3086 3087 3088
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3089 3090
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3091 3092
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3093
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
P
Paul Brook 已提交
3094
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3095 3096 3097
{
    int l, flags;
    target_ulong page;
3098
    void * p;
B
bellard 已提交
3099 3100 3101 3102 3103 3104 3105 3106

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3107
            return -1;
B
bellard 已提交
3108 3109
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3110
                return -1;
3111
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3112
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3113
                return -1;
A
aurel32 已提交
3114 3115
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3116 3117
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3118
                return -1;
3119
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3120
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3121
                return -1;
A
aurel32 已提交
3122
            memcpy(buf, p, l);
A
aurel32 已提交
3123
            unlock_user(p, addr, 0);
B
bellard 已提交
3124 3125 3126 3127 3128
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3129
    return 0;
B
bellard 已提交
3130
}
B
bellard 已提交
3131

B
bellard 已提交
3132
#else
3133

3134
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3135
                                     hwaddr length)
3136
{
3137
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3138 3139
    addr += memory_region_get_ram_addr(mr);

3140 3141 3142 3143 3144 3145 3146 3147 3148
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3149
        assert(tcg_enabled());
3150
        tb_lock();
3151
        tb_invalidate_phys_range(addr, addr + length);
3152
        tb_unlock();
3153
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3154
    }
3155
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3156 3157
}

3158
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3159
{
3160
    unsigned access_size_max = mr->ops->valid.max_access_size;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3174
    }
3175 3176 3177 3178

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3179
    }
3180
    l = pow2floor(l);
3181 3182

    return l;
3183 3184
}

3185
static bool prepare_mmio_access(MemoryRegion *mr)
3186
{
3187 3188 3189 3190 3191 3192 3193 3194
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3195
    if (mr->flush_coalesced_mmio) {
3196 3197 3198
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3199
        qemu_flush_coalesced_mmio_buffer();
3200 3201 3202
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3203
    }
3204 3205

    return release_lock;
3206 3207
}

3208
/* Called within RCU critical section.  */
3209 3210 3211 3212 3213
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
                                           int len, hwaddr addr1,
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3214 3215
{
    uint8_t *ptr;
3216
    uint64_t val;
3217
    MemTxResult result = MEMTX_OK;
3218
    bool release_lock = false;
3219

3220
    for (;;) {
3221 3222 3223 3224 3225
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3226 3227
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3228
        } else {
3229
            /* RAM case */
3230
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3231 3232
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3233
        }
3234 3235 3236 3237 3238 3239

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3240 3241 3242
        len -= l;
        buf += l;
        addr += l;
3243 3244 3245 3246 3247 3248

        if (!len) {
            break;
        }

        l = len;
3249
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3250
    }
3251

3252
    return result;
B
bellard 已提交
3253
}
B
bellard 已提交
3254

3255
/* Called from RCU critical section.  */
3256 3257
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len)
A
Avi Kivity 已提交
3258
{
3259 3260 3261 3262 3263
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3264
    l = len;
3265
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3266 3267
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3268 3269 3270 3271 3272

    return result;
}

/* Called within RCU critical section.  */
3273 3274 3275 3276
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
                                   int len, hwaddr addr1, hwaddr l,
                                   MemoryRegion *mr)
3277 3278 3279 3280 3281
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3282

3283
    for (;;) {
3284 3285 3286 3287
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3288 3289
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3290 3291
        } else {
            /* RAM case */
3292
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3304 3305 3306 3307 3308 3309

        if (!len) {
            break;
        }

        l = len;
3310
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3311 3312 3313 3314 3315
    }

    return result;
}

3316 3317 3318
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
                                 MemTxAttrs attrs, uint8_t *buf, int len)
3319 3320 3321 3322
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3323

3324
    l = len;
3325
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3326 3327
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3328 3329
}

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs, uint8_t *buf, int len)
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
                                const uint8_t *buf, int len)
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
                             uint8_t *buf, int len, bool is_write)
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3373
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
A
Avi Kivity 已提交
3374 3375
                            int len, int is_write)
{
3376 3377
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3378 3379
}

3380 3381 3382 3383 3384
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3385
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3386
    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
B
bellard 已提交
3387
{
3388
    hwaddr l;
B
bellard 已提交
3389
    uint8_t *ptr;
3390
    hwaddr addr1;
3391
    MemoryRegion *mr;
3392

3393
    rcu_read_lock();
B
bellard 已提交
3394
    while (len > 0) {
3395
        l = len;
3396 3397
        mr = address_space_translate(as, addr, &addr1, &l, true,
                                     MEMTXATTRS_UNSPECIFIED);
3398

3399 3400
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3401
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3402 3403
        } else {
            /* ROM/RAM case */
3404
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3405 3406 3407
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3408
                invalidate_and_set_dirty(mr, addr1, l);
3409 3410 3411 3412 3413
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3414 3415 3416 3417 3418
        }
        len -= l;
        buf += l;
        addr += l;
    }
3419
    rcu_read_unlock();
B
bellard 已提交
3420 3421
}

3422
/* used for ROM loading : can write in RAM and ROM */
3423
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3424 3425
                                   const uint8_t *buf, int len)
{
3426
    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
}

void cpu_flush_icache_range(hwaddr start, int len)
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3441 3442
    cpu_physical_memory_write_rom_internal(&address_space_memory,
                                           start, NULL, len, FLUSH_CACHE);
3443 3444
}

3445
typedef struct {
3446
    MemoryRegion *mr;
3447
    void *buffer;
A
Avi Kivity 已提交
3448 3449
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3450
    bool in_use;
3451 3452 3453 3454
} BounceBuffer;

static BounceBuffer bounce;

3455
typedef struct MapClient {
3456
    QEMUBH *bh;
B
Blue Swirl 已提交
3457
    QLIST_ENTRY(MapClient) link;
3458 3459
} MapClient;

3460
QemuMutex map_client_list_lock;
B
Blue Swirl 已提交
3461 3462
static QLIST_HEAD(map_client_list, MapClient) map_client_list
    = QLIST_HEAD_INITIALIZER(map_client_list);
3463

3464 3465 3466 3467 3468 3469
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3470 3471 3472 3473 3474 3475
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3476 3477
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3478 3479 3480
    }
}

3481
void cpu_register_map_client(QEMUBH *bh)
3482
{
3483
    MapClient *client = g_malloc(sizeof(*client));
3484

3485
    qemu_mutex_lock(&map_client_list_lock);
3486
    client->bh = bh;
B
Blue Swirl 已提交
3487
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3488 3489 3490
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3491
    qemu_mutex_unlock(&map_client_list_lock);
3492 3493
}

3494
void cpu_exec_init_all(void)
3495
{
3496
    qemu_mutex_init(&ram_list.mutex);
3497 3498 3499 3500 3501 3502 3503 3504
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3505
    io_mem_init();
3506
    memory_map_init();
3507
    qemu_mutex_init(&map_client_list_lock);
3508 3509
}

3510
void cpu_unregister_map_client(QEMUBH *bh)
3511 3512 3513
{
    MapClient *client;

3514 3515 3516 3517 3518 3519
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3520
    }
3521
    qemu_mutex_unlock(&map_client_list_lock);
3522 3523 3524 3525
}

static void cpu_notify_map_clients(void)
{
3526
    qemu_mutex_lock(&map_client_list_lock);
3527
    cpu_notify_map_clients_locked();
3528
    qemu_mutex_unlock(&map_client_list_lock);
3529 3530
}

3531
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3532
                                  bool is_write, MemTxAttrs attrs)
3533
{
3534
    MemoryRegion *mr;
3535 3536 3537 3538
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3539
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3540 3541
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3542
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3553
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3554 3555
                                int len, bool is_write,
                                MemTxAttrs attrs)
3556
{
3557 3558 3559 3560 3561
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3562
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3563 3564
    rcu_read_unlock();
    return result;
3565 3566
}

3567
static hwaddr
3568
flatview_extend_translation(FlatView *fv, hwaddr addr,
3569 3570 3571
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3586
        this_mr = flatview_translate(fv, addr, &xlat,
3587
                                     &len, is_write, attrs);
3588 3589 3590 3591 3592 3593
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3594 3595 3596 3597
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3598 3599
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3600
 */
A
Avi Kivity 已提交
3601
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3602 3603
                        hwaddr addr,
                        hwaddr *plen,
3604 3605
                        bool is_write,
                        MemTxAttrs attrs)
3606
{
A
Avi Kivity 已提交
3607
    hwaddr len = *plen;
3608 3609
    hwaddr l, xlat;
    MemoryRegion *mr;
3610
    void *ptr;
3611
    FlatView *fv;
3612

3613 3614 3615
    if (len == 0) {
        return NULL;
    }
3616

3617
    l = len;
3618
    rcu_read_lock();
3619
    fv = address_space_to_flatview(as);
3620
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3621

3622
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3623
        if (atomic_xchg(&bounce.in_use, true)) {
3624
            rcu_read_unlock();
3625
            return NULL;
3626
        }
3627 3628 3629
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3630 3631
        bounce.addr = addr;
        bounce.len = l;
3632 3633 3634

        memory_region_ref(mr);
        bounce.mr = mr;
3635
        if (!is_write) {
3636
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3637
                               bounce.buffer, l);
3638
        }
3639

3640
        rcu_read_unlock();
3641 3642 3643 3644 3645
        *plen = l;
        return bounce.buffer;
    }


3646
    memory_region_ref(mr);
3647
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3648
                                        l, is_write, attrs);
3649
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3650 3651 3652
    rcu_read_unlock();

    return ptr;
3653 3654
}

A
Avi Kivity 已提交
3655
/* Unmaps a memory region previously mapped by address_space_map().
3656 3657 3658
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3659 3660
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3661 3662
{
    if (buffer != bounce.buffer) {
3663 3664 3665
        MemoryRegion *mr;
        ram_addr_t addr1;

3666
        mr = memory_region_from_host(buffer, &addr1);
3667
        assert(mr != NULL);
3668
        if (is_write) {
3669
            invalidate_and_set_dirty(mr, addr1, access_len);
3670
        }
3671
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3672
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3673
        }
3674
        memory_region_unref(mr);
3675 3676 3677
        return;
    }
    if (is_write) {
3678 3679
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3680
    }
3681
    qemu_vfree(bounce.buffer);
3682
    bounce.buffer = NULL;
3683
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3684
    atomic_mb_set(&bounce.in_use, false);
3685
    cpu_notify_map_clients();
3686
}
B
bellard 已提交
3687

A
Avi Kivity 已提交
3688 3689
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3690 3691
                              int is_write)
{
3692 3693
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3694 3695
}

A
Avi Kivity 已提交
3696 3697
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3698 3699 3700 3701
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3712

P
Paolo Bonzini 已提交
3713 3714 3715 3716 3717 3718
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3733 3734 3735 3736
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3737
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3738 3739
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3740 3741 3742 3743 3744 3745 3746 3747
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3748 3749 3750 3751 3752 3753
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3754 3755 3756 3757
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3758 3759 3760 3761
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3782
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3801
                                            &target_as, attrs);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
                                   void *buf, int len)
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3816 3817
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
                                    const void *buf, int len)
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3834 3835
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3836 3837 3838
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3839 3840 3841 3842
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3843 3844 3845 3846
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         (cache->ptr + (ofs - cache->xlat))
P
Paolo Bonzini 已提交
3847
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3848 3849
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3850 3851
#include "memory_ldst.inc.c"

3852
/* virtual memory access for debug (includes writing to ROM) */
3853
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3854
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3855 3856
{
    int l;
A
Avi Kivity 已提交
3857
    hwaddr phys_addr;
3858
    target_ulong page;
B
bellard 已提交
3859

3860
    cpu_synchronize_state(cpu);
B
bellard 已提交
3861
    while (len > 0) {
3862 3863 3864
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3865
        page = addr & TARGET_PAGE_MASK;
3866 3867
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3868 3869 3870 3871 3872 3873
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3874
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3875
        if (is_write) {
3876 3877
            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
                                          phys_addr, buf, l);
3878
        } else {
3879 3880
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
                             MEMTXATTRS_UNSPECIFIED,
3881
                             buf, l, 0);
3882
        }
B
bellard 已提交
3883 3884 3885 3886 3887 3888
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3889 3890 3891 3892 3893

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3894
size_t qemu_target_page_size(void)
3895
{
3896
    return TARGET_PAGE_SIZE;
3897 3898
}

3899 3900 3901 3902 3903 3904 3905 3906 3907
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3908
#endif
B
bellard 已提交
3909

3910 3911 3912 3913
/*
 * A helper function for the _utterly broken_ virtio device model to find out if
 * it's running on a big endian machine. Don't do this at home kids!
 */
3914 3915
bool target_words_bigendian(void);
bool target_words_bigendian(void)
3916 3917 3918 3919 3920 3921 3922 3923
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3924
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3925
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3926
{
3927
    MemoryRegion*mr;
3928
    hwaddr l = 1;
3929
    bool res;
3930

3931
    rcu_read_lock();
3932
    mr = address_space_translate(&address_space_memory,
3933 3934
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3935

3936 3937 3938
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3939
}
3940

3941
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3942 3943
{
    RAMBlock *block;
3944
    int ret = 0;
3945

M
Mike Day 已提交
3946
    rcu_read_lock();
P
Peter Xu 已提交
3947
    RAMBLOCK_FOREACH(block) {
3948 3949 3950 3951 3952
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
3953
    }
M
Mike Day 已提交
3954
    rcu_read_unlock();
3955
    return ret;
3956
}
3957

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
{
    RAMBlock *block;
    int ret = 0;

    rcu_read_lock();
    RAMBLOCK_FOREACH(block) {
        if (!qemu_ram_is_migratable(block)) {
            continue;
        }
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
    }
    rcu_read_unlock();
    return ret;
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3999
        bool need_madvise, need_fallocate;
4000 4001 4002 4003 4004 4005 4006 4007 4008
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
4019 4020 4021 4022
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4036 4037
#endif
        }
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4056 4057
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4058 4059
            goto err;
#endif
4060
        }
4061 4062
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

4073
#endif
Y
Yang Zhong 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

#if !defined(CONFIG_USER_ONLY)

static void mtree_print_phys_entries(fprintf_function mon, void *f,
                                     int start, int end, int skip, int ptr)
{
    if (start == end - 1) {
        mon(f, "\t%3d      ", start);
    } else {
        mon(f, "\t%3d..%-3d ", start, end - 1);
    }
    mon(f, " skip=%d ", skip);
    if (ptr == PHYS_MAP_NODE_NIL) {
        mon(f, " ptr=NIL");
    } else if (!skip) {
        mon(f, " ptr=#%d", ptr);
    } else {
        mon(f, " ptr=[%d]", ptr);
    }
    mon(f, "\n");
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

void mtree_print_dispatch(fprintf_function mon, void *f,
                          AddressSpaceDispatch *d, MemoryRegion *root)
{
    int i;

    mon(f, "  Dispatch\n");
    mon(f, "    Physical sections\n");

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
            mon(f, " alias=%s", s->mr->alias->name ?
                    s->mr->alias->name : "noname");
        }
        mon(f, "\n");
    }

    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

        mon(f, "      [%d]\n", i);

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
        }
    }
}

#endif