exec.c 121.2 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45
#include "exec/memory.h"
P
Paolo Bonzini 已提交
46
#include "exec/ioport.h"
47
#include "sysemu/dma.h"
48
#include "sysemu/hostmem.h"
49
#include "sysemu/hw_accel.h"
50
#include "exec/address-spaces.h"
51
#include "sysemu/xen-mapcache.h"
52
#include "trace-root.h"
53

54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
static MemoryRegion io_mem_unassigned;
92
#endif
93

94 95 96 97 98
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

99 100
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
101 102
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
103
__thread CPUState *current_cpu;
P
pbrook 已提交
104
/* 0 = Do not count executed instructions.
T
ths 已提交
105
   1 = Precise instruction counting.
P
pbrook 已提交
106
   2 = Adaptive rate instruction counting.  */
107
int use_icount;
B
bellard 已提交
108

Y
Yang Zhong 已提交
109 110 111
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

131
#if !defined(CONFIG_USER_ONLY)
132

133 134 135 136 137 138 139 140 141 142
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

143 144 145
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
146
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
147
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
148
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149
    uint32_t ptr : 26;
150 151
};

152 153
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

154
/* Size of the L2 (and L3, etc) page tables.  */
155
#define ADDR_SPACE_BITS 64
156

M
Michael S. Tsirkin 已提交
157
#define P_L2_BITS 9
158 159 160 161 162
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
163

164
typedef struct PhysPageMap {
165 166
    struct rcu_head rcu;

167 168 169 170 171 172 173 174
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

175
struct AddressSpaceDispatch {
176
    MemoryRegionSection *mru_section;
177 178 179 180
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
181
    PhysPageMap map;
182 183
};

184 185 186
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
187
    FlatView *fv;
188
    hwaddr base;
189
    uint16_t sub_section[];
190 191
} subpage_t;

192
#define PHYS_SECTION_UNASSIGNED 0
193

194
static void io_mem_init(void);
A
Avi Kivity 已提交
195
static void memory_map_init(void);
196
static void tcg_log_global_after_sync(MemoryListener *listener);
197
static void tcg_commit(MemoryListener *listener);
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

213 214 215 216 217 218
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

219
#endif
B
bellard 已提交
220

221
#if !defined(CONFIG_USER_ONLY)
222

223
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224
{
225
    static unsigned alloc_hint = 16;
226
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227
        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
228
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229
        alloc_hint = map->nodes_nb_alloc;
230
    }
231 232
}

233
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
234 235
{
    unsigned i;
236
    uint32_t ret;
237 238
    PhysPageEntry e;
    PhysPageEntry *p;
239

240
    ret = map->nodes_nb++;
241
    p = map->nodes[ret];
242
    assert(ret != PHYS_MAP_NODE_NIL);
243
    assert(ret != map->nodes_nb_alloc);
244 245 246

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247
    for (i = 0; i < P_L2_SIZE; ++i) {
248
        memcpy(&p[i], &e, sizeof(e));
249
    }
250
    return ret;
251 252
}

253
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254
                                hwaddr *index, uint64_t *nb, uint16_t leaf,
255
                                int level)
256 257
{
    PhysPageEntry *p;
258
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
259

M
Michael S. Tsirkin 已提交
260
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
262
    }
263
    p = map->nodes[lp->ptr];
264
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
265

266
    while (*nb && lp < &p[P_L2_SIZE]) {
267
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
268
            lp->skip = 0;
269
            lp->ptr = leaf;
270 271
            *index += step;
            *nb -= step;
272
        } else {
273
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
274 275
        }
        ++lp;
276 277 278
    }
}

A
Avi Kivity 已提交
279
static void phys_page_set(AddressSpaceDispatch *d,
280
                          hwaddr index, uint64_t nb,
281
                          uint16_t leaf)
282
{
283
    /* Wildly overreserve - it doesn't matter much. */
284
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
285

286
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
287 288
}

289 290 291
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
292
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
312
            phys_page_compact(&p[i], nodes);
313 314 315 316 317 318 319 320 321 322 323
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
324 325
    if (P_L2_LEVELS >= (1 << 6) &&
        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

343
void address_space_dispatch_compact(AddressSpaceDispatch *d)
344 345
{
    if (d->phys_map.skip) {
346
        phys_page_compact(&d->phys_map, d->map.nodes);
347 348 349
    }
}

F
Fam Zheng 已提交
350 351 352 353 354 355
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
356
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
357
           range_covers_byte(section->offset_within_address_space,
358
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
359 360
}

361
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
362
{
363 364 365
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
366
    hwaddr index = addr >> TARGET_PAGE_BITS;
367
    int i;
368

M
Michael S. Tsirkin 已提交
369
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
370
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
371
            return &sections[PHYS_SECTION_UNASSIGNED];
372
        }
373
        p = nodes[lp.ptr];
374
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375
    }
376

F
Fam Zheng 已提交
377
    if (section_covers_addr(&sections[lp.ptr], addr)) {
378 379 380 381
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
382 383
}

384
/* Called from RCU critical section */
385
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
386 387
                                                        hwaddr addr,
                                                        bool resolve_subpage)
388
{
389
    MemoryRegionSection *section = atomic_read(&d->mru_section);
390 391
    subpage_t *subpage;

392 393
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
394
        section = phys_page_find(d, addr);
395
        atomic_set(&d->mru_section, section);
396
    }
397 398
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
399
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
400 401
    }
    return section;
402 403
}

404
/* Called from RCU critical section */
405
static MemoryRegionSection *
406
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
407
                                 hwaddr *plen, bool resolve_subpage)
408 409
{
    MemoryRegionSection *section;
410
    MemoryRegion *mr;
411
    Int128 diff;
412

413
    section = address_space_lookup_region(d, addr, resolve_subpage);
414 415 416 417 418 419
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

420
    mr = section->mr;
421 422 423 424 425 426 427 428 429 430 431 432

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
433
    if (memory_region_is_ram(mr)) {
434
        diff = int128_sub(section->size, int128_make64(addr));
435 436
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
437 438
    return section;
}
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
457
 * @attrs: transaction attributes
458 459 460 461 462 463 464 465 466 467
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
468 469
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
470 471 472 473 474 475 476
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
477 478 479 480 481 482 483 484 485
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
528
 * @target_as: the address space targeted by the IOMMU
529
 * @attrs: memory transaction attributes
530 531 532
 *
 * This function is called from RCU critical section
 */
533 534 535
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
536 537
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
538 539
                                                 bool is_write,
                                                 bool is_mmio,
540 541
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
542 543
{
    MemoryRegionSection *section;
544
    IOMMUMemoryRegion *iommu_mr;
545 546
    hwaddr plen = (hwaddr)(-1);

547 548
    if (!plen_out) {
        plen_out = &plen;
549
    }
550

551 552 553
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
554

555 556 557 558 559
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
560
                                             target_as, attrs);
561
    }
562
    if (page_mask_out) {
563 564
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
565 566
    }

567
    return *section;
568 569 570
}

/* Called from RCU critical section */
571
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
572
                                            bool is_write, MemTxAttrs attrs)
573
{
574
    MemoryRegionSection section;
575
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
576

577 578 579 580 581
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
582 583
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
584

585 586 587 588
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
589

590 591 592 593 594
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
595
        .target_as = as,
596 597 598
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
599 600 601 602 603 604 605 606 607
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
608
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
609 610
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
611 612 613
{
    MemoryRegion *mr;
    MemoryRegionSection section;
614
    AddressSpace *as = NULL;
615 616

    /* This can be MMIO, so setup MMIO bit. */
617
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
618
                                    is_write, true, &as, attrs);
619 620
    mr = section.mr;

621
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
622
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
623
        *plen = MIN(page, *plen);
624 625
    }

A
Avi Kivity 已提交
626
    return mr;
627 628
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
666
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
667 668 669 670 671 672 673
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
674 675
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
707
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
708
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
709
        g_free(notifier);
710 711 712 713
    }
    g_array_free(cpu->iommu_notifiers, true);
}

714
/* Called from RCU critical section */
715
MemoryRegionSection *
716
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
717 718
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
719
{
A
Avi Kivity 已提交
720
    MemoryRegionSection *section;
721 722 723 724
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
725
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
762

763
    assert(!memory_region_is_iommu(section->mr));
764
    *xlat = addr;
A
Avi Kivity 已提交
765
    return section;
766 767 768

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
769
}
770
#endif
B
bellard 已提交
771

772
#if !defined(CONFIG_USER_ONLY)
773 774

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
775
{
776
    CPUState *cpu = opaque;
B
bellard 已提交
777

778 779
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
780
    cpu->interrupt_request &= ~0x01;
781
    tlb_flush(cpu);
782

783 784 785 786 787 788 789
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

790
    return 0;
B
bellard 已提交
791
}
B
bellard 已提交
792

793 794 795 796
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

797
    cpu->exception_index = -1;
798 799 800 801 802 803 804 805

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

806
    return tcg_enabled() && cpu->exception_index != -1;
807 808 809 810 811 812
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
813
    .needed = cpu_common_exception_index_needed,
814 815 816 817 818 819
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

838
const VMStateDescription vmstate_cpu_common = {
839 840 841
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
842
    .pre_load = cpu_common_pre_load,
843
    .post_load = cpu_common_post_load,
844
    .fields = (VMStateField[]) {
845 846
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
847
        VMSTATE_END_OF_LIST()
848
    },
849 850
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
851
        &vmstate_cpu_common_crash_occurred,
852
        NULL
853 854
    }
};
855

856
#endif
B
bellard 已提交
857

858
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
859
{
A
Andreas Färber 已提交
860
    CPUState *cpu;
B
bellard 已提交
861

A
Andreas Färber 已提交
862
    CPU_FOREACH(cpu) {
863
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
864
            return cpu;
865
        }
B
bellard 已提交
866
    }
867

A
Andreas Färber 已提交
868
    return NULL;
B
bellard 已提交
869 870
}

871
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
872 873
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
874
{
875
    CPUAddressSpace *newas;
P
Peter Xu 已提交
876
    AddressSpace *as = g_new0(AddressSpace, 1);
877
    char *as_name;
P
Peter Xu 已提交
878 879

    assert(mr);
880 881 882
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
883 884 885 886

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

887 888 889 890 891
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

892 893
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
894

895 896
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
897
    }
898

899 900 901
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
902
    if (tcg_enabled()) {
903
        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
904 905
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
906
    }
907
}
908 909 910 911 912 913

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
914 915
#endif

916
void cpu_exec_unrealizefn(CPUState *cpu)
917
{
918 919
    CPUClass *cc = CPU_GET_CLASS(cpu);

920
    cpu_list_remove(cpu);
921 922 923 924 925 926 927

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
928 929 930
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
931 932
}

F
Fam Zheng 已提交
933 934 935
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
936
     * so users can wire up its memory. (This can't go in hw/core/cpu.c
F
Fam Zheng 已提交
937 938 939 940 941 942 943 944 945 946
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
947
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
948
{
949
    cpu->as = NULL;
950
    cpu->num_ases = 0;
951

952 953
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
954 955
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
956
#endif
L
Laurent Vivier 已提交
957 958
}

959
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
960
{
961
    CPUClass *cc = CPU_GET_CLASS(cpu);
962
    static bool tcg_target_initialized;
963

964
    cpu_list_add(cpu);
965

966 967
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
968 969
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
970
    tlb_init(cpu);
971

972
#ifndef CONFIG_USER_ONLY
973
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
974
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
975
    }
976
    if (cc->vmsd != NULL) {
977
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
978
    }
979

980
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
981
#endif
B
bellard 已提交
982 983
}

984
const char *parse_cpu_option(const char *cpu_option)
985 986 987 988 989 990
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

991
    model_pieces = g_strsplit(cpu_option, ",", 2);
992 993 994 995
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1011
#if defined(CONFIG_USER_ONLY)
1012
void tb_invalidate_phys_addr(target_ulong addr)
1013
{
1014
    mmap_lock();
1015
    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1016 1017
    mmap_unlock();
}
1018 1019 1020 1021 1022

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1023
#else
1024 1025 1026 1027 1028 1029
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1030 1031 1032 1033
    if (!tcg_enabled()) {
        return;
    }

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    rcu_read_lock();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        rcu_read_unlock();
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
    rcu_read_unlock();
}

1046 1047 1048 1049 1050 1051 1052 1053
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1054
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1055
    }
1056
}
1057
#endif
B
bellard 已提交
1058

1059
#ifndef CONFIG_USER_ONLY
1060
/* Add a watchpoint.  */
1061
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1062
                          int flags, CPUWatchpoint **watchpoint)
1063
{
1064
    CPUWatchpoint *wp;
1065

1066
    /* forbid ranges which are empty or run off the end of the address space */
1067
    if (len == 0 || (addr + len - 1) < addr) {
1068 1069
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1070 1071
        return -EINVAL;
    }
1072
    wp = g_malloc(sizeof(*wp));
1073 1074

    wp->vaddr = addr;
1075
    wp->len = len;
1076 1077
    wp->flags = flags;

1078
    /* keep all GDB-injected watchpoints in front */
1079 1080 1081 1082 1083
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1084

1085
    tlb_flush_page(cpu, addr);
1086 1087 1088 1089

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1090 1091
}

1092
/* Remove a specific watchpoint.  */
1093
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1094
                          int flags)
1095
{
1096
    CPUWatchpoint *wp;
1097

1098
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1099
        if (addr == wp->vaddr && len == wp->len
1100
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1101
            cpu_watchpoint_remove_by_ref(cpu, wp);
1102 1103 1104
            return 0;
        }
    }
1105
    return -ENOENT;
1106 1107
}

1108
/* Remove a specific watchpoint by reference.  */
1109
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1110
{
1111
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1112

1113
    tlb_flush_page(cpu, watchpoint->vaddr);
1114

1115
    g_free(watchpoint);
1116 1117 1118
}

/* Remove all matching watchpoints.  */
1119
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1120
{
1121
    CPUWatchpoint *wp, *next;
1122

1123
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1124 1125 1126
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1127
    }
1128
}
1129 1130 1131 1132 1133 1134

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
1135 1136
static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
                                              vaddr addr, vaddr len)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/* Return flags for watchpoints that match addr + prot.  */
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
{
    CPUWatchpoint *wp;
    int ret = 0;

    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
        if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
            ret |= wp->flags;
        }
    }
    return ret;
}
1162
#endif /* !CONFIG_USER_ONLY */
1163

1164
/* Add a breakpoint.  */
1165
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1166
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1167
{
1168
    CPUBreakpoint *bp;
1169

1170
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1171

1172 1173 1174
    bp->pc = pc;
    bp->flags = flags;

1175
    /* keep all GDB-injected breakpoints in front */
1176
    if (flags & BP_GDB) {
1177
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1178
    } else {
1179
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1180
    }
1181

1182
    breakpoint_invalidate(cpu, pc);
1183

1184
    if (breakpoint) {
1185
        *breakpoint = bp;
1186
    }
B
bellard 已提交
1187 1188 1189
    return 0;
}

1190
/* Remove a specific breakpoint.  */
1191
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1192 1193 1194
{
    CPUBreakpoint *bp;

1195
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1196
        if (bp->pc == pc && bp->flags == flags) {
1197
            cpu_breakpoint_remove_by_ref(cpu, bp);
1198 1199
            return 0;
        }
1200
    }
1201
    return -ENOENT;
1202 1203
}

1204
/* Remove a specific breakpoint by reference.  */
1205
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1206
{
1207 1208 1209
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1210

1211
    g_free(breakpoint);
1212 1213 1214
}

/* Remove all matching breakpoints. */
1215
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1216
{
1217
    CPUBreakpoint *bp, *next;
1218

1219
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1220 1221 1222
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1223
    }
B
bellard 已提交
1224 1225
}

B
bellard 已提交
1226 1227
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1228
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1229
{
1230 1231 1232
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1233
            kvm_update_guest_debug(cpu, 0);
1234
        } else {
S
Stuart Brady 已提交
1235
            /* must flush all the translated code to avoid inconsistencies */
1236
            /* XXX: only flush what is necessary */
1237
            tb_flush(cpu);
1238
        }
B
bellard 已提交
1239 1240 1241
    }
}

1242
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1243 1244
{
    va_list ap;
P
pbrook 已提交
1245
    va_list ap2;
B
bellard 已提交
1246 1247

    va_start(ap, fmt);
P
pbrook 已提交
1248
    va_copy(ap2, ap);
B
bellard 已提交
1249 1250 1251
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1252
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1253
    if (qemu_log_separate()) {
1254
        qemu_log_lock();
1255 1256 1257
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1258
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259
        qemu_log_flush();
1260
        qemu_log_unlock();
1261
        qemu_log_close();
1262
    }
P
pbrook 已提交
1263
    va_end(ap2);
1264
    va_end(ap);
1265
    replay_finish();
1266 1267 1268 1269 1270
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1271
        act.sa_flags = 0;
1272 1273 1274
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1275 1276 1277
    abort();
}

1278
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1279
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1280 1281 1282 1283
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1284
    block = atomic_rcu_read(&ram_list.mru_block);
1285
    if (block && addr - block->offset < block->max_length) {
1286
        return block;
P
Paolo Bonzini 已提交
1287
    }
P
Peter Xu 已提交
1288
    RAMBLOCK_FOREACH(block) {
1289
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1290 1291 1292 1293 1294 1295 1296 1297
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1314 1315 1316 1317
    ram_list.mru_block = block;
    return block;
}

1318
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1319
{
1320
    CPUState *cpu;
P
Paolo Bonzini 已提交
1321
    ram_addr_t start1;
1322 1323 1324
    RAMBlock *block;
    ram_addr_t end;

1325
    assert(tcg_enabled());
1326 1327
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1328

M
Mike Day 已提交
1329
    rcu_read_lock();
P
Paolo Bonzini 已提交
1330 1331
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1332
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1333 1334 1335
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1336
    rcu_read_unlock();
J
Juan Quintela 已提交
1337 1338
}

P
pbrook 已提交
1339
/* Note: start and end must be within the same ram block.  */
1340 1341 1342
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1343
{
1344
    DirtyMemoryBlocks *blocks;
1345
    unsigned long end, page;
1346
    bool dirty = false;
1347 1348
    RAMBlock *ramblock;
    uint64_t mr_offset, mr_size;
1349 1350 1351 1352

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1353

1354 1355
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1356 1357 1358 1359

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1360 1361 1362 1363
    ramblock = qemu_get_ram_block(start);
    /* Range sanity check on the ramblock */
    assert(start >= ramblock->offset &&
           start + length <= ramblock->offset + ramblock->used_length);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

1375 1376 1377 1378
    mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
    mr_size = (end - page) << TARGET_PAGE_BITS;
    memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);

1379
    rcu_read_unlock();
1380 1381

    if (dirty && tcg_enabled()) {
1382
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1383
    }
1384 1385

    return dirty;
1386 1387
}

1388
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1389
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1390 1391
{
    DirtyMemoryBlocks *blocks;
1392
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

1434 1435
    memory_region_clear_dirty_bitmap(mr, offset, length);

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1460
/* Called from RCU critical section */
1461
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1462 1463 1464 1465 1466
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1467
{
A
Avi Kivity 已提交
1468
    hwaddr iotlb;
B
Blue Swirl 已提交
1469

1470
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1471
        /* Normal RAM.  */
1472
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1473
    } else {
1474 1475
        AddressSpaceDispatch *d;

1476
        d = flatview_to_dispatch(section->fv);
1477
        iotlb = section - d->map.sections;
1478
        iotlb += xlat;
B
Blue Swirl 已提交
1479 1480 1481 1482
    }

    return iotlb;
}
1483 1484
#endif /* defined(CONFIG_USER_ONLY) */

1485
#if !defined(CONFIG_USER_ONLY)
1486

1487 1488
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section);
1489
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1490

1491
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1492
                               qemu_anon_ram_alloc;
1493 1494 1495 1496 1497 1498

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1499
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1500 1501 1502 1503
{
    phys_mem_alloc = alloc;
}

1504 1505
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1506
{
1507 1508 1509 1510
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1511
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1512

1513 1514 1515 1516
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1517
    }
1518
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1519
    memory_region_ref(section->mr);
1520
    return map->sections_nb++;
1521 1522
}

1523 1524
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1525 1526
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1527 1528
    memory_region_unref(mr);

D
Don Slutz 已提交
1529
    if (have_sub_page) {
1530
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1531
        object_unref(OBJECT(&subpage->iomem));
1532 1533 1534 1535
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1536
static void phys_sections_free(PhysPageMap *map)
1537
{
1538 1539
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1540 1541
        phys_section_destroy(section->mr);
    }
1542 1543
    g_free(map->sections);
    g_free(map->nodes);
1544 1545
}

1546
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1547
{
1548
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1549
    subpage_t *subpage;
A
Avi Kivity 已提交
1550
    hwaddr base = section->offset_within_address_space
1551
        & TARGET_PAGE_MASK;
1552
    MemoryRegionSection *existing = phys_page_find(d, base);
1553 1554
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1555
        .size = int128_make64(TARGET_PAGE_SIZE),
1556
    };
A
Avi Kivity 已提交
1557
    hwaddr start, end;
1558

1559
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1560

1561
    if (!(existing->mr->subpage)) {
1562 1563
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1564
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1565
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1566
                      phys_section_add(&d->map, &subsection));
1567
    } else {
1568
        subpage = container_of(existing->mr, subpage_t, iomem);
1569 1570
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1571
    end = start + int128_get64(section->size) - 1;
1572 1573
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1574 1575 1576
}


1577
static void register_multipage(FlatView *fv,
1578
                               MemoryRegionSection *section)
1579
{
1580
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1581
    hwaddr start_addr = section->offset_within_address_space;
1582
    uint16_t section_index = phys_section_add(&d->map, section);
1583 1584
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1585

1586 1587
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1588 1589
}

1590 1591 1592 1593 1594 1595 1596
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1597
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1598
{
1599
    MemoryRegionSection remain = *section;
1600
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1601

1602 1603 1604 1605
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1606

1607
        MemoryRegionSection now = remain;
1608
        now.size = int128_min(int128_make64(left), now.size);
1609
        register_subpage(fv, &now);
1610 1611 1612
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1613 1614 1615
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1616 1617 1618 1619 1620 1621 1622 1623 1624
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1625
        }
1626 1627 1628
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1629
    }
1630 1631 1632

    /* register last subpage */
    register_subpage(fv, &remain);
1633 1634
}

1635 1636 1637 1638 1639 1640
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1671 1672 1673 1674 1675 1676 1677
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1678
static int find_min_backend_pagesize(Object *obj, void *opaque)
1679 1680 1681 1682
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1683 1684
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1685

1686
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1687
            *hpsize_min = hpsize;
1688 1689 1690 1691 1692 1693
        }
    }

    return 0;
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1715 1716 1717 1718
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;
1719
    MachineState *ms = MACHINE(qdev_get_machine());
1720

1721
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1735
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
1747 1748
        (ms->numa_state == NULL ||
         ms->numa_state->num_nodes == 0 ||
1749
         ms->numa_state->nodes[0].node_memdev == NULL)) {
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1772
#else
1773 1774 1775 1776 1777
long qemu_minrampagesize(void)
{
    return getpagesize();
}
long qemu_maxrampagesize(void)
1778 1779 1780 1781 1782
{
    return getpagesize();
}
#endif

1783
#ifdef CONFIG_POSIX
1784 1785
static int64_t get_file_size(int fd)
{
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
    int64_t size;
#if defined(__linux__)
    struct stat st;

    if (fstat(fd, &st) < 0) {
        return -errno;
    }

    /* Special handling for devdax character devices */
    if (S_ISCHR(st.st_mode)) {
        g_autofree char *subsystem_path = NULL;
        g_autofree char *subsystem = NULL;

        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
                                         major(st.st_rdev), minor(st.st_rdev));
        subsystem = g_file_read_link(subsystem_path, NULL);

        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
            g_autofree char *size_path = NULL;
            g_autofree char *size_str = NULL;

            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
                                    major(st.st_rdev), minor(st.st_rdev));

            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
                return g_ascii_strtoll(size_str, NULL, 0);
            }
        }
    }
#endif /* defined(__linux__) */

    /* st.st_size may be zero for special files yet lseek(2) works */
    size = lseek(fd, 0, SEEK_END);
1819 1820 1821 1822 1823 1824
    if (size < 0) {
        return -errno;
    }
    return size;
}

1825 1826 1827 1828
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1829 1830
{
    char *filename;
1831 1832
    char *sanitized_name;
    char *c;
1833
    int fd = -1;
1834

1835
    *created = false;
1836 1837 1838 1839 1840
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1841
        }
1842 1843 1844 1845
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1846
                *created = true;
1847 1848 1849 1850 1851
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1852
            sanitized_name = g_strdup(region_name);
1853 1854 1855 1856 1857
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1858

1859 1860 1861
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1862

1863 1864 1865 1866 1867 1868 1869
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1870
        }
1871 1872 1873 1874
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1875
            return -1;
1876 1877 1878 1879 1880
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1881
    }
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1892
    MachineState *ms = MACHINE(qdev_get_machine());
1893 1894
    void *area;

1895
    block->page_size = qemu_fd_getpagesize(fd);
1896 1897 1898 1899 1900
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1901 1902 1903 1904
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1905 1906
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1907 1908 1909 1910 1911
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1912

1913
    if (memory < block->page_size) {
1914
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1915 1916
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1917
        return NULL;
1918 1919
    }

1920
    memory = ROUND_UP(memory, block->page_size);
1921 1922 1923 1924 1925 1926

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1927 1928 1929 1930 1931 1932 1933 1934
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1935
     */
1936
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1937
        perror("ftruncate");
1938
    }
1939

1940
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1941
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1942
    if (area == MAP_FAILED) {
1943
        error_setg_errno(errp, errno,
1944
                         "unable to map backing store for guest RAM");
1945
        return NULL;
1946
    }
1947 1948

    if (mem_prealloc) {
1949
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1950
        if (errp && *errp) {
1951
            qemu_ram_munmap(fd, area, memory);
1952
            return NULL;
1953
        }
1954 1955
    }

A
Alex Williamson 已提交
1956
    block->fd = fd;
1957 1958 1959 1960
    return area;
}
#endif

1961 1962 1963 1964
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1965
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1966 1967
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1968
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1969

1970 1971
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1972
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1973
        return 0;
M
Mike Day 已提交
1974
    }
A
Alex Williamson 已提交
1975

P
Peter Xu 已提交
1976
    RAMBLOCK_FOREACH(block) {
1977
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1978

1979 1980 1981
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1982
        candidate = block->offset + block->max_length;
1983
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1984

1985 1986 1987
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1988
        RAMBLOCK_FOREACH(next_block) {
1989
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1990 1991 1992
                next = MIN(next, next_block->offset);
            }
        }
1993 1994 1995 1996 1997 1998 1999 2000

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
2001
        }
2002 2003

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
2004
    }
A
Alex Williamson 已提交
2005 2006 2007 2008 2009 2010 2011

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

2012 2013
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
2014 2015 2016
    return offset;
}

2017
static unsigned long last_ram_page(void)
2018 2019 2020 2021
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
2022
    rcu_read_lock();
P
Peter Xu 已提交
2023
    RAMBLOCK_FOREACH(block) {
2024
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
2025
    }
M
Mike Day 已提交
2026
    rcu_read_unlock();
2027
    return last >> TARGET_PAGE_BITS;
2028 2029
}

2030 2031 2032 2033 2034
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2035
    if (!machine_dump_guest_core(current_machine)) {
2036 2037 2038 2039 2040 2041 2042 2043 2044
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
2045 2046 2047 2048 2049
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2065 2066 2067 2068 2069
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2096
/* Called with iothread lock held.  */
G
Gonglei 已提交
2097
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2098
{
G
Gonglei 已提交
2099
    RAMBlock *block;
2100

2101 2102
    assert(new_block);
    assert(!new_block->idstr[0]);
2103

2104 2105
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2106 2107
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2108
            g_free(id);
2109 2110 2111 2112
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2113
    rcu_read_lock();
P
Peter Xu 已提交
2114
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2115 2116
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2117 2118 2119 2120 2121
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2122
    rcu_read_unlock();
2123 2124
}

2125
/* Called with iothread lock held.  */
G
Gonglei 已提交
2126
void qemu_ram_unset_idstr(RAMBlock *block)
2127
{
2128 2129 2130 2131
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2132 2133 2134 2135 2136
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2137 2138 2139 2140 2141
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2142 2143 2144 2145 2146 2147
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2148
    RAMBLOCK_FOREACH(block) {
2149 2150 2151 2152 2153 2154
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2155 2156
static int memory_try_enable_merging(void *addr, size_t len)
{
2157
    if (!machine_mem_merge(current_machine)) {
2158 2159 2160 2161 2162 2163 2164
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2165 2166 2167 2168 2169 2170 2171
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2172
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2173 2174 2175
{
    assert(block);

2176
    newsize = HOST_PAGE_ALIGN(newsize);
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2200 2201
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2202 2203 2204 2205 2206 2207 2208
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2250
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2251
{
2252
    RAMBlock *block;
M
Mike Day 已提交
2253
    RAMBlock *last_block = NULL;
2254
    ram_addr_t old_ram_size, new_ram_size;
2255
    Error *err = NULL;
2256

2257
    old_ram_size = last_ram_page();
2258

2259
    qemu_mutex_lock_ramlist();
2260
    new_block->offset = find_ram_offset(new_block->max_length);
2261 2262 2263

    if (!new_block->host) {
        if (xen_enabled()) {
2264
            xen_ram_alloc(new_block->offset, new_block->max_length,
2265 2266 2267 2268
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2269
                return;
2270
            }
2271
        } else {
2272
            new_block->host = phys_mem_alloc(new_block->max_length,
2273
                                             &new_block->mr->align, shared);
2274
            if (!new_block->host) {
2275 2276 2277 2278
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2279
                return;
2280
            }
2281
            memory_try_enable_merging(new_block->host, new_block->max_length);
2282
        }
2283
    }
P
pbrook 已提交
2284

L
Li Zhijian 已提交
2285 2286 2287
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2288
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2289
    }
M
Mike Day 已提交
2290 2291 2292 2293
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2294
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2295
        last_block = block;
2296
        if (block->max_length < new_block->max_length) {
2297 2298 2299 2300
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2301
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2302
    } else if (last_block) {
M
Mike Day 已提交
2303
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2304
    } else { /* list is empty */
M
Mike Day 已提交
2305
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2306
    }
2307
    ram_list.mru_block = NULL;
P
pbrook 已提交
2308

M
Mike Day 已提交
2309 2310
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2311
    ram_list.version++;
2312
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2313

2314
    cpu_physical_memory_set_dirty_range(new_block->offset,
2315 2316
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2317

2318 2319 2320
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2321
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2322
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2323
        ram_block_notify_add(new_block->host, new_block->max_length);
2324
    }
P
pbrook 已提交
2325
}
B
bellard 已提交
2326

2327
#ifdef CONFIG_POSIX
2328
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2329
                                 uint32_t ram_flags, int fd,
2330
                                 Error **errp)
2331 2332
{
    RAMBlock *new_block;
2333
    Error *local_err = NULL;
2334
    int64_t file_size;
2335

J
Junyan He 已提交
2336 2337 2338
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2339
    if (xen_enabled()) {
2340
        error_setg(errp, "-mem-path not supported with Xen");
2341
        return NULL;
2342 2343
    }

2344 2345 2346 2347 2348 2349
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2350 2351 2352 2353 2354 2355
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2356 2357
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2358
        return NULL;
2359 2360
    }

2361
    size = HOST_PAGE_ALIGN(size);
2362 2363 2364 2365 2366 2367 2368 2369
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2370 2371
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2372 2373
    new_block->used_length = size;
    new_block->max_length = size;
2374
    new_block->flags = ram_flags;
2375
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2376 2377
    if (!new_block->host) {
        g_free(new_block);
2378
        return NULL;
2379 2380
    }

2381
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2382 2383 2384
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2385
        return NULL;
2386
    }
2387
    return new_block;
2388 2389 2390 2391 2392

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2393
                                   uint32_t ram_flags, const char *mem_path,
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2405
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2406 2407 2408 2409 2410 2411 2412 2413 2414
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2415
}
2416
#endif
2417

2418
static
2419 2420 2421 2422
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2423
                                  void *host, bool resizeable, bool share,
2424
                                  MemoryRegion *mr, Error **errp)
2425 2426
{
    RAMBlock *new_block;
2427
    Error *local_err = NULL;
2428

2429 2430
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2431 2432
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2433
    new_block->resized = resized;
2434 2435
    new_block->used_length = size;
    new_block->max_length = max_size;
2436
    assert(max_size >= size);
2437
    new_block->fd = -1;
2438
    new_block->page_size = getpagesize();
2439 2440
    new_block->host = host;
    if (host) {
2441
        new_block->flags |= RAM_PREALLOC;
2442
    }
2443 2444 2445
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2446
    ram_block_add(new_block, &local_err, share);
2447 2448 2449
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2450
        return NULL;
2451
    }
2452
    return new_block;
2453 2454
}

2455
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2456 2457
                                   MemoryRegion *mr, Error **errp)
{
2458 2459
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2460 2461
}

2462 2463
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2464
{
2465 2466
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2467 2468
}

2469
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2470 2471 2472 2473 2474
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2475 2476
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2477 2478
}

P
Paolo Bonzini 已提交
2479 2480 2481 2482 2483 2484 2485 2486
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2487
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2488 2489 2490 2491 2492 2493 2494 2495
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2496
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2497
{
2498 2499 2500 2501
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2502 2503 2504 2505
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2506
    qemu_mutex_lock_ramlist();
2507 2508 2509 2510 2511 2512
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2513
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2514 2515
}

H
Huang Ying 已提交
2516 2517 2518 2519 2520 2521 2522 2523
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2524
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2525
        offset = addr - block->offset;
2526
        if (offset < block->max_length) {
2527
            vaddr = ramblock_ptr(block, offset);
2528
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2529
                ;
2530 2531
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2532 2533
            } else {
                flags = MAP_FIXED;
2534
                if (block->fd >= 0) {
2535 2536
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2537 2538
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2539
                } else {
2540 2541 2542 2543 2544 2545 2546
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2547 2548 2549 2550 2551
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2552 2553 2554
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2555 2556
                    exit(1);
                }
2557
                memory_try_enable_merging(vaddr, length);
2558
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2559 2560 2561 2562 2563 2564
            }
        }
    }
}
#endif /* !_WIN32 */

2565
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2566 2567 2568
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2569
 *
2570
 * Called within RCU critical section.
2571
 */
2572
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2573
{
2574 2575 2576 2577
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2578
        addr -= block->offset;
2579
    }
2580 2581

    if (xen_enabled() && block->host == NULL) {
2582 2583 2584 2585 2586
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2587
            return xen_map_cache(addr, 0, 0, false);
2588
        }
2589

2590
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2591
    }
2592
    return ramblock_ptr(block, addr);
2593 2594
}

2595
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2596
 * but takes a size argument.
M
Mike Day 已提交
2597
 *
2598
 * Called within RCU critical section.
2599
 */
2600
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2601
                                 hwaddr *size, bool lock)
2602
{
2603
    RAMBlock *block = ram_block;
2604 2605 2606
    if (*size == 0) {
        return NULL;
    }
2607

2608 2609
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2610
        addr -= block->offset;
2611
    }
2612
    *size = MIN(*size, block->max_length - addr);
2613 2614 2615 2616 2617 2618 2619

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2620
            return xen_map_cache(addr, *size, lock, lock);
2621 2622
        }

2623
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2624
    }
2625

2626
    return ramblock_ptr(block, addr);
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2649 2650 2651 2652 2653 2654 2655
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2656 2657
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2658
{
P
pbrook 已提交
2659 2660 2661
    RAMBlock *block;
    uint8_t *host = ptr;

2662
    if (xen_enabled()) {
2663
        ram_addr_t ram_addr;
M
Mike Day 已提交
2664
        rcu_read_lock();
2665 2666
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2667
        if (block) {
2668
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2669
        }
M
Mike Day 已提交
2670
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2671
        return block;
2672 2673
    }

M
Mike Day 已提交
2674 2675
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2676
    if (block && block->host && host - block->host < block->max_length) {
2677 2678 2679
        goto found;
    }

P
Peter Xu 已提交
2680
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2681 2682 2683 2684
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2685
        if (host - block->host < block->max_length) {
2686
            goto found;
A
Alex Williamson 已提交
2687
        }
P
pbrook 已提交
2688
    }
J
Jun Nakajima 已提交
2689

M
Mike Day 已提交
2690
    rcu_read_unlock();
2691
    return NULL;
2692 2693

found:
D
Dr. David Alan Gilbert 已提交
2694 2695 2696 2697
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2698
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2699 2700 2701
    return block;
}

D
Dr. David Alan Gilbert 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2713
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2714 2715 2716 2717 2718 2719 2720 2721
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2722 2723
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2724
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2725 2726
{
    RAMBlock *block;
2727
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2728

2729
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2730
    if (!block) {
2731
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2732 2733
    }

2734
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2735
}
A
Alex Williamson 已提交
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
E
Emilio G. Cota 已提交
2748
    ndi->pages = NULL;
2749

2750 2751
    trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);

2752
    assert(tcg_enabled());
2753
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
E
Emilio G. Cota 已提交
2754 2755
        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2756
    }
2757 2758 2759 2760 2761
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
E
Emilio G. Cota 已提交
2762
    if (ndi->pages) {
2763
        assert(tcg_enabled());
E
Emilio G. Cota 已提交
2764 2765
        page_collection_unlock(ndi->pages);
        ndi->pages = NULL;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2776
        trace_memory_notdirty_set_dirty(ndi->mem_vaddr);
2777 2778 2779 2780
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

P
pbrook 已提交
2781
/* Generate a debug exception if a watchpoint has been hit.  */
2782 2783
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
                          MemTxAttrs attrs, int flags, uintptr_t ra)
P
pbrook 已提交
2784
{
2785
    CPUClass *cc = CPU_GET_CLASS(cpu);
2786
    CPUWatchpoint *wp;
P
pbrook 已提交
2787

2788
    assert(tcg_enabled());
2789
    if (cpu->watchpoint_hit) {
2790 2791 2792 2793 2794 2795
        /*
         * We re-entered the check after replacing the TB.
         * Now raise the debug interrupt so that it will
         * trigger after the current instruction.
         */
        qemu_mutex_lock_iothread();
2796
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2797
        qemu_mutex_unlock_iothread();
2798 2799
        return;
    }
2800 2801

    addr = cc->adjust_watchpoint_address(cpu, addr, len);
2802
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2803
        if (watchpoint_address_matches(wp, addr, len)
2804
            && (wp->flags & flags)) {
2805 2806 2807 2808 2809
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
2810
            wp->hitaddr = MAX(addr, wp->vaddr);
2811
            wp->hitattrs = attrs;
2812
            if (!cpu->watchpoint_hit) {
2813 2814 2815 2816 2817
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2818
                cpu->watchpoint_hit = wp;
2819

E
Emilio G. Cota 已提交
2820
                mmap_lock();
2821
                tb_check_watchpoint(cpu);
2822
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2823
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2824
                    mmap_unlock();
2825
                    cpu_loop_exit_restore(cpu, ra);
2826
                } else {
2827 2828
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2829
                    mmap_unlock();
2830 2831 2832
                    if (ra) {
                        cpu_restore_state(cpu, ra, true);
                    }
2833
                    cpu_loop_exit_noexc(cpu);
2834
                }
2835
            }
2836 2837
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2838 2839 2840 2841
        }
    }
}

2842
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2843
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2844
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2845 2846
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2847
                                  bool is_write, MemTxAttrs attrs);
2848

2849 2850
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2851
{
2852
    subpage_t *subpage = opaque;
2853
    uint8_t buf[8];
2854
    MemTxResult res;
2855

2856
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2857
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2858
           subpage, len, addr);
2859
#endif
2860
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2861 2862
    if (res) {
        return res;
2863
    }
2864 2865
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2866 2867
}

2868 2869
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2870
{
2871
    subpage_t *subpage = opaque;
2872
    uint8_t buf[8];
2873

2874
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2875
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2876 2877
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2878
#endif
2879
    stn_p(buf, len, value);
2880
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2881 2882
}

2883
static bool subpage_accepts(void *opaque, hwaddr addr,
2884 2885
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2886
{
2887
    subpage_t *subpage = opaque;
2888
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2889
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2890
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2891 2892
#endif

2893
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2894
                                 len, is_write, attrs);
2895 2896
}

2897
static const MemoryRegionOps subpage_ops = {
2898 2899
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2900 2901 2902 2903
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2904
    .valid.accepts = subpage_accepts,
2905
    .endianness = DEVICE_NATIVE_ENDIAN,
2906 2907
};

2908 2909
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section)
2910 2911 2912 2913 2914 2915 2916 2917
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2918 2919
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2920 2921
#endif
    for (; idx <= eidx; idx++) {
2922
        mmio->sub_section[idx] = section;
2923 2924 2925 2926 2927
    }

    return 0;
}

2928
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2929
{
A
Anthony Liguori 已提交
2930
    subpage_t *mmio;
2931

2932
    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2933
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2934
    mmio->fv = fv;
2935
    mmio->base = base;
2936
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2937
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2938
    mmio->iomem.subpage = true;
2939
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2940 2941
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2942 2943 2944 2945 2946
#endif

    return mmio;
}

2947
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2948
{
2949
    assert(fv);
2950
    MemoryRegionSection section = {
2951
        .fv = fv,
2952 2953 2954
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2955
        .size = int128_2_64(),
2956 2957
    };

2958
    return phys_section_add(map, &section);
2959 2960
}

2961 2962
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2963
{
2964 2965
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2966
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2967
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2968

2969
    return &sections[index & ~TARGET_PAGE_MASK];
2970 2971
}

A
Avi Kivity 已提交
2972 2973
static void io_mem_init(void)
{
2974
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2975
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2976 2977
}

2978
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2979
{
2980 2981 2982
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2983
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2984
    assert(n == PHYS_SECTION_UNASSIGNED);
2985

M
Michael S. Tsirkin 已提交
2986
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2987 2988

    return d;
2989 2990
}

2991
void address_space_dispatch_free(AddressSpaceDispatch *d)
2992 2993 2994 2995 2996
{
    phys_sections_free(&d->map);
    g_free(d);
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
static void do_nothing(CPUState *cpu, run_on_cpu_data d)
{
}

static void tcg_log_global_after_sync(MemoryListener *listener)
{
    CPUAddressSpace *cpuas;

    /* Wait for the CPU to end the current TB.  This avoids the following
     * incorrect race:
     *
     *      vCPU                         migration
     *      ----------------------       -------------------------
     *      TLB check -> slow path
     *        notdirty_mem_write
     *          write to RAM
     *          mark dirty
     *                                   clear dirty flag
     *      TLB check -> fast path
     *                                   read memory
     *        write to RAM
     *
     * by pushing the migration thread's memory read after the vCPU thread has
     * written the memory.
     */
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
}

3026
static void tcg_commit(MemoryListener *listener)
3027
{
3028 3029
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3030

3031
    assert(tcg_enabled());
3032 3033
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3034 3035 3036 3037 3038 3039
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3040
    d = address_space_to_dispatch(cpuas->as);
3041
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3042
    tlb_flush(cpuas->cpu);
3043 3044
}

A
Avi Kivity 已提交
3045 3046
static void memory_map_init(void)
{
3047
    system_memory = g_malloc(sizeof(*system_memory));
3048

3049
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3050
    address_space_init(&address_space_memory, system_memory, "memory");
3051

3052
    system_io = g_malloc(sizeof(*system_io));
3053 3054
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3055
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3056 3057 3058 3059 3060 3061 3062
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3063 3064 3065 3066 3067
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3068 3069
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3070 3071
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3072
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3073
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3074
{
3075 3076
    int flags;
    target_ulong l, page;
3077
    void * p;
B
bellard 已提交
3078 3079 3080 3081 3082 3083 3084 3085

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3086
            return -1;
B
bellard 已提交
3087 3088
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3089
                return -1;
3090
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3091
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3092
                return -1;
A
aurel32 已提交
3093 3094
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3095 3096
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3097
                return -1;
3098
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3099
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3100
                return -1;
A
aurel32 已提交
3101
            memcpy(buf, p, l);
A
aurel32 已提交
3102
            unlock_user(p, addr, 0);
B
bellard 已提交
3103 3104 3105 3106 3107
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3108
    return 0;
B
bellard 已提交
3109
}
B
bellard 已提交
3110

B
bellard 已提交
3111
#else
3112

3113
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3114
                                     hwaddr length)
3115
{
3116
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3117 3118
    addr += memory_region_get_ram_addr(mr);

3119 3120 3121 3122 3123 3124 3125 3126 3127
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3128
        assert(tcg_enabled());
3129 3130
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3131
    }
3132
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3133 3134
}

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3148
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3149
{
3150
    unsigned access_size_max = mr->ops->valid.max_access_size;
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3164
    }
3165 3166 3167 3168

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3169
    }
3170
    l = pow2floor(l);
3171 3172

    return l;
3173 3174
}

3175
static bool prepare_mmio_access(MemoryRegion *mr)
3176
{
3177 3178 3179 3180 3181 3182 3183 3184
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3185
    if (mr->flush_coalesced_mmio) {
3186 3187 3188
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3189
        qemu_flush_coalesced_mmio_buffer();
3190 3191 3192
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3193
    }
3194 3195

    return release_lock;
3196 3197
}

3198
/* Called within RCU critical section.  */
3199 3200 3201
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3202
                                           hwaddr len, hwaddr addr1,
3203
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3204 3205
{
    uint8_t *ptr;
3206
    uint64_t val;
3207
    MemTxResult result = MEMTX_OK;
3208
    bool release_lock = false;
3209

3210
    for (;;) {
3211 3212 3213 3214 3215
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3216
            val = ldn_he_p(buf, l);
3217
            result |= memory_region_dispatch_write(mr, addr1, val,
3218
                                                   size_memop(l), attrs);
B
bellard 已提交
3219
        } else {
3220
            /* RAM case */
3221
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3222 3223
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3224
        }
3225 3226 3227 3228 3229 3230

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3231 3232 3233
        len -= l;
        buf += l;
        addr += l;
3234 3235 3236 3237 3238 3239

        if (!len) {
            break;
        }

        l = len;
3240
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3241
    }
3242

3243
    return result;
B
bellard 已提交
3244
}
B
bellard 已提交
3245

3246
/* Called from RCU critical section.  */
3247
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3248
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3249
{
3250 3251 3252 3253 3254
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3255
    l = len;
3256
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3257 3258
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3259 3260 3261 3262 3263

    return result;
}

/* Called within RCU critical section.  */
3264 3265
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3266
                                   hwaddr len, hwaddr addr1, hwaddr l,
3267
                                   MemoryRegion *mr)
3268 3269 3270 3271 3272
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3273

3274
    for (;;) {
3275 3276 3277 3278
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3279
            result |= memory_region_dispatch_read(mr, addr1, &val,
3280 3281
                                                  size_memop(l), attrs);
            stn_he_p(buf, l, val);
3282 3283
        } else {
            /* RAM case */
3284
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3296 3297 3298 3299 3300 3301

        if (!len) {
            break;
        }

        l = len;
3302
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3303 3304 3305 3306 3307
    }

    return result;
}

3308 3309
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3310
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3311 3312 3313 3314
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3315

3316
    l = len;
3317
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3318 3319
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3320 3321
}

3322
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3323
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3338 3339
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3340
                                const uint8_t *buf, hwaddr len)
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3355
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3356
                             uint8_t *buf, hwaddr len, bool is_write)
3357 3358 3359 3360 3361 3362 3363 3364
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3365
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3366
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3367
{
3368 3369
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3370 3371
}

3372 3373 3374 3375 3376
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3377 3378 3379 3380
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3381
                                                           hwaddr len,
3382
                                                           enum write_rom_type type)
B
bellard 已提交
3383
{
3384
    hwaddr l;
B
bellard 已提交
3385
    uint8_t *ptr;
3386
    hwaddr addr1;
3387
    MemoryRegion *mr;
3388

3389
    rcu_read_lock();
B
bellard 已提交
3390
    while (len > 0) {
3391
        l = len;
3392
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3393

3394 3395
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3396
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3397 3398
        } else {
            /* ROM/RAM case */
3399
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3400 3401 3402
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3403
                invalidate_and_set_dirty(mr, addr1, l);
3404 3405 3406 3407 3408
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3409 3410 3411 3412 3413
        }
        len -= l;
        buf += l;
        addr += l;
    }
3414
    rcu_read_unlock();
3415
    return MEMTX_OK;
B
bellard 已提交
3416 3417
}

3418
/* used for ROM loading : can write in RAM and ROM */
3419 3420
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3421
                                    const uint8_t *buf, hwaddr len)
3422
{
3423 3424
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3425 3426
}

3427
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3439 3440 3441
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3442 3443
}

3444
typedef struct {
3445
    MemoryRegion *mr;
3446
    void *buffer;
A
Avi Kivity 已提交
3447 3448
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3449
    bool in_use;
3450 3451 3452 3453
} BounceBuffer;

static BounceBuffer bounce;

3454
typedef struct MapClient {
3455
    QEMUBH *bh;
B
Blue Swirl 已提交
3456
    QLIST_ENTRY(MapClient) link;
3457 3458
} MapClient;

3459
QemuMutex map_client_list_lock;
3460
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3461
    = QLIST_HEAD_INITIALIZER(map_client_list);
3462

3463 3464 3465 3466 3467 3468
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3469 3470 3471 3472 3473 3474
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3475 3476
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3477 3478 3479
    }
}

3480
void cpu_register_map_client(QEMUBH *bh)
3481
{
3482
    MapClient *client = g_malloc(sizeof(*client));
3483

3484
    qemu_mutex_lock(&map_client_list_lock);
3485
    client->bh = bh;
B
Blue Swirl 已提交
3486
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3487 3488 3489
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3490
    qemu_mutex_unlock(&map_client_list_lock);
3491 3492
}

3493
void cpu_exec_init_all(void)
3494
{
3495
    qemu_mutex_init(&ram_list.mutex);
3496 3497 3498 3499 3500 3501 3502 3503
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3504
    io_mem_init();
3505
    memory_map_init();
3506
    qemu_mutex_init(&map_client_list_lock);
3507 3508
}

3509
void cpu_unregister_map_client(QEMUBH *bh)
3510 3511 3512
{
    MapClient *client;

3513 3514 3515 3516 3517 3518
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3519
    }
3520
    qemu_mutex_unlock(&map_client_list_lock);
3521 3522 3523 3524
}

static void cpu_notify_map_clients(void)
{
3525
    qemu_mutex_lock(&map_client_list_lock);
3526
    cpu_notify_map_clients_locked();
3527
    qemu_mutex_unlock(&map_client_list_lock);
3528 3529
}

3530
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3531
                                  bool is_write, MemTxAttrs attrs)
3532
{
3533
    MemoryRegion *mr;
3534 3535 3536 3537
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3538
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3539 3540
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3541
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3552
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3553
                                hwaddr len, bool is_write,
3554
                                MemTxAttrs attrs)
3555
{
3556 3557 3558 3559 3560
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3561
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3562 3563
    rcu_read_unlock();
    return result;
3564 3565
}

3566
static hwaddr
3567
flatview_extend_translation(FlatView *fv, hwaddr addr,
3568 3569 3570
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3585
        this_mr = flatview_translate(fv, addr, &xlat,
3586
                                     &len, is_write, attrs);
3587 3588 3589 3590 3591 3592
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3593 3594 3595 3596
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3597 3598
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3599
 */
A
Avi Kivity 已提交
3600
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3601 3602
                        hwaddr addr,
                        hwaddr *plen,
3603 3604
                        bool is_write,
                        MemTxAttrs attrs)
3605
{
A
Avi Kivity 已提交
3606
    hwaddr len = *plen;
3607 3608
    hwaddr l, xlat;
    MemoryRegion *mr;
3609
    void *ptr;
3610
    FlatView *fv;
3611

3612 3613 3614
    if (len == 0) {
        return NULL;
    }
3615

3616
    l = len;
3617
    rcu_read_lock();
3618
    fv = address_space_to_flatview(as);
3619
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3620

3621
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3622
        if (atomic_xchg(&bounce.in_use, true)) {
3623
            rcu_read_unlock();
3624
            return NULL;
3625
        }
3626 3627 3628
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3629 3630
        bounce.addr = addr;
        bounce.len = l;
3631 3632 3633

        memory_region_ref(mr);
        bounce.mr = mr;
3634
        if (!is_write) {
3635
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3636
                               bounce.buffer, l);
3637
        }
3638

3639
        rcu_read_unlock();
3640 3641 3642 3643 3644
        *plen = l;
        return bounce.buffer;
    }


3645
    memory_region_ref(mr);
3646
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3647
                                        l, is_write, attrs);
3648
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3649 3650 3651
    rcu_read_unlock();

    return ptr;
3652 3653
}

A
Avi Kivity 已提交
3654
/* Unmaps a memory region previously mapped by address_space_map().
3655 3656 3657
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3658 3659
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3660 3661
{
    if (buffer != bounce.buffer) {
3662 3663 3664
        MemoryRegion *mr;
        ram_addr_t addr1;

3665
        mr = memory_region_from_host(buffer, &addr1);
3666
        assert(mr != NULL);
3667
        if (is_write) {
3668
            invalidate_and_set_dirty(mr, addr1, access_len);
3669
        }
3670
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3671
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3672
        }
3673
        memory_region_unref(mr);
3674 3675 3676
        return;
    }
    if (is_write) {
3677 3678
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3679
    }
3680
    qemu_vfree(bounce.buffer);
3681
    bounce.buffer = NULL;
3682
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3683
    atomic_mb_set(&bounce.in_use, false);
3684
    cpu_notify_map_clients();
3685
}
B
bellard 已提交
3686

A
Avi Kivity 已提交
3687 3688
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3689 3690
                              int is_write)
{
3691 3692
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3693 3694
}

A
Avi Kivity 已提交
3695 3696
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3697 3698 3699 3700
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3701 3702 3703 3704 3705 3706 3707
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3708

P
Paolo Bonzini 已提交
3709 3710 3711 3712 3713 3714
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3729 3730 3731 3732
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3733
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3734 3735
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3736 3737 3738 3739 3740 3741 3742 3743
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3744 3745 3746 3747 3748 3749
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3750 3751 3752 3753
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3754 3755 3756 3757
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3778
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3797
                                            &target_as, attrs);
3798 3799 3800 3801 3802 3803 3804 3805
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3806
                                   void *buf, hwaddr len)
3807 3808 3809 3810 3811
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3812 3813
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3824
                                    const void *buf, hwaddr len)
3825 3826 3827 3828 3829
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3830 3831
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3832 3833 3834
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3835 3836 3837 3838
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3839 3840 3841 3842
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3843 3844
#include "memory_ldst.inc.c"

3845
/* virtual memory access for debug (includes writing to ROM) */
3846
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3847
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3848
{
A
Avi Kivity 已提交
3849
    hwaddr phys_addr;
3850
    target_ulong l, page;
B
bellard 已提交
3851

3852
    cpu_synchronize_state(cpu);
B
bellard 已提交
3853
    while (len > 0) {
3854 3855 3856
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3857
        page = addr & TARGET_PAGE_MASK;
3858 3859
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3860 3861 3862 3863 3864 3865
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3866
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3867
        if (is_write) {
3868
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3869
                                    attrs, buf, l);
3870
        } else {
3871
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3872
                             attrs, buf, l, 0);
3873
        }
B
bellard 已提交
3874 3875 3876 3877 3878 3879
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3880 3881 3882 3883 3884

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3885
size_t qemu_target_page_size(void)
3886
{
3887
    return TARGET_PAGE_SIZE;
3888 3889
}

3890 3891 3892 3893 3894 3895 3896 3897 3898
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3899
#endif
B
bellard 已提交
3900

3901
bool target_words_bigendian(void)
3902 3903 3904 3905 3906 3907 3908 3909
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3910
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3911
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3912
{
3913
    MemoryRegion*mr;
3914
    hwaddr l = 1;
3915
    bool res;
3916

3917
    rcu_read_lock();
3918
    mr = address_space_translate(&address_space_memory,
3919 3920
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3921

3922 3923 3924
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3925
}
3926

3927
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3928 3929
{
    RAMBlock *block;
3930
    int ret = 0;
3931

M
Mike Day 已提交
3932
    rcu_read_lock();
P
Peter Xu 已提交
3933
    RAMBLOCK_FOREACH(block) {
3934
        ret = func(block, opaque);
3935 3936 3937
        if (ret) {
            break;
        }
3938
    }
M
Mike Day 已提交
3939
    rcu_read_unlock();
3940
    return ret;
3941
}
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3964
        bool need_madvise, need_fallocate;
3965 3966 3967 3968 3969 3970 3971 3972 3973
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
3984 3985 3986 3987
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4001 4002
#endif
        }
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4021 4022
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4023 4024
            goto err;
#endif
4025
        }
4026 4027
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
4038 4039 4040 4041 4042
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

4043
#endif
Y
Yang Zhong 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4057 4058 4059

#if !defined(CONFIG_USER_ONLY)

4060
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4061 4062
{
    if (start == end - 1) {
4063
        qemu_printf("\t%3d      ", start);
4064
    } else {
4065
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4066
    }
4067
    qemu_printf(" skip=%d ", skip);
4068
    if (ptr == PHYS_MAP_NODE_NIL) {
4069
        qemu_printf(" ptr=NIL");
4070
    } else if (!skip) {
4071
        qemu_printf(" ptr=#%d", ptr);
4072
    } else {
4073
        qemu_printf(" ptr=[%d]", ptr);
4074
    }
4075
    qemu_printf("\n");
4076 4077 4078 4079 4080
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4081
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4082 4083 4084
{
    int i;

4085 4086
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4087 4088 4089 4090 4091 4092

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4093 4094
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4105
            qemu_printf(" alias=%s", s->mr->alias->name ?
4106 4107
                    s->mr->alias->name : "noname");
        }
4108
        qemu_printf("\n");
4109 4110
    }

4111
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4112 4113 4114 4115 4116 4117
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4118
        qemu_printf("      [%d]\n", i);
4119 4120 4121 4122 4123 4124 4125 4126

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4127
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4128 4129 4130 4131 4132 4133

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4134
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4135 4136 4137 4138 4139
        }
    }
}

#endif