exec.c 125.4 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45
#include "exec/memory.h"
P
Paolo Bonzini 已提交
46
#include "exec/ioport.h"
47
#include "sysemu/dma.h"
48
#include "sysemu/hostmem.h"
49
#include "sysemu/hw_accel.h"
50
#include "exec/address-spaces.h"
51
#include "sysemu/xen-mapcache.h"
52
#include "trace-root.h"
53

54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
MemoryRegion io_mem_rom, io_mem_notdirty;
92
static MemoryRegion io_mem_unassigned;
93
#endif
94

95 96 97 98 99
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

100 101
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
102 103
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
104
__thread CPUState *current_cpu;
P
pbrook 已提交
105
/* 0 = Do not count executed instructions.
T
ths 已提交
106
   1 = Precise instruction counting.
P
pbrook 已提交
107
   2 = Adaptive rate instruction counting.  */
108
int use_icount;
B
bellard 已提交
109

Y
Yang Zhong 已提交
110 111 112
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

132
#if !defined(CONFIG_USER_ONLY)
133

134 135 136 137 138 139 140 141 142 143
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

144 145 146
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
147
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
149
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150
    uint32_t ptr : 26;
151 152
};

153 154
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

155
/* Size of the L2 (and L3, etc) page tables.  */
156
#define ADDR_SPACE_BITS 64
157

M
Michael S. Tsirkin 已提交
158
#define P_L2_BITS 9
159 160 161 162 163
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
164

165
typedef struct PhysPageMap {
166 167
    struct rcu_head rcu;

168 169 170 171 172 173 174 175
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

176
struct AddressSpaceDispatch {
177
    MemoryRegionSection *mru_section;
178 179 180 181
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
182
    PhysPageMap map;
183 184
};

185 186 187
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
188
    FlatView *fv;
189
    hwaddr base;
190
    uint16_t sub_section[];
191 192
} subpage_t;

193 194 195 196
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
197

198
static void io_mem_init(void);
A
Avi Kivity 已提交
199
static void memory_map_init(void);
200
static void tcg_log_global_after_sync(MemoryListener *listener);
201
static void tcg_commit(MemoryListener *listener);
202

203
static MemoryRegion io_mem_watch;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

219 220 221 222 223 224
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

225
#endif
B
bellard 已提交
226

227
#if !defined(CONFIG_USER_ONLY)
228

229
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230
{
231
    static unsigned alloc_hint = 16;
232
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 235
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236
        alloc_hint = map->nodes_nb_alloc;
237
    }
238 239
}

240
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 242
{
    unsigned i;
243
    uint32_t ret;
244 245
    PhysPageEntry e;
    PhysPageEntry *p;
246

247
    ret = map->nodes_nb++;
248
    p = map->nodes[ret];
249
    assert(ret != PHYS_MAP_NODE_NIL);
250
    assert(ret != map->nodes_nb_alloc);
251 252 253

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254
    for (i = 0; i < P_L2_SIZE; ++i) {
255
        memcpy(&p[i], &e, sizeof(e));
256
    }
257
    return ret;
258 259
}

260 261
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
262
                                int level)
263 264
{
    PhysPageEntry *p;
265
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266

M
Michael S. Tsirkin 已提交
267
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
269
    }
270
    p = map->nodes[lp->ptr];
271
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272

273
    while (*nb && lp < &p[P_L2_SIZE]) {
274
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
275
            lp->skip = 0;
276
            lp->ptr = leaf;
277 278
            *index += step;
            *nb -= step;
279
        } else {
280
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 282
        }
        ++lp;
283 284 285
    }
}

A
Avi Kivity 已提交
286
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
287
                          hwaddr index, hwaddr nb,
288
                          uint16_t leaf)
289
{
290
    /* Wildly overreserve - it doesn't matter much. */
291
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292

293
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
294 295
}

296 297 298
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
299
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
319
            phys_page_compact(&p[i], nodes);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

349
void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 351
{
    if (d->phys_map.skip) {
352
        phys_page_compact(&d->phys_map, d->map.nodes);
353 354 355
    }
}

F
Fam Zheng 已提交
356 357 358 359 360 361
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
362
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
363
           range_covers_byte(section->offset_within_address_space,
364
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
365 366
}

367
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
368
{
369 370 371
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
372
    hwaddr index = addr >> TARGET_PAGE_BITS;
373
    int i;
374

M
Michael S. Tsirkin 已提交
375
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
377
            return &sections[PHYS_SECTION_UNASSIGNED];
378
        }
379
        p = nodes[lp.ptr];
380
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
381
    }
382

F
Fam Zheng 已提交
383
    if (section_covers_addr(&sections[lp.ptr], addr)) {
384 385 386 387
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
388 389
}

390
/* Called from RCU critical section */
391
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 393
                                                        hwaddr addr,
                                                        bool resolve_subpage)
394
{
395
    MemoryRegionSection *section = atomic_read(&d->mru_section);
396 397
    subpage_t *subpage;

398 399
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
400
        section = phys_page_find(d, addr);
401
        atomic_set(&d->mru_section, section);
402
    }
403 404
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
405
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 407
    }
    return section;
408 409
}

410
/* Called from RCU critical section */
411
static MemoryRegionSection *
412
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413
                                 hwaddr *plen, bool resolve_subpage)
414 415
{
    MemoryRegionSection *section;
416
    MemoryRegion *mr;
417
    Int128 diff;
418

419
    section = address_space_lookup_region(d, addr, resolve_subpage);
420 421 422 423 424 425
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

426
    mr = section->mr;
427 428 429 430 431 432 433 434 435 436 437 438

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
439
    if (memory_region_is_ram(mr)) {
440
        diff = int128_sub(section->size, int128_make64(addr));
441 442
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
443 444
    return section;
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
463
 * @attrs: transaction attributes
464 465 466 467 468 469 470 471 472 473
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
474 475
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
476 477 478 479 480 481 482
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 484 485 486 487 488 489 490 491
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
534
 * @target_as: the address space targeted by the IOMMU
535
 * @attrs: memory transaction attributes
536 537 538
 *
 * This function is called from RCU critical section
 */
539 540 541
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
542 543
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
544 545
                                                 bool is_write,
                                                 bool is_mmio,
546 547
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
548 549
{
    MemoryRegionSection *section;
550
    IOMMUMemoryRegion *iommu_mr;
551 552
    hwaddr plen = (hwaddr)(-1);

553 554
    if (!plen_out) {
        plen_out = &plen;
555
    }
556

557 558 559
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
560

561 562 563 564 565
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
566
                                             target_as, attrs);
567
    }
568
    if (page_mask_out) {
569 570
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
571 572
    }

573
    return *section;
574 575 576
}

/* Called from RCU critical section */
577
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578
                                            bool is_write, MemTxAttrs attrs)
579
{
580
    MemoryRegionSection section;
581
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
582

583 584 585 586 587
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 589
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
590

591 592 593 594
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
595

596 597 598 599 600
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
601
        .target_as = as,
602 603 604
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
605 606 607 608 609 610 611 612 613
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
614
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 616
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
617 618 619
{
    MemoryRegion *mr;
    MemoryRegionSection section;
620
    AddressSpace *as = NULL;
621 622

    /* This can be MMIO, so setup MMIO bit. */
623
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624
                                    is_write, true, &as, attrs);
625 626
    mr = section.mr;

627
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629
        *plen = MIN(page, *plen);
630 631
    }

A
Avi Kivity 已提交
632
    return mr;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
    int i;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 674 675 676 677 678 679
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 681
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715
        g_free(notifier);
716 717 718 719
    }
    g_array_free(cpu->iommu_notifiers, true);
}

720
/* Called from RCU critical section */
721
MemoryRegionSection *
722
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 724
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
725
{
A
Avi Kivity 已提交
726
    MemoryRegionSection *section;
727 728 729 730
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
731
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
768

769
    assert(!memory_region_is_iommu(section->mr));
770
    *xlat = addr;
A
Avi Kivity 已提交
771
    return section;
772 773 774

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775
}
776
#endif
B
bellard 已提交
777

778
#if !defined(CONFIG_USER_ONLY)
779 780

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
781
{
782
    CPUState *cpu = opaque;
B
bellard 已提交
783

784 785
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
786
    cpu->interrupt_request &= ~0x01;
787
    tlb_flush(cpu);
788

789 790 791 792 793 794 795
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

796
    return 0;
B
bellard 已提交
797
}
B
bellard 已提交
798

799 800 801 802
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

803
    cpu->exception_index = -1;
804 805 806 807 808 809 810 811

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

812
    return tcg_enabled() && cpu->exception_index != -1;
813 814 815 816 817 818
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
819
    .needed = cpu_common_exception_index_needed,
820 821 822 823 824 825
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

844
const VMStateDescription vmstate_cpu_common = {
845 846 847
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
848
    .pre_load = cpu_common_pre_load,
849
    .post_load = cpu_common_post_load,
850
    .fields = (VMStateField[]) {
851 852
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
853
        VMSTATE_END_OF_LIST()
854
    },
855 856
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
857
        &vmstate_cpu_common_crash_occurred,
858
        NULL
859 860
    }
};
861

862
#endif
B
bellard 已提交
863

864
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
865
{
A
Andreas Färber 已提交
866
    CPUState *cpu;
B
bellard 已提交
867

A
Andreas Färber 已提交
868
    CPU_FOREACH(cpu) {
869
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
870
            return cpu;
871
        }
B
bellard 已提交
872
    }
873

A
Andreas Färber 已提交
874
    return NULL;
B
bellard 已提交
875 876
}

877
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
878 879
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
880
{
881
    CPUAddressSpace *newas;
P
Peter Xu 已提交
882
    AddressSpace *as = g_new0(AddressSpace, 1);
883
    char *as_name;
P
Peter Xu 已提交
884 885

    assert(mr);
886 887 888
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
889 890 891 892

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

893 894 895 896 897
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

898 899
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
900

901 902
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903
    }
904

905 906 907
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
908
    if (tcg_enabled()) {
909
        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 911
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
912
    }
913
}
914 915 916 917 918 919

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
920 921
#endif

922
void cpu_exec_unrealizefn(CPUState *cpu)
923
{
924 925
    CPUClass *cc = CPU_GET_CLASS(cpu);

926
    cpu_list_remove(cpu);
927 928 929 930 931 932 933

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
934 935 936
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
937 938
}

F
Fam Zheng 已提交
939 940 941
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
942
     * so users can wire up its memory. (This can't go in hw/core/cpu.c
F
Fam Zheng 已提交
943 944 945 946 947 948 949 950 951 952
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
953
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
954
{
955
    cpu->as = NULL;
956
    cpu->num_ases = 0;
957

958 959
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
960 961
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
962
#endif
L
Laurent Vivier 已提交
963 964
}

965
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
966
{
967
    CPUClass *cc = CPU_GET_CLASS(cpu);
968
    static bool tcg_target_initialized;
969

970
    cpu_list_add(cpu);
971

972 973
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
974 975
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
976
    tlb_init(cpu);
977

978
#ifndef CONFIG_USER_ONLY
979
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981
    }
982
    if (cc->vmsd != NULL) {
983
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984
    }
985

986
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987
#endif
B
bellard 已提交
988 989
}

990
const char *parse_cpu_option(const char *cpu_option)
991 992 993 994 995 996
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

997
    model_pieces = g_strsplit(cpu_option, ",", 2);
998 999 1000 1001
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1017
#if defined(CONFIG_USER_ONLY)
1018
void tb_invalidate_phys_addr(target_ulong addr)
1019
{
1020
    mmap_lock();
1021
    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1022 1023
    mmap_unlock();
}
1024 1025 1026 1027 1028

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1029
#else
1030 1031 1032 1033 1034 1035
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1036 1037 1038 1039
    if (!tcg_enabled()) {
        return;
    }

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    rcu_read_lock();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        rcu_read_unlock();
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
    rcu_read_unlock();
}

1052 1053 1054 1055 1056 1057 1058 1059
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061
    }
1062
}
1063
#endif
B
bellard 已提交
1064

1065
#if defined(CONFIG_USER_ONLY)
1066
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1067 1068 1069 1070

{
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

1081
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1082 1083 1084 1085 1086
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
1087
/* Add a watchpoint.  */
1088
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1089
                          int flags, CPUWatchpoint **watchpoint)
1090
{
1091
    CPUWatchpoint *wp;
1092

1093
    /* forbid ranges which are empty or run off the end of the address space */
1094
    if (len == 0 || (addr + len - 1) < addr) {
1095 1096
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1097 1098
        return -EINVAL;
    }
1099
    wp = g_malloc(sizeof(*wp));
1100 1101

    wp->vaddr = addr;
1102
    wp->len = len;
1103 1104
    wp->flags = flags;

1105
    /* keep all GDB-injected watchpoints in front */
1106 1107 1108 1109 1110
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1111

1112
    tlb_flush_page(cpu, addr);
1113 1114 1115 1116

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1117 1118
}

1119
/* Remove a specific watchpoint.  */
1120
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1121
                          int flags)
1122
{
1123
    CPUWatchpoint *wp;
1124

1125
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1126
        if (addr == wp->vaddr && len == wp->len
1127
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1128
            cpu_watchpoint_remove_by_ref(cpu, wp);
1129 1130 1131
            return 0;
        }
    }
1132
    return -ENOENT;
1133 1134
}

1135
/* Remove a specific watchpoint by reference.  */
1136
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1137
{
1138
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1139

1140
    tlb_flush_page(cpu, watchpoint->vaddr);
1141

1142
    g_free(watchpoint);
1143 1144 1145
}

/* Remove all matching watchpoints.  */
1146
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1147
{
1148
    CPUWatchpoint *wp, *next;
1149

1150
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1151 1152 1153
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1154
    }
1155
}
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1177
#endif
1178

1179
/* Add a breakpoint.  */
1180
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1181
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1182
{
1183
    CPUBreakpoint *bp;
1184

1185
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1186

1187 1188 1189
    bp->pc = pc;
    bp->flags = flags;

1190
    /* keep all GDB-injected breakpoints in front */
1191
    if (flags & BP_GDB) {
1192
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1193
    } else {
1194
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1195
    }
1196

1197
    breakpoint_invalidate(cpu, pc);
1198

1199
    if (breakpoint) {
1200
        *breakpoint = bp;
1201
    }
B
bellard 已提交
1202 1203 1204
    return 0;
}

1205
/* Remove a specific breakpoint.  */
1206
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1207 1208 1209
{
    CPUBreakpoint *bp;

1210
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1211
        if (bp->pc == pc && bp->flags == flags) {
1212
            cpu_breakpoint_remove_by_ref(cpu, bp);
1213 1214
            return 0;
        }
1215
    }
1216
    return -ENOENT;
1217 1218
}

1219
/* Remove a specific breakpoint by reference.  */
1220
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1221
{
1222 1223 1224
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1225

1226
    g_free(breakpoint);
1227 1228 1229
}

/* Remove all matching breakpoints. */
1230
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1231
{
1232
    CPUBreakpoint *bp, *next;
1233

1234
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1235 1236 1237
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1238
    }
B
bellard 已提交
1239 1240
}

B
bellard 已提交
1241 1242
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1243
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1244
{
1245 1246 1247
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1248
            kvm_update_guest_debug(cpu, 0);
1249
        } else {
S
Stuart Brady 已提交
1250
            /* must flush all the translated code to avoid inconsistencies */
1251
            /* XXX: only flush what is necessary */
1252
            tb_flush(cpu);
1253
        }
B
bellard 已提交
1254 1255 1256
    }
}

1257
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1258 1259
{
    va_list ap;
P
pbrook 已提交
1260
    va_list ap2;
B
bellard 已提交
1261 1262

    va_start(ap, fmt);
P
pbrook 已提交
1263
    va_copy(ap2, ap);
B
bellard 已提交
1264 1265 1266
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1267
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1268
    if (qemu_log_separate()) {
1269
        qemu_log_lock();
1270 1271 1272
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1273
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1274
        qemu_log_flush();
1275
        qemu_log_unlock();
1276
        qemu_log_close();
1277
    }
P
pbrook 已提交
1278
    va_end(ap2);
1279
    va_end(ap);
1280
    replay_finish();
1281 1282 1283 1284 1285
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1286
        act.sa_flags = 0;
1287 1288 1289
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1290 1291 1292
    abort();
}

1293
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1294
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1295 1296 1297 1298
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1299
    block = atomic_rcu_read(&ram_list.mru_block);
1300
    if (block && addr - block->offset < block->max_length) {
1301
        return block;
P
Paolo Bonzini 已提交
1302
    }
P
Peter Xu 已提交
1303
    RAMBLOCK_FOREACH(block) {
1304
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1305 1306 1307 1308 1309 1310 1311 1312
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1329 1330 1331 1332
    ram_list.mru_block = block;
    return block;
}

1333
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1334
{
1335
    CPUState *cpu;
P
Paolo Bonzini 已提交
1336
    ram_addr_t start1;
1337 1338 1339
    RAMBlock *block;
    ram_addr_t end;

1340
    assert(tcg_enabled());
1341 1342
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1343

M
Mike Day 已提交
1344
    rcu_read_lock();
P
Paolo Bonzini 已提交
1345 1346
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1347
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1348 1349 1350
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1351
    rcu_read_unlock();
J
Juan Quintela 已提交
1352 1353
}

P
pbrook 已提交
1354
/* Note: start and end must be within the same ram block.  */
1355 1356 1357
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1358
{
1359
    DirtyMemoryBlocks *blocks;
1360
    unsigned long end, page;
1361
    bool dirty = false;
1362 1363
    RAMBlock *ramblock;
    uint64_t mr_offset, mr_size;
1364 1365 1366 1367

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1368

1369 1370
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1371 1372 1373 1374

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1375 1376 1377 1378
    ramblock = qemu_get_ram_block(start);
    /* Range sanity check on the ramblock */
    assert(start >= ramblock->offset &&
           start + length <= ramblock->offset + ramblock->used_length);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

1390 1391 1392 1393
    mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
    mr_size = (end - page) << TARGET_PAGE_BITS;
    memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);

1394
    rcu_read_unlock();
1395 1396

    if (dirty && tcg_enabled()) {
1397
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1398
    }
1399 1400

    return dirty;
1401 1402
}

1403
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1404
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1405 1406
{
    DirtyMemoryBlocks *blocks;
1407
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

1449 1450
    memory_region_clear_dirty_bitmap(mr, offset, length);

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1475
/* Called from RCU critical section */
1476
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1477 1478 1479 1480 1481
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1482
{
A
Avi Kivity 已提交
1483
    hwaddr iotlb;
B
Blue Swirl 已提交
1484 1485
    CPUWatchpoint *wp;

1486
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1487
        /* Normal RAM.  */
1488
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1489
        if (!section->readonly) {
1490
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1491
        } else {
1492
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1493 1494
        }
    } else {
1495 1496
        AddressSpaceDispatch *d;

1497
        d = flatview_to_dispatch(section->fv);
1498
        iotlb = section - d->map.sections;
1499
        iotlb += xlat;
B
Blue Swirl 已提交
1500 1501 1502 1503
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1504
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1505
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1506 1507
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1508
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1509 1510 1511 1512 1513 1514 1515 1516
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1517 1518
#endif /* defined(CONFIG_USER_ONLY) */

1519
#if !defined(CONFIG_USER_ONLY)
1520

A
Anthony Liguori 已提交
1521
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1522
                             uint16_t section);
1523
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1524

1525
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1526
                               qemu_anon_ram_alloc;
1527 1528 1529 1530 1531 1532

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1533
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1534 1535 1536 1537
{
    phys_mem_alloc = alloc;
}

1538 1539
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1540
{
1541 1542 1543 1544
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1545
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1546

1547 1548 1549 1550
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1551
    }
1552
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1553
    memory_region_ref(section->mr);
1554
    return map->sections_nb++;
1555 1556
}

1557 1558
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1559 1560
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1561 1562
    memory_region_unref(mr);

D
Don Slutz 已提交
1563
    if (have_sub_page) {
1564
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1565
        object_unref(OBJECT(&subpage->iomem));
1566 1567 1568 1569
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1570
static void phys_sections_free(PhysPageMap *map)
1571
{
1572 1573
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1574 1575
        phys_section_destroy(section->mr);
    }
1576 1577
    g_free(map->sections);
    g_free(map->nodes);
1578 1579
}

1580
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1581
{
1582
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1583
    subpage_t *subpage;
A
Avi Kivity 已提交
1584
    hwaddr base = section->offset_within_address_space
1585
        & TARGET_PAGE_MASK;
1586
    MemoryRegionSection *existing = phys_page_find(d, base);
1587 1588
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1589
        .size = int128_make64(TARGET_PAGE_SIZE),
1590
    };
A
Avi Kivity 已提交
1591
    hwaddr start, end;
1592

1593
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1594

1595
    if (!(existing->mr->subpage)) {
1596 1597
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1598
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1599
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1600
                      phys_section_add(&d->map, &subsection));
1601
    } else {
1602
        subpage = container_of(existing->mr, subpage_t, iomem);
1603 1604
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1605
    end = start + int128_get64(section->size) - 1;
1606 1607
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1608 1609 1610
}


1611
static void register_multipage(FlatView *fv,
1612
                               MemoryRegionSection *section)
1613
{
1614
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1615
    hwaddr start_addr = section->offset_within_address_space;
1616
    uint16_t section_index = phys_section_add(&d->map, section);
1617 1618
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1619

1620 1621
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1622 1623
}

1624 1625 1626 1627 1628 1629 1630
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1631
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1632
{
1633
    MemoryRegionSection remain = *section;
1634
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1635

1636 1637 1638 1639
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1640

1641
        MemoryRegionSection now = remain;
1642
        now.size = int128_min(int128_make64(left), now.size);
1643
        register_subpage(fv, &now);
1644 1645 1646
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1647 1648 1649
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1650 1651 1652 1653 1654 1655 1656 1657 1658
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1659
        }
1660 1661 1662
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1663
    }
1664 1665 1666

    /* register last subpage */
    register_subpage(fv, &remain);
1667 1668
}

1669 1670 1671 1672 1673 1674
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1705 1706 1707 1708 1709 1710 1711
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1712
static int find_min_backend_pagesize(Object *obj, void *opaque)
1713 1714 1715 1716
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1717 1718
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1719

1720
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1721
            *hpsize_min = hpsize;
1722 1723 1724 1725 1726 1727
        }
    }

    return 0;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1749 1750 1751 1752
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;
1753
    MachineState *ms = MACHINE(qdev_get_machine());
1754

1755
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1769
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
1781 1782
        (ms->numa_state == NULL ||
         ms->numa_state->num_nodes == 0 ||
1783
         ms->numa_state->nodes[0].node_memdev == NULL)) {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1806
#else
1807 1808 1809 1810 1811
long qemu_minrampagesize(void)
{
    return getpagesize();
}
long qemu_maxrampagesize(void)
1812 1813 1814 1815 1816
{
    return getpagesize();
}
#endif

1817
#ifdef CONFIG_POSIX
1818 1819 1820 1821 1822 1823 1824 1825 1826
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1827 1828 1829 1830
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1831 1832
{
    char *filename;
1833 1834
    char *sanitized_name;
    char *c;
1835
    int fd = -1;
1836

1837
    *created = false;
1838 1839 1840 1841 1842
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1843
        }
1844 1845 1846 1847
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1848
                *created = true;
1849 1850 1851 1852 1853
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1854
            sanitized_name = g_strdup(region_name);
1855 1856 1857 1858 1859
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1860

1861 1862 1863
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1864

1865 1866 1867 1868 1869 1870 1871
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1872
        }
1873 1874 1875 1876
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1877
            return -1;
1878 1879 1880 1881 1882
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1883
    }
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1894
    MachineState *ms = MACHINE(qdev_get_machine());
1895 1896
    void *area;

1897
    block->page_size = qemu_fd_getpagesize(fd);
1898 1899 1900 1901 1902
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1903 1904 1905 1906
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1907 1908
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1909 1910 1911 1912 1913
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1914

1915
    if (memory < block->page_size) {
1916
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1917 1918
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1919
        return NULL;
1920 1921
    }

1922
    memory = ROUND_UP(memory, block->page_size);
1923 1924 1925 1926 1927 1928

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1929 1930 1931 1932 1933 1934 1935 1936
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1937
     */
1938
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1939
        perror("ftruncate");
1940
    }
1941

1942
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1943
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1944
    if (area == MAP_FAILED) {
1945
        error_setg_errno(errp, errno,
1946
                         "unable to map backing store for guest RAM");
1947
        return NULL;
1948
    }
1949 1950

    if (mem_prealloc) {
1951
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1952
        if (errp && *errp) {
1953
            qemu_ram_munmap(fd, area, memory);
1954
            return NULL;
1955
        }
1956 1957
    }

A
Alex Williamson 已提交
1958
    block->fd = fd;
1959 1960 1961 1962
    return area;
}
#endif

1963 1964 1965 1966
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1967
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1968 1969
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1970
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1971

1972 1973
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1974
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1975
        return 0;
M
Mike Day 已提交
1976
    }
A
Alex Williamson 已提交
1977

P
Peter Xu 已提交
1978
    RAMBLOCK_FOREACH(block) {
1979
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1980

1981 1982 1983
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1984
        candidate = block->offset + block->max_length;
1985
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1986

1987 1988 1989
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1990
        RAMBLOCK_FOREACH(next_block) {
1991
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1992 1993 1994
                next = MIN(next, next_block->offset);
            }
        }
1995 1996 1997 1998 1999 2000 2001 2002

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
2003
        }
2004 2005

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
2006
    }
A
Alex Williamson 已提交
2007 2008 2009 2010 2011 2012 2013

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

2014 2015
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
2016 2017 2018
    return offset;
}

2019
static unsigned long last_ram_page(void)
2020 2021 2022 2023
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
2024
    rcu_read_lock();
P
Peter Xu 已提交
2025
    RAMBLOCK_FOREACH(block) {
2026
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
2027
    }
M
Mike Day 已提交
2028
    rcu_read_unlock();
2029
    return last >> TARGET_PAGE_BITS;
2030 2031
}

2032 2033 2034 2035 2036
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2037
    if (!machine_dump_guest_core(current_machine)) {
2038 2039 2040 2041 2042 2043 2044 2045 2046
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
2047 2048 2049 2050 2051
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2067 2068 2069 2070 2071
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2098
/* Called with iothread lock held.  */
G
Gonglei 已提交
2099
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2100
{
G
Gonglei 已提交
2101
    RAMBlock *block;
2102

2103 2104
    assert(new_block);
    assert(!new_block->idstr[0]);
2105

2106 2107
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2108 2109
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2110
            g_free(id);
2111 2112 2113 2114
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2115
    rcu_read_lock();
P
Peter Xu 已提交
2116
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2117 2118
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2119 2120 2121 2122 2123
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2124
    rcu_read_unlock();
2125 2126
}

2127
/* Called with iothread lock held.  */
G
Gonglei 已提交
2128
void qemu_ram_unset_idstr(RAMBlock *block)
2129
{
2130 2131 2132 2133
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2134 2135 2136 2137 2138
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2139 2140 2141 2142 2143
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2144 2145 2146 2147 2148 2149
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2150
    RAMBLOCK_FOREACH(block) {
2151 2152 2153 2154 2155 2156
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2157 2158
static int memory_try_enable_merging(void *addr, size_t len)
{
2159
    if (!machine_mem_merge(current_machine)) {
2160 2161 2162 2163 2164 2165 2166
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2167 2168 2169 2170 2171 2172 2173
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2174
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2175 2176 2177
{
    assert(block);

2178
    newsize = HOST_PAGE_ALIGN(newsize);
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2202 2203
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2204 2205 2206 2207 2208 2209 2210
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2252
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2253
{
2254
    RAMBlock *block;
M
Mike Day 已提交
2255
    RAMBlock *last_block = NULL;
2256
    ram_addr_t old_ram_size, new_ram_size;
2257
    Error *err = NULL;
2258

2259
    old_ram_size = last_ram_page();
2260

2261
    qemu_mutex_lock_ramlist();
2262
    new_block->offset = find_ram_offset(new_block->max_length);
2263 2264 2265

    if (!new_block->host) {
        if (xen_enabled()) {
2266
            xen_ram_alloc(new_block->offset, new_block->max_length,
2267 2268 2269 2270
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2271
                return;
2272
            }
2273
        } else {
2274
            new_block->host = phys_mem_alloc(new_block->max_length,
2275
                                             &new_block->mr->align, shared);
2276
            if (!new_block->host) {
2277 2278 2279 2280
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2281
                return;
2282
            }
2283
            memory_try_enable_merging(new_block->host, new_block->max_length);
2284
        }
2285
    }
P
pbrook 已提交
2286

L
Li Zhijian 已提交
2287 2288 2289
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2290
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2291
    }
M
Mike Day 已提交
2292 2293 2294 2295
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2296
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2297
        last_block = block;
2298
        if (block->max_length < new_block->max_length) {
2299 2300 2301 2302
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2303
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2304
    } else if (last_block) {
M
Mike Day 已提交
2305
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2306
    } else { /* list is empty */
M
Mike Day 已提交
2307
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2308
    }
2309
    ram_list.mru_block = NULL;
P
pbrook 已提交
2310

M
Mike Day 已提交
2311 2312
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2313
    ram_list.version++;
2314
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2315

2316
    cpu_physical_memory_set_dirty_range(new_block->offset,
2317 2318
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2319

2320 2321 2322
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2323
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2324
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2325
        ram_block_notify_add(new_block->host, new_block->max_length);
2326
    }
P
pbrook 已提交
2327
}
B
bellard 已提交
2328

2329
#ifdef CONFIG_POSIX
2330
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2331
                                 uint32_t ram_flags, int fd,
2332
                                 Error **errp)
2333 2334
{
    RAMBlock *new_block;
2335
    Error *local_err = NULL;
2336
    int64_t file_size;
2337

J
Junyan He 已提交
2338 2339 2340
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2341
    if (xen_enabled()) {
2342
        error_setg(errp, "-mem-path not supported with Xen");
2343
        return NULL;
2344 2345
    }

2346 2347 2348 2349 2350 2351
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2352 2353 2354 2355 2356 2357
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2358 2359
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2360
        return NULL;
2361 2362
    }

2363
    size = HOST_PAGE_ALIGN(size);
2364 2365 2366 2367 2368 2369 2370 2371
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2372 2373
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2374 2375
    new_block->used_length = size;
    new_block->max_length = size;
2376
    new_block->flags = ram_flags;
2377
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2378 2379
    if (!new_block->host) {
        g_free(new_block);
2380
        return NULL;
2381 2382
    }

2383
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2384 2385 2386
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2387
        return NULL;
2388
    }
2389
    return new_block;
2390 2391 2392 2393 2394

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2395
                                   uint32_t ram_flags, const char *mem_path,
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2407
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2408 2409 2410 2411 2412 2413 2414 2415 2416
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2417
}
2418
#endif
2419

2420
static
2421 2422 2423 2424
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2425
                                  void *host, bool resizeable, bool share,
2426
                                  MemoryRegion *mr, Error **errp)
2427 2428
{
    RAMBlock *new_block;
2429
    Error *local_err = NULL;
2430

2431 2432
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2433 2434
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2435
    new_block->resized = resized;
2436 2437
    new_block->used_length = size;
    new_block->max_length = max_size;
2438
    assert(max_size >= size);
2439
    new_block->fd = -1;
2440
    new_block->page_size = getpagesize();
2441 2442
    new_block->host = host;
    if (host) {
2443
        new_block->flags |= RAM_PREALLOC;
2444
    }
2445 2446 2447
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2448
    ram_block_add(new_block, &local_err, share);
2449 2450 2451
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2452
        return NULL;
2453
    }
2454
    return new_block;
2455 2456
}

2457
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2458 2459
                                   MemoryRegion *mr, Error **errp)
{
2460 2461
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2462 2463
}

2464 2465
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2466
{
2467 2468
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2469 2470
}

2471
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2472 2473 2474 2475 2476
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2477 2478
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2479 2480
}

P
Paolo Bonzini 已提交
2481 2482 2483 2484 2485 2486 2487 2488
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2489
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2490 2491 2492 2493 2494 2495 2496 2497
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2498
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2499
{
2500 2501 2502 2503
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2504 2505 2506 2507
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2508
    qemu_mutex_lock_ramlist();
2509 2510 2511 2512 2513 2514
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2515
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2516 2517
}

H
Huang Ying 已提交
2518 2519 2520 2521 2522 2523 2524 2525
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2526
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2527
        offset = addr - block->offset;
2528
        if (offset < block->max_length) {
2529
            vaddr = ramblock_ptr(block, offset);
2530
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2531
                ;
2532 2533
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2534 2535
            } else {
                flags = MAP_FIXED;
2536
                if (block->fd >= 0) {
2537 2538
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2539 2540
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2541
                } else {
2542 2543 2544 2545 2546 2547 2548
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2549 2550 2551 2552 2553
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2554 2555 2556
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2557 2558
                    exit(1);
                }
2559
                memory_try_enable_merging(vaddr, length);
2560
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2561 2562 2563 2564 2565 2566
            }
        }
    }
}
#endif /* !_WIN32 */

2567
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2568 2569 2570
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2571
 *
2572
 * Called within RCU critical section.
2573
 */
2574
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2575
{
2576 2577 2578 2579
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2580
        addr -= block->offset;
2581
    }
2582 2583

    if (xen_enabled() && block->host == NULL) {
2584 2585 2586 2587 2588
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2589
            return xen_map_cache(addr, 0, 0, false);
2590
        }
2591

2592
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2593
    }
2594
    return ramblock_ptr(block, addr);
2595 2596
}

2597
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2598
 * but takes a size argument.
M
Mike Day 已提交
2599
 *
2600
 * Called within RCU critical section.
2601
 */
2602
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2603
                                 hwaddr *size, bool lock)
2604
{
2605
    RAMBlock *block = ram_block;
2606 2607 2608
    if (*size == 0) {
        return NULL;
    }
2609

2610 2611
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2612
        addr -= block->offset;
2613
    }
2614
    *size = MIN(*size, block->max_length - addr);
2615 2616 2617 2618 2619 2620 2621

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2622
            return xen_map_cache(addr, *size, lock, lock);
2623 2624
        }

2625
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2626
    }
2627

2628
    return ramblock_ptr(block, addr);
2629 2630
}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2651 2652 2653 2654 2655 2656 2657
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2658 2659
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2660
{
P
pbrook 已提交
2661 2662 2663
    RAMBlock *block;
    uint8_t *host = ptr;

2664
    if (xen_enabled()) {
2665
        ram_addr_t ram_addr;
M
Mike Day 已提交
2666
        rcu_read_lock();
2667 2668
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2669
        if (block) {
2670
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2671
        }
M
Mike Day 已提交
2672
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2673
        return block;
2674 2675
    }

M
Mike Day 已提交
2676 2677
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2678
    if (block && block->host && host - block->host < block->max_length) {
2679 2680 2681
        goto found;
    }

P
Peter Xu 已提交
2682
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2683 2684 2685 2686
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2687
        if (host - block->host < block->max_length) {
2688
            goto found;
A
Alex Williamson 已提交
2689
        }
P
pbrook 已提交
2690
    }
J
Jun Nakajima 已提交
2691

M
Mike Day 已提交
2692
    rcu_read_unlock();
2693
    return NULL;
2694 2695

found:
D
Dr. David Alan Gilbert 已提交
2696 2697 2698 2699
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2700
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2701 2702 2703
    return block;
}

D
Dr. David Alan Gilbert 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2715
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2716 2717 2718 2719 2720 2721 2722 2723
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2724 2725
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2726
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2727 2728
{
    RAMBlock *block;
2729
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2730

2731
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2732
    if (!block) {
2733
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2734 2735
    }

2736
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2737
}
A
Alex Williamson 已提交
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/* Called within RCU critical section. */
void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
                          CPUState *cpu,
                          vaddr mem_vaddr,
                          ram_addr_t ram_addr,
                          unsigned size)
{
    ndi->cpu = cpu;
    ndi->ram_addr = ram_addr;
    ndi->mem_vaddr = mem_vaddr;
    ndi->size = size;
E
Emilio G. Cota 已提交
2750
    ndi->pages = NULL;
2751

2752
    assert(tcg_enabled());
2753
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
E
Emilio G. Cota 已提交
2754 2755
        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2756
    }
2757 2758 2759 2760 2761
}

/* Called within RCU critical section. */
void memory_notdirty_write_complete(NotDirtyInfo *ndi)
{
E
Emilio G. Cota 已提交
2762
    if (ndi->pages) {
2763
        assert(tcg_enabled());
E
Emilio G. Cota 已提交
2764 2765
        page_collection_unlock(ndi->pages);
        ndi->pages = NULL;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
    }

    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
                                        DIRTY_CLIENTS_NOCODE);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
    }
}

/* Called within RCU critical section.  */
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                               uint64_t val, unsigned size)
{
    NotDirtyInfo ndi;

    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
                         ram_addr, size);

2789
    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2790
    memory_notdirty_write_complete(&ndi);
2791 2792
}

2793
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2794 2795
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
2796 2797 2798 2799
{
    return is_write;
}

2800 2801
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2802
    .valid.accepts = notdirty_mem_accepts,
2803
    .endianness = DEVICE_NATIVE_ENDIAN,
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2814 2815
};

P
pbrook 已提交
2816
/* Generate a debug exception if a watchpoint has been hit.  */
2817
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2818
{
2819
    CPUState *cpu = current_cpu;
2820
    CPUClass *cc = CPU_GET_CLASS(cpu);
P
pbrook 已提交
2821
    target_ulong vaddr;
2822
    CPUWatchpoint *wp;
P
pbrook 已提交
2823

2824
    assert(tcg_enabled());
2825
    if (cpu->watchpoint_hit) {
2826 2827 2828
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2829
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2830 2831
        return;
    }
2832
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2833
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2834
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2835 2836
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2837 2838 2839 2840 2841 2842
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2843
            wp->hitattrs = attrs;
2844
            if (!cpu->watchpoint_hit) {
2845 2846 2847 2848 2849
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2850
                cpu->watchpoint_hit = wp;
2851

E
Emilio G. Cota 已提交
2852
                mmap_lock();
2853
                tb_check_watchpoint(cpu);
2854
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2855
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2856
                    mmap_unlock();
2857
                    cpu_loop_exit(cpu);
2858
                } else {
2859 2860
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2861
                    mmap_unlock();
2862
                    cpu_loop_exit_noexc(cpu);
2863
                }
2864
            }
2865 2866
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2867 2868 2869 2870
        }
    }
}

2871 2872 2873
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2874 2875
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2876
{
2877 2878
    MemTxResult res;
    uint64_t data;
2879 2880
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2881 2882

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2883
    switch (size) {
2884
    case 1:
2885
        data = address_space_ldub(as, addr, attrs, &res);
2886 2887
        break;
    case 2:
2888
        data = address_space_lduw(as, addr, attrs, &res);
2889 2890
        break;
    case 4:
2891
        data = address_space_ldl(as, addr, attrs, &res);
2892
        break;
2893 2894 2895
    case 8:
        data = address_space_ldq(as, addr, attrs, &res);
        break;
2896 2897
    default: abort();
    }
2898 2899
    *pdata = data;
    return res;
2900 2901
}

2902 2903 2904
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2905
{
2906
    MemTxResult res;
2907 2908
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2909 2910

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2911
    switch (size) {
2912
    case 1:
2913
        address_space_stb(as, addr, val, attrs, &res);
2914 2915
        break;
    case 2:
2916
        address_space_stw(as, addr, val, attrs, &res);
2917 2918
        break;
    case 4:
2919
        address_space_stl(as, addr, val, attrs, &res);
2920
        break;
2921 2922 2923
    case 8:
        address_space_stq(as, addr, val, attrs, &res);
        break;
2924 2925
    default: abort();
    }
2926
    return res;
2927 2928
}

2929
static const MemoryRegionOps watch_mem_ops = {
2930 2931
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2932
    .endianness = DEVICE_NATIVE_ENDIAN,
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2943 2944
};

2945
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2946
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2947
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2948 2949
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2950
                                  bool is_write, MemTxAttrs attrs);
2951

2952 2953
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2954
{
2955
    subpage_t *subpage = opaque;
2956
    uint8_t buf[8];
2957
    MemTxResult res;
2958

2959
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2960
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2961
           subpage, len, addr);
2962
#endif
2963
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2964 2965
    if (res) {
        return res;
2966
    }
2967 2968
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2969 2970
}

2971 2972
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2973
{
2974
    subpage_t *subpage = opaque;
2975
    uint8_t buf[8];
2976

2977
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2978
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2979 2980
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2981
#endif
2982
    stn_p(buf, len, value);
2983
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2984 2985
}

2986
static bool subpage_accepts(void *opaque, hwaddr addr,
2987 2988
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2989
{
2990
    subpage_t *subpage = opaque;
2991
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2992
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2993
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2994 2995
#endif

2996
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2997
                                 len, is_write, attrs);
2998 2999
}

3000
static const MemoryRegionOps subpage_ops = {
3001 3002
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
3003 3004 3005 3006
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
3007
    .valid.accepts = subpage_accepts,
3008
    .endianness = DEVICE_NATIVE_ENDIAN,
3009 3010
};

A
Anthony Liguori 已提交
3011
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3012
                             uint16_t section)
3013 3014 3015 3016 3017 3018 3019 3020
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
3021 3022
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
3023 3024
#endif
    for (; idx <= eidx; idx++) {
3025
        mmio->sub_section[idx] = section;
3026 3027 3028 3029 3030
    }

    return 0;
}

3031
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3032
{
A
Anthony Liguori 已提交
3033
    subpage_t *mmio;
3034

3035
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3036
    mmio->fv = fv;
3037
    mmio->base = base;
3038
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
3039
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
3040
    mmio->iomem.subpage = true;
3041
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
3042 3043
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
3044
#endif
3045
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3046 3047 3048 3049

    return mmio;
}

3050
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3051
{
3052
    assert(fv);
3053
    MemoryRegionSection section = {
3054
        .fv = fv,
3055 3056 3057
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
3058
        .size = int128_2_64(),
3059 3060
    };

3061
    return phys_section_add(map, &section);
3062 3063
}

3064 3065 3066 3067 3068 3069 3070
static void readonly_mem_write(void *opaque, hwaddr addr,
                               uint64_t val, unsigned size)
{
    /* Ignore any write to ROM. */
}

static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3071 3072
                                 unsigned size, bool is_write,
                                 MemTxAttrs attrs)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
{
    return is_write;
}

/* This will only be used for writes, because reads are special cased
 * to directly access the underlying host ram.
 */
static const MemoryRegionOps readonly_mem_ops = {
    .write = readonly_mem_write,
    .valid.accepts = readonly_mem_accepts,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
};

3096 3097
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
3098
{
3099 3100
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3101
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3102
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
3103

3104
    return &sections[index & ~TARGET_PAGE_MASK];
3105 3106
}

A
Avi Kivity 已提交
3107 3108
static void io_mem_init(void)
{
3109 3110
    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
                          NULL, NULL, UINT64_MAX);
3111
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3112
                          NULL, UINT64_MAX);
3113 3114 3115 3116

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
3117
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3118
                          NULL, UINT64_MAX);
3119 3120
    memory_region_clear_global_locking(&io_mem_notdirty);

3121
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3122
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
3123 3124
}

3125
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3126
{
3127 3128 3129
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

3130
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3131
    assert(n == PHYS_SECTION_UNASSIGNED);
3132
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3133
    assert(n == PHYS_SECTION_NOTDIRTY);
3134
    n = dummy_section(&d->map, fv, &io_mem_rom);
3135
    assert(n == PHYS_SECTION_ROM);
3136
    n = dummy_section(&d->map, fv, &io_mem_watch);
3137
    assert(n == PHYS_SECTION_WATCH);
3138

M
Michael S. Tsirkin 已提交
3139
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3140 3141

    return d;
3142 3143
}

3144
void address_space_dispatch_free(AddressSpaceDispatch *d)
3145 3146 3147 3148 3149
{
    phys_sections_free(&d->map);
    g_free(d);
}

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
static void do_nothing(CPUState *cpu, run_on_cpu_data d)
{
}

static void tcg_log_global_after_sync(MemoryListener *listener)
{
    CPUAddressSpace *cpuas;

    /* Wait for the CPU to end the current TB.  This avoids the following
     * incorrect race:
     *
     *      vCPU                         migration
     *      ----------------------       -------------------------
     *      TLB check -> slow path
     *        notdirty_mem_write
     *          write to RAM
     *          mark dirty
     *                                   clear dirty flag
     *      TLB check -> fast path
     *                                   read memory
     *        write to RAM
     *
     * by pushing the migration thread's memory read after the vCPU thread has
     * written the memory.
     */
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
}

3179
static void tcg_commit(MemoryListener *listener)
3180
{
3181 3182
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
3183

3184
    assert(tcg_enabled());
3185 3186
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
3187 3188 3189 3190 3191 3192
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
3193
    d = address_space_to_dispatch(cpuas->as);
3194
    atomic_rcu_set(&cpuas->memory_dispatch, d);
3195
    tlb_flush(cpuas->cpu);
3196 3197
}

A
Avi Kivity 已提交
3198 3199
static void memory_map_init(void)
{
3200
    system_memory = g_malloc(sizeof(*system_memory));
3201

3202
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3203
    address_space_init(&address_space_memory, system_memory, "memory");
3204

3205
    system_io = g_malloc(sizeof(*system_io));
3206 3207
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3208
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3209 3210 3211 3212 3213 3214 3215
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3216 3217 3218 3219 3220
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3221 3222
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3223 3224
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3225
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3226
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3227
{
3228 3229
    int flags;
    target_ulong l, page;
3230
    void * p;
B
bellard 已提交
3231 3232 3233 3234 3235 3236 3237 3238

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3239
            return -1;
B
bellard 已提交
3240 3241
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3242
                return -1;
3243
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3244
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3245
                return -1;
A
aurel32 已提交
3246 3247
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3248 3249
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3250
                return -1;
3251
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3252
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3253
                return -1;
A
aurel32 已提交
3254
            memcpy(buf, p, l);
A
aurel32 已提交
3255
            unlock_user(p, addr, 0);
B
bellard 已提交
3256 3257 3258 3259 3260
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3261
    return 0;
B
bellard 已提交
3262
}
B
bellard 已提交
3263

B
bellard 已提交
3264
#else
3265

3266
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3267
                                     hwaddr length)
3268
{
3269
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3270 3271
    addr += memory_region_get_ram_addr(mr);

3272 3273 3274 3275 3276 3277 3278 3279 3280
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3281
        assert(tcg_enabled());
3282 3283
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3284
    }
3285
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3286 3287
}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3301
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3302
{
3303
    unsigned access_size_max = mr->ops->valid.max_access_size;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3317
    }
3318 3319 3320 3321

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3322
    }
3323
    l = pow2floor(l);
3324 3325

    return l;
3326 3327
}

3328
static bool prepare_mmio_access(MemoryRegion *mr)
3329
{
3330 3331 3332 3333 3334 3335 3336 3337
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3338
    if (mr->flush_coalesced_mmio) {
3339 3340 3341
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3342
        qemu_flush_coalesced_mmio_buffer();
3343 3344 3345
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3346
    }
3347 3348

    return release_lock;
3349 3350
}

3351
/* Called within RCU critical section.  */
3352 3353 3354
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3355
                                           hwaddr len, hwaddr addr1,
3356
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3357 3358
{
    uint8_t *ptr;
3359
    uint64_t val;
3360
    MemTxResult result = MEMTX_OK;
3361
    bool release_lock = false;
3362

3363
    for (;;) {
3364 3365 3366 3367 3368
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3369 3370
            val = ldn_p(buf, l);
            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
B
bellard 已提交
3371
        } else {
3372
            /* RAM case */
3373
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3374 3375
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3376
        }
3377 3378 3379 3380 3381 3382

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3383 3384 3385
        len -= l;
        buf += l;
        addr += l;
3386 3387 3388 3389 3390 3391

        if (!len) {
            break;
        }

        l = len;
3392
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3393
    }
3394

3395
    return result;
B
bellard 已提交
3396
}
B
bellard 已提交
3397

3398
/* Called from RCU critical section.  */
3399
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3400
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3401
{
3402 3403 3404 3405 3406
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3407
    l = len;
3408
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3409 3410
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3411 3412 3413 3414 3415

    return result;
}

/* Called within RCU critical section.  */
3416 3417
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3418
                                   hwaddr len, hwaddr addr1, hwaddr l,
3419
                                   MemoryRegion *mr)
3420 3421 3422 3423 3424
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3425

3426
    for (;;) {
3427 3428 3429 3430
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3431 3432
            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
            stn_p(buf, l, val);
3433 3434
        } else {
            /* RAM case */
3435
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3447 3448 3449 3450 3451 3452

        if (!len) {
            break;
        }

        l = len;
3453
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3454 3455 3456 3457 3458
    }

    return result;
}

3459 3460
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3461
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3462 3463 3464 3465
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3466

3467
    l = len;
3468
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3469 3470
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3471 3472
}

3473
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3474
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3489 3490
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3491
                                const uint8_t *buf, hwaddr len)
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3506
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3507
                             uint8_t *buf, hwaddr len, bool is_write)
3508 3509 3510 3511 3512 3513 3514 3515
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3516
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3517
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3518
{
3519 3520
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3521 3522
}

3523 3524 3525 3526 3527
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3528 3529 3530 3531
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3532
                                                           hwaddr len,
3533
                                                           enum write_rom_type type)
B
bellard 已提交
3534
{
3535
    hwaddr l;
B
bellard 已提交
3536
    uint8_t *ptr;
3537
    hwaddr addr1;
3538
    MemoryRegion *mr;
3539

3540
    rcu_read_lock();
B
bellard 已提交
3541
    while (len > 0) {
3542
        l = len;
3543
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3544

3545 3546
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3547
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3548 3549
        } else {
            /* ROM/RAM case */
3550
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3551 3552 3553
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3554
                invalidate_and_set_dirty(mr, addr1, l);
3555 3556 3557 3558 3559
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3560 3561 3562 3563 3564
        }
        len -= l;
        buf += l;
        addr += l;
    }
3565
    rcu_read_unlock();
3566
    return MEMTX_OK;
B
bellard 已提交
3567 3568
}

3569
/* used for ROM loading : can write in RAM and ROM */
3570 3571
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3572
                                    const uint8_t *buf, hwaddr len)
3573
{
3574 3575
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3576 3577
}

3578
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3590 3591 3592
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3593 3594
}

3595
typedef struct {
3596
    MemoryRegion *mr;
3597
    void *buffer;
A
Avi Kivity 已提交
3598 3599
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3600
    bool in_use;
3601 3602 3603 3604
} BounceBuffer;

static BounceBuffer bounce;

3605
typedef struct MapClient {
3606
    QEMUBH *bh;
B
Blue Swirl 已提交
3607
    QLIST_ENTRY(MapClient) link;
3608 3609
} MapClient;

3610
QemuMutex map_client_list_lock;
3611
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3612
    = QLIST_HEAD_INITIALIZER(map_client_list);
3613

3614 3615 3616 3617 3618 3619
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3620 3621 3622 3623 3624 3625
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3626 3627
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3628 3629 3630
    }
}

3631
void cpu_register_map_client(QEMUBH *bh)
3632
{
3633
    MapClient *client = g_malloc(sizeof(*client));
3634

3635
    qemu_mutex_lock(&map_client_list_lock);
3636
    client->bh = bh;
B
Blue Swirl 已提交
3637
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3638 3639 3640
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3641
    qemu_mutex_unlock(&map_client_list_lock);
3642 3643
}

3644
void cpu_exec_init_all(void)
3645
{
3646
    qemu_mutex_init(&ram_list.mutex);
3647 3648 3649 3650 3651 3652 3653 3654
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3655
    io_mem_init();
3656
    memory_map_init();
3657
    qemu_mutex_init(&map_client_list_lock);
3658 3659
}

3660
void cpu_unregister_map_client(QEMUBH *bh)
3661 3662 3663
{
    MapClient *client;

3664 3665 3666 3667 3668 3669
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3670
    }
3671
    qemu_mutex_unlock(&map_client_list_lock);
3672 3673 3674 3675
}

static void cpu_notify_map_clients(void)
{
3676
    qemu_mutex_lock(&map_client_list_lock);
3677
    cpu_notify_map_clients_locked();
3678
    qemu_mutex_unlock(&map_client_list_lock);
3679 3680
}

3681
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3682
                                  bool is_write, MemTxAttrs attrs)
3683
{
3684
    MemoryRegion *mr;
3685 3686 3687 3688
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3689
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3690 3691
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3692
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3703
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3704
                                hwaddr len, bool is_write,
3705
                                MemTxAttrs attrs)
3706
{
3707 3708 3709 3710 3711
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3712
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3713 3714
    rcu_read_unlock();
    return result;
3715 3716
}

3717
static hwaddr
3718
flatview_extend_translation(FlatView *fv, hwaddr addr,
3719 3720 3721
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3736
        this_mr = flatview_translate(fv, addr, &xlat,
3737
                                     &len, is_write, attrs);
3738 3739 3740 3741 3742 3743
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3744 3745 3746 3747
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3748 3749
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3750
 */
A
Avi Kivity 已提交
3751
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3752 3753
                        hwaddr addr,
                        hwaddr *plen,
3754 3755
                        bool is_write,
                        MemTxAttrs attrs)
3756
{
A
Avi Kivity 已提交
3757
    hwaddr len = *plen;
3758 3759
    hwaddr l, xlat;
    MemoryRegion *mr;
3760
    void *ptr;
3761
    FlatView *fv;
3762

3763 3764 3765
    if (len == 0) {
        return NULL;
    }
3766

3767
    l = len;
3768
    rcu_read_lock();
3769
    fv = address_space_to_flatview(as);
3770
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3771

3772
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3773
        if (atomic_xchg(&bounce.in_use, true)) {
3774
            rcu_read_unlock();
3775
            return NULL;
3776
        }
3777 3778 3779
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3780 3781
        bounce.addr = addr;
        bounce.len = l;
3782 3783 3784

        memory_region_ref(mr);
        bounce.mr = mr;
3785
        if (!is_write) {
3786
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3787
                               bounce.buffer, l);
3788
        }
3789

3790
        rcu_read_unlock();
3791 3792 3793 3794 3795
        *plen = l;
        return bounce.buffer;
    }


3796
    memory_region_ref(mr);
3797
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3798
                                        l, is_write, attrs);
3799
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3800 3801 3802
    rcu_read_unlock();

    return ptr;
3803 3804
}

A
Avi Kivity 已提交
3805
/* Unmaps a memory region previously mapped by address_space_map().
3806 3807 3808
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3809 3810
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3811 3812
{
    if (buffer != bounce.buffer) {
3813 3814 3815
        MemoryRegion *mr;
        ram_addr_t addr1;

3816
        mr = memory_region_from_host(buffer, &addr1);
3817
        assert(mr != NULL);
3818
        if (is_write) {
3819
            invalidate_and_set_dirty(mr, addr1, access_len);
3820
        }
3821
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3822
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3823
        }
3824
        memory_region_unref(mr);
3825 3826 3827
        return;
    }
    if (is_write) {
3828 3829
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3830
    }
3831
    qemu_vfree(bounce.buffer);
3832
    bounce.buffer = NULL;
3833
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3834
    atomic_mb_set(&bounce.in_use, false);
3835
    cpu_notify_map_clients();
3836
}
B
bellard 已提交
3837

A
Avi Kivity 已提交
3838 3839
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3840 3841
                              int is_write)
{
3842 3843
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3844 3845
}

A
Avi Kivity 已提交
3846 3847
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3848 3849 3850 3851
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3852 3853 3854 3855 3856 3857 3858
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3859

P
Paolo Bonzini 已提交
3860 3861 3862 3863 3864 3865
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3880 3881 3882 3883
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3884
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3885 3886
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3887 3888 3889 3890 3891 3892 3893 3894
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3895 3896 3897 3898 3899 3900
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3901 3902 3903 3904
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3905 3906 3907 3908
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3929
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3948
                                            &target_as, attrs);
3949 3950 3951 3952 3953 3954 3955 3956
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3957
                                   void *buf, hwaddr len)
3958 3959 3960 3961 3962
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3963 3964
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3975
                                    const void *buf, hwaddr len)
3976 3977 3978 3979 3980
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3981 3982
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3983 3984 3985
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3986 3987 3988 3989
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3990 3991 3992 3993
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3994 3995
#include "memory_ldst.inc.c"

3996
/* virtual memory access for debug (includes writing to ROM) */
3997
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3998
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3999
{
A
Avi Kivity 已提交
4000
    hwaddr phys_addr;
4001
    target_ulong l, page;
B
bellard 已提交
4002

4003
    cpu_synchronize_state(cpu);
B
bellard 已提交
4004
    while (len > 0) {
4005 4006 4007
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
4008
        page = addr & TARGET_PAGE_MASK;
4009 4010
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
4011 4012 4013 4014 4015 4016
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
4017
        phys_addr += (addr & ~TARGET_PAGE_MASK);
4018
        if (is_write) {
4019
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
4020
                                    attrs, buf, l);
4021
        } else {
4022
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
4023
                             attrs, buf, l, 0);
4024
        }
B
bellard 已提交
4025 4026 4027 4028 4029 4030
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
4031 4032 4033 4034 4035

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
4036
size_t qemu_target_page_size(void)
4037
{
4038
    return TARGET_PAGE_SIZE;
4039 4040
}

4041 4042 4043 4044 4045 4046 4047 4048 4049
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
4050
#endif
B
bellard 已提交
4051

4052
bool target_words_bigendian(void)
4053 4054 4055 4056 4057 4058 4059 4060
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

4061
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
4062
bool cpu_physical_memory_is_io(hwaddr phys_addr)
4063
{
4064
    MemoryRegion*mr;
4065
    hwaddr l = 1;
4066
    bool res;
4067

4068
    rcu_read_lock();
4069
    mr = address_space_translate(&address_space_memory,
4070 4071
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
4072

4073 4074 4075
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
4076
}
4077

4078
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4079 4080
{
    RAMBlock *block;
4081
    int ret = 0;
4082

M
Mike Day 已提交
4083
    rcu_read_lock();
P
Peter Xu 已提交
4084
    RAMBLOCK_FOREACH(block) {
4085
        ret = func(block, opaque);
4086 4087 4088
        if (ret) {
            break;
        }
4089
    }
M
Mike Day 已提交
4090
    rcu_read_unlock();
4091
    return ret;
4092
}
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
4115
        bool need_madvise, need_fallocate;
4116 4117 4118 4119 4120 4121 4122 4123 4124
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
4135 4136 4137 4138
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
4152 4153
#endif
        }
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
4172 4173
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
4174 4175
            goto err;
#endif
4176
        }
4177 4178
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
4189 4190 4191 4192 4193
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

4194
#endif
Y
Yang Zhong 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4208 4209 4210

#if !defined(CONFIG_USER_ONLY)

4211
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4212 4213
{
    if (start == end - 1) {
4214
        qemu_printf("\t%3d      ", start);
4215
    } else {
4216
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4217
    }
4218
    qemu_printf(" skip=%d ", skip);
4219
    if (ptr == PHYS_MAP_NODE_NIL) {
4220
        qemu_printf(" ptr=NIL");
4221
    } else if (!skip) {
4222
        qemu_printf(" ptr=#%d", ptr);
4223
    } else {
4224
        qemu_printf(" ptr=[%d]", ptr);
4225
    }
4226
    qemu_printf("\n");
4227 4228 4229 4230 4231
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4232
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4233 4234 4235
{
    int i;

4236 4237
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4238 4239 4240 4241 4242 4243

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4244 4245
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4256
            qemu_printf(" alias=%s", s->mr->alias->name ?
4257 4258
                    s->mr->alias->name : "noname");
        }
4259
        qemu_printf("\n");
4260 4261
    }

4262
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4263 4264 4265 4266 4267 4268
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4269
        qemu_printf("      [%d]\n", i);
4270 4271 4272 4273 4274 4275 4276 4277

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4278
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4279 4280 4281 4282 4283 4284

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4285
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4286 4287 4288 4289 4290
        }
    }
}

#endif