exec.c 106.9 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qapi/error.h"
21
#ifndef _WIN32
B
bellard 已提交
22
#endif
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37 38
#include "qemu/timer.h"
#include "qemu/config-file.h"
39
#include "qemu/error-report.h"
40
#if defined(CONFIG_USER_ONLY)
41
#include "qemu.h"
J
Jun Nakajima 已提交
42
#else /* !CONFIG_USER_ONLY */
43 44
#include "hw/hw.h"
#include "exec/memory.h"
P
Paolo Bonzini 已提交
45
#include "exec/ioport.h"
46
#include "sysemu/dma.h"
47
#include "sysemu/numa.h"
48
#include "sysemu/hw_accel.h"
49
#include "exec/address-spaces.h"
50
#include "sysemu/xen-mapcache.h"
51
#include "trace-root.h"
52

53 54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <fcntl.h>
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
MemoryRegion io_mem_rom, io_mem_notdirty;
92
static MemoryRegion io_mem_unassigned;
93

94 95 96
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
#define RAM_PREALLOC   (1 << 0)

97 98 99
/* RAM is mmap-ed with MAP_SHARED */
#define RAM_SHARED     (1 << 1)

100 101 102 103 104
/* Only a portion of RAM (used_length) is actually used, and migrated.
 * This used_length size can change across reboots.
 */
#define RAM_RESIZEABLE (1 << 2)

105
#endif
106

107 108 109 110 111
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

A
Andreas Färber 已提交
112
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
B
bellard 已提交
113 114
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
115
__thread CPUState *current_cpu;
P
pbrook 已提交
116
/* 0 = Do not count executed instructions.
T
ths 已提交
117
   1 = Precise instruction counting.
P
pbrook 已提交
118
   2 = Adaptive rate instruction counting.  */
119
int use_icount;
B
bellard 已提交
120

Y
Yang Zhong 已提交
121 122 123
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

143
#if !defined(CONFIG_USER_ONLY)
144

145 146 147 148 149 150 151 152 153 154
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

155 156 157
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
158
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
160
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161
    uint32_t ptr : 26;
162 163
};

164 165
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

166
/* Size of the L2 (and L3, etc) page tables.  */
167
#define ADDR_SPACE_BITS 64
168

M
Michael S. Tsirkin 已提交
169
#define P_L2_BITS 9
170 171 172 173 174
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
175

176
typedef struct PhysPageMap {
177 178
    struct rcu_head rcu;

179 180 181 182 183 184 185 186
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

187
struct AddressSpaceDispatch {
188
    MemoryRegionSection *mru_section;
189 190 191 192
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
193
    PhysPageMap map;
194 195
};

196 197 198
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
199
    FlatView *fv;
200
    hwaddr base;
201
    uint16_t sub_section[];
202 203
} subpage_t;

204 205 206 207
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
208

209
static void io_mem_init(void);
A
Avi Kivity 已提交
210
static void memory_map_init(void);
211
static void tcg_commit(MemoryListener *listener);
212

213
static MemoryRegion io_mem_watch;
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

229 230 231 232 233 234
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

235
#endif
B
bellard 已提交
236

237
#if !defined(CONFIG_USER_ONLY)
238

239
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240
{
241
    static unsigned alloc_hint = 16;
242
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 245
        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246
        alloc_hint = map->nodes_nb_alloc;
247
    }
248 249
}

250
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251 252
{
    unsigned i;
253
    uint32_t ret;
254 255
    PhysPageEntry e;
    PhysPageEntry *p;
256

257
    ret = map->nodes_nb++;
258
    p = map->nodes[ret];
259
    assert(ret != PHYS_MAP_NODE_NIL);
260
    assert(ret != map->nodes_nb_alloc);
261 262 263

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264
    for (i = 0; i < P_L2_SIZE; ++i) {
265
        memcpy(&p[i], &e, sizeof(e));
266
    }
267
    return ret;
268 269
}

270 271
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
                                hwaddr *index, hwaddr *nb, uint16_t leaf,
272
                                int level)
273 274
{
    PhysPageEntry *p;
275
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276

M
Michael S. Tsirkin 已提交
277
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
279
    }
280
    p = map->nodes[lp->ptr];
281
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282

283
    while (*nb && lp < &p[P_L2_SIZE]) {
284
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
285
            lp->skip = 0;
286
            lp->ptr = leaf;
287 288
            *index += step;
            *nb -= step;
289
        } else {
290
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 292
        }
        ++lp;
293 294 295
    }
}

A
Avi Kivity 已提交
296
static void phys_page_set(AddressSpaceDispatch *d,
A
Avi Kivity 已提交
297
                          hwaddr index, hwaddr nb,
298
                          uint16_t leaf)
299
{
300
    /* Wildly overreserve - it doesn't matter much. */
301
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302

303
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
304 305
}

306 307 308
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
309
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
329
            phys_page_compact(&p[i], nodes);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

359
void address_space_dispatch_compact(AddressSpaceDispatch *d)
360 361
{
    if (d->phys_map.skip) {
362
        phys_page_compact(&d->phys_map, d->map.nodes);
363 364 365
    }
}

F
Fam Zheng 已提交
366 367 368 369 370 371
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
372
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
373
           range_covers_byte(section->offset_within_address_space,
374
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
375 376
}

377
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
378
{
379 380 381
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
382
    hwaddr index = addr >> TARGET_PAGE_BITS;
383
    int i;
384

M
Michael S. Tsirkin 已提交
385
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
387
            return &sections[PHYS_SECTION_UNASSIGNED];
388
        }
389
        p = nodes[lp.ptr];
390
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391
    }
392

F
Fam Zheng 已提交
393
    if (section_covers_addr(&sections[lp.ptr], addr)) {
394 395 396 397
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
398 399
}

B
Blue Swirl 已提交
400 401
bool memory_region_is_unassigned(MemoryRegion *mr)
{
P
Paolo Bonzini 已提交
402
    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403
        && mr != &io_mem_watch;
B
bellard 已提交
404
}
405

406
/* Called from RCU critical section */
407
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 409
                                                        hwaddr addr,
                                                        bool resolve_subpage)
410
{
411
    MemoryRegionSection *section = atomic_read(&d->mru_section);
412
    subpage_t *subpage;
413
    bool update;
414

415 416 417 418
    if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
        section_covers_addr(section, addr)) {
        update = false;
    } else {
419
        section = phys_page_find(d, addr);
420 421
        update = true;
    }
422 423
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
424
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425
    }
426 427 428
    if (update) {
        atomic_set(&d->mru_section, section);
    }
429
    return section;
430 431
}

432
/* Called from RCU critical section */
433
static MemoryRegionSection *
434
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435
                                 hwaddr *plen, bool resolve_subpage)
436 437
{
    MemoryRegionSection *section;
438
    MemoryRegion *mr;
439
    Int128 diff;
440

441
    section = address_space_lookup_region(d, addr, resolve_subpage);
442 443 444 445 446 447
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

448
    mr = section->mr;
449 450 451 452 453 454 455 456 457 458 459 460

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
461
    if (memory_region_is_ram(mr)) {
462
        diff = int128_sub(section->size, int128_make64(addr));
463 464
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
465 466
    return section;
}
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 *
 * This function is called from RCU critical section
 */
486 487 488
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
489 490
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
491 492 493
                                                 bool is_write,
                                                 bool is_mmio,
                                                 AddressSpace **target_as)
494
{
495
    IOMMUTLBEntry iotlb;
496
    MemoryRegionSection *section;
497
    IOMMUMemoryRegion *iommu_mr;
498
    IOMMUMemoryRegionClass *imrc;
499 500 501 502 503 504
    hwaddr page_mask = (hwaddr)(-1);
    hwaddr plen = (hwaddr)(-1);

    if (plen_out) {
        plen = *plen_out;
    }
505 506

    for (;;) {
507 508
        section = address_space_translate_internal(
                flatview_to_dispatch(fv), addr, &addr,
509
                &plen, is_mmio);
510

511 512
        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
513 514
            break;
        }
515
        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
516

517 518
        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO);
519 520
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
521 522
        page_mask &= iotlb.addr_mask;
        plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
523
        if (!(iotlb.perm & (1 << is_write))) {
524
            goto translate_fail;
525 526
        }

527
        fv = address_space_to_flatview(iotlb.target_as);
528
        *target_as = iotlb.target_as;
529 530
    }

531 532
    *xlat = addr;

533 534 535 536 537 538 539 540 541 542 543 544 545
    if (page_mask == (hwaddr)(-1)) {
        /* Not behind an IOMMU, use default page size. */
        page_mask = ~TARGET_PAGE_MASK;
    }

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }

    if (plen_out) {
        *plen_out = plen;
    }

546 547 548 549
    return *section;

translate_fail:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
550 551 552
}

/* Called from RCU critical section */
553 554
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
                                            bool is_write)
555
{
556
    MemoryRegionSection section;
557
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
558

559 560 561 562 563 564
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
                                    NULL, &page_mask, is_write, false, &as);
A
Avi Kivity 已提交
565

566 567 568 569
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
570

571 572 573 574 575
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
576
        .target_as = as,
577 578 579
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
580 581 582 583 584 585 586 587 588
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
589 590
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
                                 hwaddr *plen, bool is_write)
591 592 593
{
    MemoryRegion *mr;
    MemoryRegionSection section;
594
    AddressSpace *as = NULL;
595 596

    /* This can be MMIO, so setup MMIO bit. */
597 598
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
                                    is_write, true, &as);
599 600
    mr = section.mr;

601
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
602
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
603
        *plen = MIN(page, *plen);
604 605
    }

A
Avi Kivity 已提交
606
    return mr;
607 608
}

609
/* Called from RCU critical section */
610
MemoryRegionSection *
611
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
P
Paolo Bonzini 已提交
612
                                  hwaddr *xlat, hwaddr *plen)
613
{
A
Avi Kivity 已提交
614
    MemoryRegionSection *section;
615
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
616 617

    section = address_space_translate_internal(d, addr, xlat, plen, false);
A
Avi Kivity 已提交
618

619
    assert(!memory_region_is_iommu(section->mr));
A
Avi Kivity 已提交
620
    return section;
621
}
622
#endif
B
bellard 已提交
623

624
#if !defined(CONFIG_USER_ONLY)
625 626

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
627
{
628
    CPUState *cpu = opaque;
B
bellard 已提交
629

630 631
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
632
    cpu->interrupt_request &= ~0x01;
633
    tlb_flush(cpu);
634 635

    return 0;
B
bellard 已提交
636
}
B
bellard 已提交
637

638 639 640 641
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

642
    cpu->exception_index = -1;
643 644 645 646 647 648 649 650

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

651
    return tcg_enabled() && cpu->exception_index != -1;
652 653 654 655 656 657
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
658
    .needed = cpu_common_exception_index_needed,
659 660 661 662 663 664
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

683
const VMStateDescription vmstate_cpu_common = {
684 685 686
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
687
    .pre_load = cpu_common_pre_load,
688
    .post_load = cpu_common_post_load,
689
    .fields = (VMStateField[]) {
690 691
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
692
        VMSTATE_END_OF_LIST()
693
    },
694 695
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
696
        &vmstate_cpu_common_crash_occurred,
697
        NULL
698 699
    }
};
700

701
#endif
B
bellard 已提交
702

703
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
704
{
A
Andreas Färber 已提交
705
    CPUState *cpu;
B
bellard 已提交
706

A
Andreas Färber 已提交
707
    CPU_FOREACH(cpu) {
708
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
709
            return cpu;
710
        }
B
bellard 已提交
711
    }
712

A
Andreas Färber 已提交
713
    return NULL;
B
bellard 已提交
714 715
}

716
#if !defined(CONFIG_USER_ONLY)
717
void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
718
{
719 720 721 722 723
    CPUAddressSpace *newas;

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

724 725 726 727 728
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

729 730
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
731

732 733
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
734
    }
735

736 737 738
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
739
    if (tcg_enabled()) {
740 741
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
742
    }
743
}
744 745 746 747 748 749

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
750 751
#endif

752
void cpu_exec_unrealizefn(CPUState *cpu)
753
{
754 755
    CPUClass *cc = CPU_GET_CLASS(cpu);

756
    cpu_list_remove(cpu);
757 758 759 760 761 762 763

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
764 765
}

F
Fam Zheng 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
     * so users can wire up its memory. (This can't go in qom/cpu.c
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
780
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
781
{
782
    cpu->as = NULL;
783
    cpu->num_ases = 0;
784

785 786
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
787 788
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
789
#endif
L
Laurent Vivier 已提交
790 791
}

792
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
793 794
{
    CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
795

796
    cpu_list_add(cpu);
797 798

#ifndef CONFIG_USER_ONLY
799
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
800
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
801
    }
802
    if (cc->vmsd != NULL) {
803
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
804
    }
805
#endif
B
bellard 已提交
806 807
}

808
#if defined(CONFIG_USER_ONLY)
809
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
810
{
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    mmap_lock();
    tb_lock();
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
    tb_unlock();
    mmap_unlock();
}
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
                                phys | (pc & ~TARGET_PAGE_MASK));
    }
828
}
829
#endif
B
bellard 已提交
830

831
#if defined(CONFIG_USER_ONLY)
832
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
833 834 835 836

{
}

837 838 839 840 841 842 843 844 845 846
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
                          int flags)
{
    return -ENOSYS;
}

void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
}

847
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
848 849 850 851 852
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
853
/* Add a watchpoint.  */
854
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
855
                          int flags, CPUWatchpoint **watchpoint)
856
{
857
    CPUWatchpoint *wp;
858

859
    /* forbid ranges which are empty or run off the end of the address space */
860
    if (len == 0 || (addr + len - 1) < addr) {
861 862
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
863 864
        return -EINVAL;
    }
865
    wp = g_malloc(sizeof(*wp));
866 867

    wp->vaddr = addr;
868
    wp->len = len;
869 870
    wp->flags = flags;

871
    /* keep all GDB-injected watchpoints in front */
872 873 874 875 876
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
877

878
    tlb_flush_page(cpu, addr);
879 880 881 882

    if (watchpoint)
        *watchpoint = wp;
    return 0;
883 884
}

885
/* Remove a specific watchpoint.  */
886
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
887
                          int flags)
888
{
889
    CPUWatchpoint *wp;
890

891
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
892
        if (addr == wp->vaddr && len == wp->len
893
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
894
            cpu_watchpoint_remove_by_ref(cpu, wp);
895 896 897
            return 0;
        }
    }
898
    return -ENOENT;
899 900
}

901
/* Remove a specific watchpoint by reference.  */
902
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
903
{
904
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
905

906
    tlb_flush_page(cpu, watchpoint->vaddr);
907

908
    g_free(watchpoint);
909 910 911
}

/* Remove all matching watchpoints.  */
912
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
913
{
914
    CPUWatchpoint *wp, *next;
915

916
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
917 918 919
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
920
    }
921
}
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
                                                  vaddr addr,
                                                  vaddr len)
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

943
#endif
944

945
/* Add a breakpoint.  */
946
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
947
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
948
{
949
    CPUBreakpoint *bp;
950

951
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
952

953 954 955
    bp->pc = pc;
    bp->flags = flags;

956
    /* keep all GDB-injected breakpoints in front */
957
    if (flags & BP_GDB) {
958
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
959
    } else {
960
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
961
    }
962

963
    breakpoint_invalidate(cpu, pc);
964

965
    if (breakpoint) {
966
        *breakpoint = bp;
967
    }
B
bellard 已提交
968 969 970
    return 0;
}

971
/* Remove a specific breakpoint.  */
972
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
973 974 975
{
    CPUBreakpoint *bp;

976
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
977
        if (bp->pc == pc && bp->flags == flags) {
978
            cpu_breakpoint_remove_by_ref(cpu, bp);
979 980
            return 0;
        }
981
    }
982
    return -ENOENT;
983 984
}

985
/* Remove a specific breakpoint by reference.  */
986
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
987
{
988 989 990
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
991

992
    g_free(breakpoint);
993 994 995
}

/* Remove all matching breakpoints. */
996
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
997
{
998
    CPUBreakpoint *bp, *next;
999

1000
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1001 1002 1003
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1004
    }
B
bellard 已提交
1005 1006
}

B
bellard 已提交
1007 1008
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1009
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1010
{
1011 1012 1013
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1014
            kvm_update_guest_debug(cpu, 0);
1015
        } else {
S
Stuart Brady 已提交
1016
            /* must flush all the translated code to avoid inconsistencies */
1017
            /* XXX: only flush what is necessary */
1018
            tb_flush(cpu);
1019
        }
B
bellard 已提交
1020 1021 1022
    }
}

1023
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1024 1025
{
    va_list ap;
P
pbrook 已提交
1026
    va_list ap2;
B
bellard 已提交
1027 1028

    va_start(ap, fmt);
P
pbrook 已提交
1029
    va_copy(ap2, ap);
B
bellard 已提交
1030 1031 1032
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1033
    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1034
    if (qemu_log_separate()) {
1035
        qemu_log_lock();
1036 1037 1038
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1039
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1040
        qemu_log_flush();
1041
        qemu_log_unlock();
1042
        qemu_log_close();
1043
    }
P
pbrook 已提交
1044
    va_end(ap2);
1045
    va_end(ap);
1046
    replay_finish();
1047 1048 1049 1050 1051 1052 1053 1054
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1055 1056 1057
    abort();
}

1058
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1059
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1060 1061 1062 1063
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1064
    block = atomic_rcu_read(&ram_list.mru_block);
1065
    if (block && addr - block->offset < block->max_length) {
1066
        return block;
P
Paolo Bonzini 已提交
1067
    }
P
Peter Xu 已提交
1068
    RAMBLOCK_FOREACH(block) {
1069
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1070 1071 1072 1073 1074 1075 1076 1077
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1094 1095 1096 1097
    ram_list.mru_block = block;
    return block;
}

1098
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1099
{
1100
    CPUState *cpu;
P
Paolo Bonzini 已提交
1101
    ram_addr_t start1;
1102 1103 1104 1105 1106
    RAMBlock *block;
    ram_addr_t end;

    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1107

M
Mike Day 已提交
1108
    rcu_read_lock();
P
Paolo Bonzini 已提交
1109 1110
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1111
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1112 1113 1114
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1115
    rcu_read_unlock();
J
Juan Quintela 已提交
1116 1117
}

P
pbrook 已提交
1118
/* Note: start and end must be within the same ram block.  */
1119 1120 1121
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1122
{
1123
    DirtyMemoryBlocks *blocks;
1124
    unsigned long end, page;
1125
    bool dirty = false;
1126 1127 1128 1129

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1130

1131 1132
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

    rcu_read_unlock();
1149 1150

    if (dirty && tcg_enabled()) {
1151
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1152
    }
1153 1154

    return dirty;
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
     (ram_addr_t start, ram_addr_t length, unsigned client)
{
    DirtyMemoryBlocks *blocks;
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1226
/* Called from RCU critical section */
1227
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1228 1229 1230 1231 1232
                                       MemoryRegionSection *section,
                                       target_ulong vaddr,
                                       hwaddr paddr, hwaddr xlat,
                                       int prot,
                                       target_ulong *address)
B
Blue Swirl 已提交
1233
{
A
Avi Kivity 已提交
1234
    hwaddr iotlb;
B
Blue Swirl 已提交
1235 1236
    CPUWatchpoint *wp;

1237
    if (memory_region_is_ram(section->mr)) {
B
Blue Swirl 已提交
1238
        /* Normal RAM.  */
1239
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
B
Blue Swirl 已提交
1240
        if (!section->readonly) {
1241
            iotlb |= PHYS_SECTION_NOTDIRTY;
B
Blue Swirl 已提交
1242
        } else {
1243
            iotlb |= PHYS_SECTION_ROM;
B
Blue Swirl 已提交
1244 1245
        }
    } else {
1246 1247
        AddressSpaceDispatch *d;

1248
        d = flatview_to_dispatch(section->fv);
1249
        iotlb = section - d->map.sections;
1250
        iotlb += xlat;
B
Blue Swirl 已提交
1251 1252 1253 1254
    }

    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
1255
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1256
        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
B
Blue Swirl 已提交
1257 1258
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1259
                iotlb = PHYS_SECTION_WATCH + paddr;
B
Blue Swirl 已提交
1260 1261 1262 1263 1264 1265 1266 1267
                *address |= TLB_MMIO;
                break;
            }
        }
    }

    return iotlb;
}
1268 1269
#endif /* defined(CONFIG_USER_ONLY) */

1270
#if !defined(CONFIG_USER_ONLY)
1271

A
Anthony Liguori 已提交
1272
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1273
                             uint16_t section);
1274
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1275

1276 1277
static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
                               qemu_anon_ram_alloc;
1278 1279 1280 1281 1282 1283

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1284
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1285 1286 1287 1288
{
    phys_mem_alloc = alloc;
}

1289 1290
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1291
{
1292 1293 1294 1295
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1296
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1297

1298 1299 1300 1301
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1302
    }
1303
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1304
    memory_region_ref(section->mr);
1305
    return map->sections_nb++;
1306 1307
}

1308 1309
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1310 1311
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1312 1313
    memory_region_unref(mr);

D
Don Slutz 已提交
1314
    if (have_sub_page) {
1315
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1316
        object_unref(OBJECT(&subpage->iomem));
1317 1318 1319 1320
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1321
static void phys_sections_free(PhysPageMap *map)
1322
{
1323 1324
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1325 1326
        phys_section_destroy(section->mr);
    }
1327 1328
    g_free(map->sections);
    g_free(map->nodes);
1329 1330
}

1331
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1332
{
1333
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1334
    subpage_t *subpage;
A
Avi Kivity 已提交
1335
    hwaddr base = section->offset_within_address_space
1336
        & TARGET_PAGE_MASK;
1337
    MemoryRegionSection *existing = phys_page_find(d, base);
1338 1339
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1340
        .size = int128_make64(TARGET_PAGE_SIZE),
1341
    };
A
Avi Kivity 已提交
1342
    hwaddr start, end;
1343

1344
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1345

1346
    if (!(existing->mr->subpage)) {
1347 1348
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1349
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1350
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1351
                      phys_section_add(&d->map, &subsection));
1352
    } else {
1353
        subpage = container_of(existing->mr, subpage_t, iomem);
1354 1355
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1356
    end = start + int128_get64(section->size) - 1;
1357 1358
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1359 1360 1361
}


1362
static void register_multipage(FlatView *fv,
1363
                               MemoryRegionSection *section)
1364
{
1365
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1366
    hwaddr start_addr = section->offset_within_address_space;
1367
    uint16_t section_index = phys_section_add(&d->map, section);
1368 1369
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1370

1371 1372
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1373 1374
}

1375
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1376
{
1377
    MemoryRegionSection now = *section, remain = *section;
1378
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1379

1380 1381 1382 1383
    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
                       - now.offset_within_address_space;

1384
        now.size = int128_min(int128_make64(left), now.size);
1385
        register_subpage(fv, &now);
1386
    } else {
1387
        now.size = int128_zero();
1388
    }
1389 1390 1391 1392
    while (int128_ne(remain.size, now.size)) {
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1393
        now = remain;
1394
        if (int128_lt(remain.size, page_size)) {
1395
            register_subpage(fv, &now);
1396
        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1397
            now.size = page_size;
1398
            register_subpage(fv, &now);
1399
        } else {
1400
            now.size = int128_and(now.size, int128_neg(page_size));
1401
            register_multipage(fv, &now);
1402
        }
1403 1404 1405
    }
}

1406 1407 1408 1409 1410 1411
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
static int find_max_supported_pagesize(Object *obj, void *opaque)
{
    char *mem_path;
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        mem_path = object_property_get_str(obj, "mem-path", NULL);
        if (mem_path) {
            long hpsize = qemu_mempath_getpagesize(mem_path);
            if (hpsize < *hpsize_min) {
                *hpsize_min = hpsize;
            }
        } else {
            *hpsize_min = getpagesize();
        }
    }

    return 0;
}

long qemu_getrampagesize(void)
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;

    if (mem_path) {
        mainrampagesize = qemu_mempath_getpagesize(mem_path);
    } else {
        mainrampagesize = getpagesize();
    }

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
#else
long qemu_getrampagesize(void)
{
    return getpagesize();
}
#endif

1523
#ifdef __linux__
1524 1525 1526 1527 1528 1529 1530 1531 1532
static int64_t get_file_size(int fd)
{
    int64_t size = lseek(fd, 0, SEEK_END);
    if (size < 0) {
        return -errno;
    }
    return size;
}

1533 1534 1535 1536
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1537 1538
{
    char *filename;
1539 1540
    char *sanitized_name;
    char *c;
1541
    int fd = -1;
1542

1543
    *created = false;
1544 1545 1546 1547 1548
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1549
        }
1550 1551 1552 1553
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1554
                *created = true;
1555 1556 1557 1558 1559
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1560
            sanitized_name = g_strdup(region_name);
1561 1562 1563 1564 1565
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1566

1567 1568 1569
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1570

1571 1572 1573 1574 1575 1576 1577
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1578
        }
1579 1580 1581 1582
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1583
            return -1;
1584 1585 1586 1587 1588
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1589
    }
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
    void *area;

1602
    block->page_size = qemu_fd_getpagesize(fd);
1603 1604 1605 1606 1607 1608
    block->mr->align = block->page_size;
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1609

1610
    if (memory < block->page_size) {
1611
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1612 1613
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1614
        return NULL;
1615 1616
    }

1617
    memory = ROUND_UP(memory, block->page_size);
1618 1619 1620 1621 1622 1623

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1624 1625 1626 1627 1628 1629 1630 1631
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1632
     */
1633
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1634
        perror("ftruncate");
1635
    }
1636

1637 1638
    area = qemu_ram_mmap(fd, memory, block->mr->align,
                         block->flags & RAM_SHARED);
1639
    if (area == MAP_FAILED) {
1640
        error_setg_errno(errp, errno,
1641
                         "unable to map backing store for guest RAM");
1642
        return NULL;
1643
    }
1644 1645

    if (mem_prealloc) {
1646
        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1647
        if (errp && *errp) {
1648 1649
            qemu_ram_munmap(area, memory);
            return NULL;
1650
        }
1651 1652
    }

A
Alex Williamson 已提交
1653
    block->fd = fd;
1654 1655 1656 1657
    return area;
}
#endif

M
Mike Day 已提交
1658
/* Called with the ramlist lock held.  */
1659
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1660 1661
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1662
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1663

1664 1665
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1666
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1667
        return 0;
M
Mike Day 已提交
1668
    }
A
Alex Williamson 已提交
1669

P
Peter Xu 已提交
1670
    RAMBLOCK_FOREACH(block) {
1671
        ram_addr_t end, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1672

1673
        end = block->offset + block->max_length;
A
Alex Williamson 已提交
1674

P
Peter Xu 已提交
1675
        RAMBLOCK_FOREACH(next_block) {
A
Alex Williamson 已提交
1676 1677 1678 1679 1680
            if (next_block->offset >= end) {
                next = MIN(next, next_block->offset);
            }
        }
        if (next - end >= size && next - end < mingap) {
A
Alex Williamson 已提交
1681
            offset = end;
A
Alex Williamson 已提交
1682 1683 1684
            mingap = next - end;
        }
    }
A
Alex Williamson 已提交
1685 1686 1687 1688 1689 1690 1691

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

A
Alex Williamson 已提交
1692 1693 1694
    return offset;
}

1695
unsigned long last_ram_page(void)
1696 1697 1698 1699
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
1700
    rcu_read_lock();
P
Peter Xu 已提交
1701
    RAMBLOCK_FOREACH(block) {
1702
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1703
    }
M
Mike Day 已提交
1704
    rcu_read_unlock();
1705
    return last >> TARGET_PAGE_BITS;
1706 1707
}

1708 1709 1710 1711 1712
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1713
    if (!machine_dump_guest_core(current_machine)) {
1714 1715 1716 1717 1718 1719 1720 1721 1722
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1723 1724 1725 1726 1727
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

1728 1729 1730 1731 1732
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

1733
/* Called with iothread lock held.  */
G
Gonglei 已提交
1734
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1735
{
G
Gonglei 已提交
1736
    RAMBlock *block;
1737

1738 1739
    assert(new_block);
    assert(!new_block->idstr[0]);
1740

1741 1742
    if (dev) {
        char *id = qdev_get_dev_path(dev);
1743 1744
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1745
            g_free(id);
1746 1747 1748 1749
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
1750
    rcu_read_lock();
P
Peter Xu 已提交
1751
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
1752 1753
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
1754 1755 1756 1757 1758
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
1759
    rcu_read_unlock();
1760 1761
}

1762
/* Called with iothread lock held.  */
G
Gonglei 已提交
1763
void qemu_ram_unset_idstr(RAMBlock *block)
1764
{
1765 1766 1767 1768
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
1769 1770 1771 1772 1773
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

1774 1775 1776 1777 1778
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

1779 1780 1781 1782 1783 1784
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
1785
    RAMBLOCK_FOREACH(block) {
1786 1787 1788 1789 1790 1791
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

1792 1793
static int memory_try_enable_merging(void *addr, size_t len)
{
1794
    if (!machine_mem_merge(current_machine)) {
1795 1796 1797 1798 1799 1800 1801
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

1802 1803 1804 1805 1806 1807 1808
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
1809
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1810 1811 1812
{
    assert(block);

1813
    newsize = HOST_PAGE_ALIGN(newsize);
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
1837 1838
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
1839 1840 1841 1842 1843 1844 1845
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

1887
static void ram_block_add(RAMBlock *new_block, Error **errp)
1888
{
1889
    RAMBlock *block;
M
Mike Day 已提交
1890
    RAMBlock *last_block = NULL;
1891
    ram_addr_t old_ram_size, new_ram_size;
1892
    Error *err = NULL;
1893

1894
    old_ram_size = last_ram_page();
1895

1896
    qemu_mutex_lock_ramlist();
1897
    new_block->offset = find_ram_offset(new_block->max_length);
1898 1899 1900

    if (!new_block->host) {
        if (xen_enabled()) {
1901
            xen_ram_alloc(new_block->offset, new_block->max_length,
1902 1903 1904 1905
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
1906
                return;
1907
            }
1908
        } else {
1909
            new_block->host = phys_mem_alloc(new_block->max_length,
1910
                                             &new_block->mr->align);
1911
            if (!new_block->host) {
1912 1913 1914 1915
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
1916
                return;
1917
            }
1918
            memory_try_enable_merging(new_block->host, new_block->max_length);
1919
        }
1920
    }
P
pbrook 已提交
1921

L
Li Zhijian 已提交
1922 1923 1924
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
1925
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
1926
    }
M
Mike Day 已提交
1927 1928 1929 1930
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
1931
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
1932
        last_block = block;
1933
        if (block->max_length < new_block->max_length) {
1934 1935 1936 1937
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
1938
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
1939
    } else if (last_block) {
M
Mike Day 已提交
1940
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
1941
    } else { /* list is empty */
M
Mike Day 已提交
1942
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1943
    }
1944
    ram_list.mru_block = NULL;
P
pbrook 已提交
1945

M
Mike Day 已提交
1946 1947
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
1948
    ram_list.version++;
1949
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
1950

1951
    cpu_physical_memory_set_dirty_range(new_block->offset,
1952 1953
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
1954

1955 1956 1957
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
1958
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1959
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
1960
        ram_block_notify_add(new_block->host, new_block->max_length);
1961
    }
P
pbrook 已提交
1962
}
B
bellard 已提交
1963

1964
#ifdef __linux__
1965 1966 1967
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
                                 bool share, int fd,
                                 Error **errp)
1968 1969
{
    RAMBlock *new_block;
1970
    Error *local_err = NULL;
1971
    int64_t file_size;
1972 1973

    if (xen_enabled()) {
1974
        error_setg(errp, "-mem-path not supported with Xen");
1975
        return NULL;
1976 1977
    }

1978 1979 1980 1981 1982 1983
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

1984 1985 1986 1987 1988 1989
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
1990 1991
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
1992
        return NULL;
1993 1994
    }

1995
    size = HOST_PAGE_ALIGN(size);
1996 1997 1998 1999 2000 2001 2002 2003
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2004 2005
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2006 2007
    new_block->used_length = size;
    new_block->max_length = size;
2008
    new_block->flags = share ? RAM_SHARED : 0;
2009
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2010 2011
    if (!new_block->host) {
        g_free(new_block);
2012
        return NULL;
2013 2014
    }

2015
    ram_block_add(new_block, &local_err);
2016 2017 2018
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2019
        return NULL;
2020
    }
2021
    return new_block;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
                                   bool share, const char *mem_path,
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2049
}
2050
#endif
2051

2052
static
2053 2054 2055 2056 2057 2058
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
                                  void *host, bool resizeable,
                                  MemoryRegion *mr, Error **errp)
2059 2060
{
    RAMBlock *new_block;
2061
    Error *local_err = NULL;
2062

2063 2064
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2065 2066
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2067
    new_block->resized = resized;
2068 2069
    new_block->used_length = size;
    new_block->max_length = max_size;
2070
    assert(max_size >= size);
2071
    new_block->fd = -1;
2072
    new_block->page_size = getpagesize();
2073 2074
    new_block->host = host;
    if (host) {
2075
        new_block->flags |= RAM_PREALLOC;
2076
    }
2077 2078 2079
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2080
    ram_block_add(new_block, &local_err);
2081 2082 2083
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2084
        return NULL;
2085
    }
2086
    return new_block;
2087 2088
}

2089
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2090 2091 2092 2093 2094
                                   MemoryRegion *mr, Error **errp)
{
    return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
}

2095
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2096
{
2097 2098 2099
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
}

2100
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2101 2102 2103 2104 2105 2106
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2107 2108
}

P
Paolo Bonzini 已提交
2109 2110 2111 2112 2113 2114 2115 2116
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2117
        qemu_ram_munmap(block->host, block->max_length);
P
Paolo Bonzini 已提交
2118 2119 2120 2121 2122 2123 2124 2125
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2126
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2127
{
2128 2129 2130 2131
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2132 2133 2134 2135
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2136
    qemu_mutex_lock_ramlist();
2137 2138 2139 2140 2141 2142
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2143
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2144 2145
}

H
Huang Ying 已提交
2146 2147 2148 2149 2150 2151 2152 2153
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2154
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2155
        offset = addr - block->offset;
2156
        if (offset < block->max_length) {
2157
            vaddr = ramblock_ptr(block, offset);
2158
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2159
                ;
2160 2161
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2162 2163
            } else {
                flags = MAP_FIXED;
2164
                if (block->fd >= 0) {
2165 2166
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2167 2168
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2169
                } else {
2170 2171 2172 2173 2174 2175 2176
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2177 2178 2179 2180 2181
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2182 2183
                    fprintf(stderr, "Could not remap addr: "
                            RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
H
Huang Ying 已提交
2184 2185 2186
                            length, addr);
                    exit(1);
                }
2187
                memory_try_enable_merging(vaddr, length);
2188
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2189 2190 2191 2192 2193 2194
            }
        }
    }
}
#endif /* !_WIN32 */

2195
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2196 2197 2198
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2199
 *
2200
 * Called within RCU critical section.
2201
 */
2202
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2203
{
2204 2205 2206 2207
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2208
        addr -= block->offset;
2209
    }
2210 2211

    if (xen_enabled() && block->host == NULL) {
2212 2213 2214 2215 2216
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2217
            return xen_map_cache(addr, 0, 0, false);
2218
        }
2219

2220
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2221
    }
2222
    return ramblock_ptr(block, addr);
2223 2224
}

2225
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2226
 * but takes a size argument.
M
Mike Day 已提交
2227
 *
2228
 * Called within RCU critical section.
2229
 */
2230
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2231
                                 hwaddr *size, bool lock)
2232
{
2233
    RAMBlock *block = ram_block;
2234 2235 2236
    if (*size == 0) {
        return NULL;
    }
2237

2238 2239
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2240
        addr -= block->offset;
2241
    }
2242
    *size = MIN(*size, block->max_length - addr);
2243 2244 2245 2246 2247 2248 2249

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2250
            return xen_map_cache(addr, *size, lock, lock);
2251 2252
        }

2253
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2254
    }
2255

2256
    return ramblock_ptr(block, addr);
2257 2258
}

D
Dr. David Alan Gilbert 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2269 2270 2271 2272 2273 2274 2275
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2276 2277
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2278
{
P
pbrook 已提交
2279 2280 2281
    RAMBlock *block;
    uint8_t *host = ptr;

2282
    if (xen_enabled()) {
2283
        ram_addr_t ram_addr;
M
Mike Day 已提交
2284
        rcu_read_lock();
2285 2286
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2287
        if (block) {
2288
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2289
        }
M
Mike Day 已提交
2290
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2291
        return block;
2292 2293
    }

M
Mike Day 已提交
2294 2295
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2296
    if (block && block->host && host - block->host < block->max_length) {
2297 2298 2299
        goto found;
    }

P
Peter Xu 已提交
2300
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2301 2302 2303 2304
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2305
        if (host - block->host < block->max_length) {
2306
            goto found;
A
Alex Williamson 已提交
2307
        }
P
pbrook 已提交
2308
    }
J
Jun Nakajima 已提交
2309

M
Mike Day 已提交
2310
    rcu_read_unlock();
2311
    return NULL;
2312 2313

found:
D
Dr. David Alan Gilbert 已提交
2314 2315 2316 2317
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2318
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2319 2320 2321
    return block;
}

D
Dr. David Alan Gilbert 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2333
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2334 2335 2336 2337 2338 2339 2340 2341
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2342 2343
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2344
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2345 2346
{
    RAMBlock *block;
2347
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2348

2349
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2350
    if (!block) {
2351
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2352 2353
    }

2354
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2355
}
A
Alex Williamson 已提交
2356

2357
/* Called within RCU critical section.  */
A
Avi Kivity 已提交
2358
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2359
                               uint64_t val, unsigned size)
2360
{
2361 2362
    bool locked = false;

2363
    assert(tcg_enabled());
2364
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2365 2366
        locked = true;
        tb_lock();
2367
        tb_invalidate_phys_page_fast(ram_addr, size);
2368
    }
2369 2370
    switch (size) {
    case 1:
2371
        stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2372 2373
        break;
    case 2:
2374
        stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2375 2376
        break;
    case 4:
2377
        stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2378
        break;
2379 2380 2381
    case 8:
        stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
        break;
2382 2383
    default:
        abort();
2384
    }
2385 2386 2387 2388 2389

    if (locked) {
        tb_unlock();
    }

2390 2391 2392 2393 2394
    /* Set both VGA and migration bits for simplicity and to remove
     * the notdirty callback faster.
     */
    cpu_physical_memory_set_dirty_range(ram_addr, size,
                                        DIRTY_CLIENTS_NOCODE);
B
bellard 已提交
2395 2396
    /* we remove the notdirty callback only if the code has been
       flushed */
2397
    if (!cpu_physical_memory_is_clean(ram_addr)) {
2398
        tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2399
    }
2400 2401
}

2402 2403 2404 2405 2406 2407
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
                                 unsigned size, bool is_write)
{
    return is_write;
}

2408 2409
static const MemoryRegionOps notdirty_mem_ops = {
    .write = notdirty_mem_write,
2410
    .valid.accepts = notdirty_mem_accepts,
2411
    .endianness = DEVICE_NATIVE_ENDIAN,
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    .valid = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
    .impl = {
        .min_access_size = 1,
        .max_access_size = 8,
        .unaligned = false,
    },
2422 2423
};

P
pbrook 已提交
2424
/* Generate a debug exception if a watchpoint has been hit.  */
2425
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
P
pbrook 已提交
2426
{
2427
    CPUState *cpu = current_cpu;
2428
    CPUClass *cc = CPU_GET_CLASS(cpu);
2429
    CPUArchState *env = cpu->env_ptr;
2430
    target_ulong pc, cs_base;
P
pbrook 已提交
2431
    target_ulong vaddr;
2432
    CPUWatchpoint *wp;
2433
    uint32_t cpu_flags;
P
pbrook 已提交
2434

2435
    assert(tcg_enabled());
2436
    if (cpu->watchpoint_hit) {
2437 2438 2439
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
2440
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2441 2442
        return;
    }
2443
    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2444
    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2445
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2446 2447
        if (cpu_watchpoint_address_matches(wp, vaddr, len)
            && (wp->flags & flags)) {
2448 2449 2450 2451 2452 2453
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
            wp->hitaddr = vaddr;
2454
            wp->hitattrs = attrs;
2455
            if (!cpu->watchpoint_hit) {
2456 2457 2458 2459 2460
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2461
                cpu->watchpoint_hit = wp;
2462

2463 2464 2465
                /* Both tb_lock and iothread_mutex will be reset when
                 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
                 * back into the cpu_exec main loop.
2466 2467
                 */
                tb_lock();
2468
                tb_check_watchpoint(cpu);
2469
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2470
                    cpu->exception_index = EXCP_DEBUG;
2471
                    cpu_loop_exit(cpu);
2472 2473
                } else {
                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2474
                    tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2475
                    cpu_loop_exit_noexc(cpu);
2476
                }
2477
            }
2478 2479
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2480 2481 2482 2483
        }
    }
}

2484 2485 2486
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
2487 2488
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
                                  unsigned size, MemTxAttrs attrs)
2489
{
2490 2491
    MemTxResult res;
    uint64_t data;
2492 2493
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2494 2495

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2496
    switch (size) {
2497
    case 1:
2498
        data = address_space_ldub(as, addr, attrs, &res);
2499 2500
        break;
    case 2:
2501
        data = address_space_lduw(as, addr, attrs, &res);
2502 2503
        break;
    case 4:
2504
        data = address_space_ldl(as, addr, attrs, &res);
2505
        break;
2506 2507
    default: abort();
    }
2508 2509
    *pdata = data;
    return res;
2510 2511
}

2512 2513 2514
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
                                   uint64_t val, unsigned size,
                                   MemTxAttrs attrs)
2515
{
2516
    MemTxResult res;
2517 2518
    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2519 2520

    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2521
    switch (size) {
2522
    case 1:
2523
        address_space_stb(as, addr, val, attrs, &res);
2524 2525
        break;
    case 2:
2526
        address_space_stw(as, addr, val, attrs, &res);
2527 2528
        break;
    case 4:
2529
        address_space_stl(as, addr, val, attrs, &res);
2530
        break;
2531 2532
    default: abort();
    }
2533
    return res;
2534 2535
}

2536
static const MemoryRegionOps watch_mem_ops = {
2537 2538
    .read_with_attrs = watch_mem_read,
    .write_with_attrs = watch_mem_write,
2539
    .endianness = DEVICE_NATIVE_ENDIAN,
2540 2541
};

2542 2543 2544 2545 2546
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
                                  bool is_write);

2547 2548
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2549
{
2550
    subpage_t *subpage = opaque;
2551
    uint8_t buf[8];
2552
    MemTxResult res;
2553

2554
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2555
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2556
           subpage, len, addr);
2557
#endif
2558
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2559 2560
    if (res) {
        return res;
2561
    }
2562 2563
    switch (len) {
    case 1:
2564 2565
        *data = ldub_p(buf);
        return MEMTX_OK;
2566
    case 2:
2567 2568
        *data = lduw_p(buf);
        return MEMTX_OK;
2569
    case 4:
2570 2571
        *data = ldl_p(buf);
        return MEMTX_OK;
2572
    case 8:
2573 2574
        *data = ldq_p(buf);
        return MEMTX_OK;
2575 2576 2577
    default:
        abort();
    }
2578 2579
}

2580 2581
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2582
{
2583
    subpage_t *subpage = opaque;
2584
    uint8_t buf[8];
2585

2586
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2587
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2588 2589
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2590
#endif
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
    switch (len) {
    case 1:
        stb_p(buf, value);
        break;
    case 2:
        stw_p(buf, value);
        break;
    case 4:
        stl_p(buf, value);
        break;
2601 2602 2603
    case 8:
        stq_p(buf, value);
        break;
2604 2605 2606
    default:
        abort();
    }
2607
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2608 2609
}

2610
static bool subpage_accepts(void *opaque, hwaddr addr,
A
Amos Kong 已提交
2611
                            unsigned len, bool is_write)
2612
{
2613
    subpage_t *subpage = opaque;
2614
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2615
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2616
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2617 2618
#endif

2619 2620
    return flatview_access_valid(subpage->fv, addr + subpage->base,
                                 len, is_write);
2621 2622
}

2623
static const MemoryRegionOps subpage_ops = {
2624 2625
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2626 2627 2628 2629
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2630
    .valid.accepts = subpage_accepts,
2631
    .endianness = DEVICE_NATIVE_ENDIAN,
2632 2633
};

A
Anthony Liguori 已提交
2634
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2635
                             uint16_t section)
2636 2637 2638 2639 2640 2641 2642 2643
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2644 2645
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2646 2647
#endif
    for (; idx <= eidx; idx++) {
2648
        mmio->sub_section[idx] = section;
2649 2650 2651 2652 2653
    }

    return 0;
}

2654
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2655
{
A
Anthony Liguori 已提交
2656
    subpage_t *mmio;
2657

2658
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2659
    mmio->fv = fv;
2660
    mmio->base = base;
2661
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2662
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2663
    mmio->iomem.subpage = true;
2664
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2665 2666
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2667
#endif
2668
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2669 2670 2671 2672

    return mmio;
}

2673
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2674
{
2675
    assert(fv);
2676
    MemoryRegionSection section = {
2677
        .fv = fv,
2678 2679 2680
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2681
        .size = int128_2_64(),
2682 2683
    };

2684
    return phys_section_add(map, &section);
2685 2686
}

2687
MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2688
{
2689 2690
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2691
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2692
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2693 2694

    return sections[index & ~TARGET_PAGE_MASK].mr;
2695 2696
}

A
Avi Kivity 已提交
2697 2698
static void io_mem_init(void)
{
2699
    memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2700
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2701
                          NULL, UINT64_MAX);
2702 2703 2704 2705

    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
     * which can be called without the iothread mutex.
     */
2706
    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2707
                          NULL, UINT64_MAX);
2708 2709
    memory_region_clear_global_locking(&io_mem_notdirty);

2710
    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2711
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2712 2713
}

2714
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2715
{
2716 2717 2718
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2719
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2720
    assert(n == PHYS_SECTION_UNASSIGNED);
2721
    n = dummy_section(&d->map, fv, &io_mem_notdirty);
2722
    assert(n == PHYS_SECTION_NOTDIRTY);
2723
    n = dummy_section(&d->map, fv, &io_mem_rom);
2724
    assert(n == PHYS_SECTION_ROM);
2725
    n = dummy_section(&d->map, fv, &io_mem_watch);
2726
    assert(n == PHYS_SECTION_WATCH);
2727

M
Michael S. Tsirkin 已提交
2728
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2729 2730

    return d;
2731 2732
}

2733
void address_space_dispatch_free(AddressSpaceDispatch *d)
2734 2735 2736 2737 2738
{
    phys_sections_free(&d->map);
    g_free(d);
}

2739
static void tcg_commit(MemoryListener *listener)
2740
{
2741 2742
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
2743 2744 2745

    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
2746 2747 2748 2749 2750 2751
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
2752
    d = address_space_to_dispatch(cpuas->as);
2753
    atomic_rcu_set(&cpuas->memory_dispatch, d);
2754
    tlb_flush(cpuas->cpu);
2755 2756
}

A
Avi Kivity 已提交
2757 2758
static void memory_map_init(void)
{
2759
    system_memory = g_malloc(sizeof(*system_memory));
2760

2761
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2762
    address_space_init(&address_space_memory, system_memory, "memory");
2763

2764
    system_io = g_malloc(sizeof(*system_io));
2765 2766
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
2767
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
2768 2769 2770 2771 2772 2773 2774
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

2775 2776 2777 2778 2779
MemoryRegion *get_system_io(void)
{
    return system_io;
}

2780 2781
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
2782 2783
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
2784
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
P
Paul Brook 已提交
2785
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
2786 2787 2788
{
    int l, flags;
    target_ulong page;
2789
    void * p;
B
bellard 已提交
2790 2791 2792 2793 2794 2795 2796 2797

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
2798
            return -1;
B
bellard 已提交
2799 2800
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
2801
                return -1;
2802
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2803
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
2804
                return -1;
A
aurel32 已提交
2805 2806
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
2807 2808
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
2809
                return -1;
2810
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2811
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
2812
                return -1;
A
aurel32 已提交
2813
            memcpy(buf, p, l);
A
aurel32 已提交
2814
            unlock_user(p, addr, 0);
B
bellard 已提交
2815 2816 2817 2818 2819
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
2820
    return 0;
B
bellard 已提交
2821
}
B
bellard 已提交
2822

B
bellard 已提交
2823
#else
2824

2825
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
2826
                                     hwaddr length)
2827
{
2828
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2829 2830
    addr += memory_region_get_ram_addr(mr);

2831 2832 2833 2834 2835 2836 2837 2838 2839
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2840
        assert(tcg_enabled());
2841
        tb_lock();
2842
        tb_invalidate_phys_range(addr, addr + length);
2843
        tb_unlock();
2844
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2845
    }
2846
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2847 2848
}

2849
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2850
{
2851
    unsigned access_size_max = mr->ops->valid.max_access_size;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
2865
    }
2866 2867 2868 2869

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
2870
    }
2871
    l = pow2floor(l);
2872 2873

    return l;
2874 2875
}

2876
static bool prepare_mmio_access(MemoryRegion *mr)
2877
{
2878 2879 2880 2881 2882 2883 2884 2885
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
2886
    if (mr->flush_coalesced_mmio) {
2887 2888 2889
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
2890
        qemu_flush_coalesced_mmio_buffer();
2891 2892 2893
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
2894
    }
2895 2896

    return release_lock;
2897 2898
}

2899
/* Called within RCU critical section.  */
2900 2901 2902 2903 2904
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
                                           int len, hwaddr addr1,
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
2905 2906
{
    uint8_t *ptr;
2907
    uint64_t val;
2908
    MemTxResult result = MEMTX_OK;
2909
    bool release_lock = false;
2910

2911
    for (;;) {
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
            switch (l) {
            case 8:
                /* 64 bit write access */
                val = ldq_p(buf);
                result |= memory_region_dispatch_write(mr, addr1, val, 8,
                                                       attrs);
                break;
            case 4:
                /* 32 bit write access */
2926
                val = (uint32_t)ldl_p(buf);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
                result |= memory_region_dispatch_write(mr, addr1, val, 4,
                                                       attrs);
                break;
            case 2:
                /* 16 bit write access */
                val = lduw_p(buf);
                result |= memory_region_dispatch_write(mr, addr1, val, 2,
                                                       attrs);
                break;
            case 1:
                /* 8 bit write access */
                val = ldub_p(buf);
                result |= memory_region_dispatch_write(mr, addr1, val, 1,
                                                       attrs);
                break;
            default:
                abort();
B
bellard 已提交
2944 2945
            }
        } else {
2946
            /* RAM case */
2947
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2948 2949
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
2950
        }
2951 2952 2953 2954 2955 2956

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
2957 2958 2959
        len -= l;
        buf += l;
        addr += l;
2960 2961 2962 2963 2964 2965

        if (!len) {
            break;
        }

        l = len;
2966
        mr = flatview_translate(fv, addr, &addr1, &l, true);
B
bellard 已提交
2967
    }
2968

2969
    return result;
B
bellard 已提交
2970
}
B
bellard 已提交
2971

2972 2973
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                                  const uint8_t *buf, int len)
A
Avi Kivity 已提交
2974
{
2975 2976 2977 2978 2979
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

2980 2981
    if (len > 0) {
        rcu_read_lock();
2982
        l = len;
2983 2984 2985
        mr = flatview_translate(fv, addr, &addr1, &l, true);
        result = flatview_write_continue(fv, addr, attrs, buf, len,
                                         addr1, l, mr);
2986 2987 2988 2989 2990 2991
        rcu_read_unlock();
    }

    return result;
}

2992 2993 2994 2995 2996 2997 2998
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                              MemTxAttrs attrs,
                                              const uint8_t *buf, int len)
{
    return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
}

2999
/* Called within RCU critical section.  */
3000 3001 3002 3003
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
                                   int len, hwaddr addr1, hwaddr l,
                                   MemoryRegion *mr)
3004 3005 3006 3007 3008
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3009

3010
    for (;;) {
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            switch (l) {
            case 8:
                /* 64 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 8,
                                                      attrs);
                stq_p(buf, val);
                break;
            case 4:
                /* 32 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 4,
                                                      attrs);
                stl_p(buf, val);
                break;
            case 2:
                /* 16 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 2,
                                                      attrs);
                stw_p(buf, val);
                break;
            case 1:
                /* 8 bit read access */
                result |= memory_region_dispatch_read(mr, addr1, &val, 1,
                                                      attrs);
                stb_p(buf, val);
                break;
            default:
                abort();
            }
        } else {
            /* RAM case */
3045
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3057 3058 3059 3060 3061 3062

        if (!len) {
            break;
        }

        l = len;
3063
        mr = flatview_translate(fv, addr, &addr1, &l, false);
3064 3065 3066 3067 3068
    }

    return result;
}

3069 3070
MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
                               MemTxAttrs attrs, uint8_t *buf, int len)
3071 3072 3073 3074 3075 3076 3077 3078 3079
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

    if (len > 0) {
        rcu_read_lock();
        l = len;
3080 3081 3082
        mr = flatview_translate(fv, addr, &addr1, &l, false);
        result = flatview_read_continue(fv, addr, attrs, buf, len,
                                        addr1, l, mr);
3083
        rcu_read_unlock();
3084 3085 3086
    }

    return result;
A
Avi Kivity 已提交
3087 3088
}

3089 3090
static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
                               uint8_t *buf, int len, bool is_write)
3091 3092
{
    if (is_write) {
3093
        return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3094
    } else {
3095
        return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3096 3097
    }
}
A
Avi Kivity 已提交
3098

3099 3100 3101 3102 3103 3104 3105 3106
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
                             MemTxAttrs attrs, uint8_t *buf,
                             int len, bool is_write)
{
    return flatview_rw(address_space_to_flatview(as),
                       addr, attrs, buf, len, is_write);
}

A
Avi Kivity 已提交
3107
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
A
Avi Kivity 已提交
3108 3109
                            int len, int is_write)
{
3110 3111
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3112 3113
}

3114 3115 3116 3117 3118
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3119
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3120
    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
B
bellard 已提交
3121
{
3122
    hwaddr l;
B
bellard 已提交
3123
    uint8_t *ptr;
3124
    hwaddr addr1;
3125
    MemoryRegion *mr;
3126

3127
    rcu_read_lock();
B
bellard 已提交
3128
    while (len > 0) {
3129
        l = len;
3130
        mr = address_space_translate(as, addr, &addr1, &l, true);
3131

3132 3133
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3134
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3135 3136
        } else {
            /* ROM/RAM case */
3137
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3138 3139 3140
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3141
                invalidate_and_set_dirty(mr, addr1, l);
3142 3143 3144 3145 3146
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3147 3148 3149 3150 3151
        }
        len -= l;
        buf += l;
        addr += l;
    }
3152
    rcu_read_unlock();
B
bellard 已提交
3153 3154
}

3155
/* used for ROM loading : can write in RAM and ROM */
3156
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3157 3158
                                   const uint8_t *buf, int len)
{
3159
    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
}

void cpu_flush_icache_range(hwaddr start, int len)
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3174 3175
    cpu_physical_memory_write_rom_internal(&address_space_memory,
                                           start, NULL, len, FLUSH_CACHE);
3176 3177
}

3178
typedef struct {
3179
    MemoryRegion *mr;
3180
    void *buffer;
A
Avi Kivity 已提交
3181 3182
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3183
    bool in_use;
3184 3185 3186 3187
} BounceBuffer;

static BounceBuffer bounce;

3188
typedef struct MapClient {
3189
    QEMUBH *bh;
B
Blue Swirl 已提交
3190
    QLIST_ENTRY(MapClient) link;
3191 3192
} MapClient;

3193
QemuMutex map_client_list_lock;
B
Blue Swirl 已提交
3194 3195
static QLIST_HEAD(map_client_list, MapClient) map_client_list
    = QLIST_HEAD_INITIALIZER(map_client_list);
3196

3197 3198 3199 3200 3201 3202
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3203 3204 3205 3206 3207 3208
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3209 3210
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3211 3212 3213
    }
}

3214
void cpu_register_map_client(QEMUBH *bh)
3215
{
3216
    MapClient *client = g_malloc(sizeof(*client));
3217

3218
    qemu_mutex_lock(&map_client_list_lock);
3219
    client->bh = bh;
B
Blue Swirl 已提交
3220
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3221 3222 3223
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3224
    qemu_mutex_unlock(&map_client_list_lock);
3225 3226
}

3227
void cpu_exec_init_all(void)
3228
{
3229
    qemu_mutex_init(&ram_list.mutex);
3230 3231 3232 3233 3234 3235 3236 3237
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3238
    io_mem_init();
3239
    memory_map_init();
3240
    qemu_mutex_init(&map_client_list_lock);
3241 3242
}

3243
void cpu_unregister_map_client(QEMUBH *bh)
3244 3245 3246
{
    MapClient *client;

3247 3248 3249 3250 3251 3252
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3253
    }
3254
    qemu_mutex_unlock(&map_client_list_lock);
3255 3256 3257 3258
}

static void cpu_notify_map_clients(void)
{
3259
    qemu_mutex_lock(&map_client_list_lock);
3260
    cpu_notify_map_clients_locked();
3261
    qemu_mutex_unlock(&map_client_list_lock);
3262 3263
}

3264 3265
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
                                  bool is_write)
3266
{
3267
    MemoryRegion *mr;
3268 3269
    hwaddr l, xlat;

3270
    rcu_read_lock();
3271 3272
    while (len > 0) {
        l = len;
3273
        mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3274 3275 3276
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
            if (!memory_region_access_valid(mr, xlat, l, is_write)) {
R
Roman Kapl 已提交
3277
                rcu_read_unlock();
3278 3279 3280 3281 3282 3283 3284
                return false;
            }
        }

        len -= l;
        addr += l;
    }
3285
    rcu_read_unlock();
3286 3287 3288
    return true;
}

3289 3290 3291 3292 3293 3294 3295
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
                                int len, bool is_write)
{
    return flatview_access_valid(address_space_to_flatview(as),
                                 addr, len, is_write);
}

3296
static hwaddr
3297 3298
flatview_extend_translation(FlatView *fv, hwaddr addr,
                                 hwaddr target_len,
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
                                 MemoryRegion *mr, hwaddr base, hwaddr len,
                                 bool is_write)
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3315 3316
        this_mr = flatview_translate(fv, addr, &xlat,
                                                   &len, is_write);
3317 3318 3319 3320 3321 3322
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3323 3324 3325 3326
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3327 3328
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3329
 */
A
Avi Kivity 已提交
3330
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3331 3332
                        hwaddr addr,
                        hwaddr *plen,
A
Avi Kivity 已提交
3333
                        bool is_write)
3334
{
A
Avi Kivity 已提交
3335
    hwaddr len = *plen;
3336 3337
    hwaddr l, xlat;
    MemoryRegion *mr;
3338
    void *ptr;
3339
    FlatView *fv = address_space_to_flatview(as);
3340

3341 3342 3343
    if (len == 0) {
        return NULL;
    }
3344

3345
    l = len;
3346
    rcu_read_lock();
3347
    mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3348

3349
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3350
        if (atomic_xchg(&bounce.in_use, true)) {
3351
            rcu_read_unlock();
3352
            return NULL;
3353
        }
3354 3355 3356
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3357 3358
        bounce.addr = addr;
        bounce.len = l;
3359 3360 3361

        memory_region_ref(mr);
        bounce.mr = mr;
3362
        if (!is_write) {
3363
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3364
                               bounce.buffer, l);
3365
        }
3366

3367
        rcu_read_unlock();
3368 3369 3370 3371 3372
        *plen = l;
        return bounce.buffer;
    }


3373
    memory_region_ref(mr);
3374 3375
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
                                             l, is_write);
3376
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3377 3378 3379
    rcu_read_unlock();

    return ptr;
3380 3381
}

A
Avi Kivity 已提交
3382
/* Unmaps a memory region previously mapped by address_space_map().
3383 3384 3385
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3386 3387
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3388 3389
{
    if (buffer != bounce.buffer) {
3390 3391 3392
        MemoryRegion *mr;
        ram_addr_t addr1;

3393
        mr = memory_region_from_host(buffer, &addr1);
3394
        assert(mr != NULL);
3395
        if (is_write) {
3396
            invalidate_and_set_dirty(mr, addr1, access_len);
3397
        }
3398
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3399
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3400
        }
3401
        memory_region_unref(mr);
3402 3403 3404
        return;
    }
    if (is_write) {
3405 3406
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3407
    }
3408
    qemu_vfree(bounce.buffer);
3409
    bounce.buffer = NULL;
3410
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3411
    atomic_mb_set(&bounce.in_use, false);
3412
    cpu_notify_map_clients();
3413
}
B
bellard 已提交
3414

A
Avi Kivity 已提交
3415 3416
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3417 3418 3419 3420 3421
                              int is_write)
{
    return address_space_map(&address_space_memory, addr, plen, is_write);
}

A
Avi Kivity 已提交
3422 3423
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3424 3425 3426 3427
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3438

P
Paolo Bonzini 已提交
3439 3440 3441 3442 3443 3444
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
P
Paolo Bonzini 已提交
3445 3446 3447 3448
    cache->len = len;
    cache->as = as;
    cache->xlat = addr;
    return len;
P
Paolo Bonzini 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
P
Paolo Bonzini 已提交
3459
    cache->as = NULL;
P
Paolo Bonzini 已提交
3460 3461 3462 3463 3464
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
#define SUFFIX                   _cached
P
Paolo Bonzini 已提交
3465 3466
#define TRANSLATE(addr, ...)     \
    address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
P
Paolo Bonzini 已提交
3467
#define IS_DIRECT(mr, is_write)  true
P
Paolo Bonzini 已提交
3468 3469 3470 3471
#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
#define RCU_READ_LOCK()          rcu_read_lock()
#define RCU_READ_UNLOCK()        rcu_read_unlock()
P
Paolo Bonzini 已提交
3472 3473
#include "memory_ldst.inc.c"

3474
/* virtual memory access for debug (includes writing to ROM) */
3475
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3476
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3477 3478
{
    int l;
A
Avi Kivity 已提交
3479
    hwaddr phys_addr;
3480
    target_ulong page;
B
bellard 已提交
3481

3482
    cpu_synchronize_state(cpu);
B
bellard 已提交
3483
    while (len > 0) {
3484 3485 3486
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3487
        page = addr & TARGET_PAGE_MASK;
3488 3489
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3490 3491 3492 3493 3494 3495
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3496
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3497
        if (is_write) {
3498 3499
            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
                                          phys_addr, buf, l);
3500
        } else {
3501 3502
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
                             MEMTXATTRS_UNSPECIFIED,
3503
                             buf, l, 0);
3504
        }
B
bellard 已提交
3505 3506 3507 3508 3509 3510
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3511 3512 3513 3514 3515

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3516
size_t qemu_target_page_size(void)
3517
{
3518
    return TARGET_PAGE_SIZE;
3519 3520
}

3521 3522 3523 3524 3525 3526 3527 3528 3529
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3530
#endif
B
bellard 已提交
3531

3532 3533 3534 3535
/*
 * A helper function for the _utterly broken_ virtio device model to find out if
 * it's running on a big endian machine. Don't do this at home kids!
 */
3536 3537
bool target_words_bigendian(void);
bool target_words_bigendian(void)
3538 3539 3540 3541 3542 3543 3544 3545
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3546
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3547
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3548
{
3549
    MemoryRegion*mr;
3550
    hwaddr l = 1;
3551
    bool res;
3552

3553
    rcu_read_lock();
3554 3555
    mr = address_space_translate(&address_space_memory,
                                 phys_addr, &phys_addr, &l, false);
3556

3557 3558 3559
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3560
}
3561

3562
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3563 3564
{
    RAMBlock *block;
3565
    int ret = 0;
3566

M
Mike Day 已提交
3567
    rcu_read_lock();
P
Peter Xu 已提交
3568
    RAMBLOCK_FOREACH(block) {
3569 3570 3571 3572 3573
        ret = func(block->idstr, block->host, block->offset,
                   block->used_length, opaque);
        if (ret) {
            break;
        }
3574
    }
M
Mike Day 已提交
3575
    rcu_read_unlock();
3576
    return ret;
3577
}
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3609
        if (rb->page_size == qemu_host_page_size) {
3610
#if defined(CONFIG_MADVISE)
3611 3612 3613 3614
            /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
             * freeing the page.
             */
            ret = madvise(host_startaddr, length, MADV_DONTNEED);
3615
#endif
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
        } else {
            /* Huge page case  - unfortunately it can't do DONTNEED, but
             * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
             * huge page file.
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
#endif
        }
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
        if (ret) {
            ret = -errno;
            error_report("ram_block_discard_range: Failed to discard range "
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
        }
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

3642
#endif
Y
Yang Zhong 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

#if !defined(CONFIG_USER_ONLY)

static void mtree_print_phys_entries(fprintf_function mon, void *f,
                                     int start, int end, int skip, int ptr)
{
    if (start == end - 1) {
        mon(f, "\t%3d      ", start);
    } else {
        mon(f, "\t%3d..%-3d ", start, end - 1);
    }
    mon(f, " skip=%d ", skip);
    if (ptr == PHYS_MAP_NODE_NIL) {
        mon(f, " ptr=NIL");
    } else if (!skip) {
        mon(f, " ptr=#%d", ptr);
    } else {
        mon(f, " ptr=[%d]", ptr);
    }
    mon(f, "\n");
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

void mtree_print_dispatch(fprintf_function mon, void *f,
                          AddressSpaceDispatch *d, MemoryRegion *root)
{
    int i;

    mon(f, "  Dispatch\n");
    mon(f, "    Physical sections\n");

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
            mon(f, " alias=%s", s->mr->alias->name ?
                    s->mr->alias->name : "noname");
        }
        mon(f, "\n");
    }

    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

        mon(f, "      [%d]\n", i);

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
        }
    }
}

#endif