exec.c 119.9 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45
#include "exec/memory.h"
P
Paolo Bonzini 已提交
46
#include "exec/ioport.h"
47
#include "sysemu/dma.h"
48
#include "sysemu/hostmem.h"
49
#include "sysemu/hw_accel.h"
50
#include "exec/address-spaces.h"
51
#include "sysemu/xen-mapcache.h"
52
#include "trace-root.h"
53

54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
static MemoryRegion io_mem_unassigned;
92
#endif
93

94 95 96 97 98
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

99 100
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
101 102
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
103
__thread CPUState *current_cpu;
P
pbrook 已提交
104
/* 0 = Do not count executed instructions.
T
ths 已提交
105
   1 = Precise instruction counting.
P
pbrook 已提交
106
   2 = Adaptive rate instruction counting.  */
107
int use_icount;
B
bellard 已提交
108

Y
Yang Zhong 已提交
109 110 111
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

131
#if !defined(CONFIG_USER_ONLY)
132

133 134 135 136 137 138 139 140 141 142
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

143 144 145
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
146
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
147
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
148
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149
    uint32_t ptr : 26;
150 151
};

152 153
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

154
/* Size of the L2 (and L3, etc) page tables.  */
155
#define ADDR_SPACE_BITS 64
156

M
Michael S. Tsirkin 已提交
157
#define P_L2_BITS 9
158 159 160 161 162
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
163

164
typedef struct PhysPageMap {
165 166
    struct rcu_head rcu;

167 168 169 170 171 172 173 174
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

175
struct AddressSpaceDispatch {
176
    MemoryRegionSection *mru_section;
177 178 179 180
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
181
    PhysPageMap map;
182 183
};

184 185 186
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
187
    FlatView *fv;
188
    hwaddr base;
189
    uint16_t sub_section[];
190 191
} subpage_t;

192
#define PHYS_SECTION_UNASSIGNED 0
193

194
static void io_mem_init(void);
A
Avi Kivity 已提交
195
static void memory_map_init(void);
196
static void tcg_log_global_after_sync(MemoryListener *listener);
197
static void tcg_commit(MemoryListener *listener);
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

213 214 215 216 217 218
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

219
#endif
B
bellard 已提交
220

221
#if !defined(CONFIG_USER_ONLY)
222

223
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224
{
225
    static unsigned alloc_hint = 16;
226
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227
        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
228
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229
        alloc_hint = map->nodes_nb_alloc;
230
    }
231 232
}

233
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
234 235
{
    unsigned i;
236
    uint32_t ret;
237 238
    PhysPageEntry e;
    PhysPageEntry *p;
239

240
    ret = map->nodes_nb++;
241
    p = map->nodes[ret];
242
    assert(ret != PHYS_MAP_NODE_NIL);
243
    assert(ret != map->nodes_nb_alloc);
244 245 246

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247
    for (i = 0; i < P_L2_SIZE; ++i) {
248
        memcpy(&p[i], &e, sizeof(e));
249
    }
250
    return ret;
251 252
}

253
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254
                                hwaddr *index, uint64_t *nb, uint16_t leaf,
255
                                int level)
256 257
{
    PhysPageEntry *p;
258
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
259

M
Michael S. Tsirkin 已提交
260
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
262
    }
263
    p = map->nodes[lp->ptr];
264
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
265

266
    while (*nb && lp < &p[P_L2_SIZE]) {
267
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
268
            lp->skip = 0;
269
            lp->ptr = leaf;
270 271
            *index += step;
            *nb -= step;
272
        } else {
273
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
274 275
        }
        ++lp;
276 277 278
    }
}

A
Avi Kivity 已提交
279
static void phys_page_set(AddressSpaceDispatch *d,
280
                          hwaddr index, uint64_t nb,
281
                          uint16_t leaf)
282
{
283
    /* Wildly overreserve - it doesn't matter much. */
284
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
285

286
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
287 288
}

289 290 291
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
292
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
312
            phys_page_compact(&p[i], nodes);
313 314 315 316 317 318 319 320 321 322 323
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
324 325
    if (P_L2_LEVELS >= (1 << 6) &&
        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

343
void address_space_dispatch_compact(AddressSpaceDispatch *d)
344 345
{
    if (d->phys_map.skip) {
346
        phys_page_compact(&d->phys_map, d->map.nodes);
347 348 349
    }
}

F
Fam Zheng 已提交
350 351 352 353 354 355
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
356
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
357
           range_covers_byte(section->offset_within_address_space,
358
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
359 360
}

361
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
362
{
363 364 365
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
366
    hwaddr index = addr >> TARGET_PAGE_BITS;
367
    int i;
368

M
Michael S. Tsirkin 已提交
369
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
370
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
371
            return &sections[PHYS_SECTION_UNASSIGNED];
372
        }
373
        p = nodes[lp.ptr];
374
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375
    }
376

F
Fam Zheng 已提交
377
    if (section_covers_addr(&sections[lp.ptr], addr)) {
378 379 380 381
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
382 383
}

384
/* Called from RCU critical section */
385
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
386 387
                                                        hwaddr addr,
                                                        bool resolve_subpage)
388
{
389
    MemoryRegionSection *section = atomic_read(&d->mru_section);
390 391
    subpage_t *subpage;

392 393
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
394
        section = phys_page_find(d, addr);
395
        atomic_set(&d->mru_section, section);
396
    }
397 398
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
399
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
400 401
    }
    return section;
402 403
}

404
/* Called from RCU critical section */
405
static MemoryRegionSection *
406
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
407
                                 hwaddr *plen, bool resolve_subpage)
408 409
{
    MemoryRegionSection *section;
410
    MemoryRegion *mr;
411
    Int128 diff;
412

413
    section = address_space_lookup_region(d, addr, resolve_subpage);
414 415 416 417 418 419
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

420
    mr = section->mr;
421 422 423 424 425 426 427 428 429 430 431 432

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
433
    if (memory_region_is_ram(mr)) {
434
        diff = int128_sub(section->size, int128_make64(addr));
435 436
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
437 438
    return section;
}
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
457
 * @attrs: transaction attributes
458 459 460 461 462 463 464 465 466 467
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
468 469
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
470 471 472 473 474 475 476
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
477 478 479 480 481 482 483 484 485
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
528
 * @target_as: the address space targeted by the IOMMU
529
 * @attrs: memory transaction attributes
530 531 532
 *
 * This function is called from RCU critical section
 */
533 534 535
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
536 537
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
538 539
                                                 bool is_write,
                                                 bool is_mmio,
540 541
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
542 543
{
    MemoryRegionSection *section;
544
    IOMMUMemoryRegion *iommu_mr;
545 546
    hwaddr plen = (hwaddr)(-1);

547 548
    if (!plen_out) {
        plen_out = &plen;
549
    }
550

551 552 553
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
554

555 556 557 558 559
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
560
                                             target_as, attrs);
561
    }
562
    if (page_mask_out) {
563 564
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
565 566
    }

567
    return *section;
568 569 570
}

/* Called from RCU critical section */
571
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
572
                                            bool is_write, MemTxAttrs attrs)
573
{
574
    MemoryRegionSection section;
575
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
576

577 578 579 580 581
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
582 583
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
584

585 586 587 588
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
589

590 591 592 593 594
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
595
        .target_as = as,
596 597 598
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
599 600 601 602 603 604 605 606 607
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
608
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
609 610
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
611 612 613
{
    MemoryRegion *mr;
    MemoryRegionSection section;
614
    AddressSpace *as = NULL;
615 616

    /* This can be MMIO, so setup MMIO bit. */
617
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
618
                                    is_write, true, &as, attrs);
619 620
    mr = section.mr;

621
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
622
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
623
        *plen = MIN(page, *plen);
624 625
    }

A
Avi Kivity 已提交
626
    return mr;
627 628
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
663 664
    Error *err = NULL;
    int i, ret;
665 666

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
667
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
668 669 670 671 672 673 674
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
675 676
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
693 694 695 696 697 698
        ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
                                                    &err);
        if (ret) {
            error_report_err(err);
            exit(1);
        }
699 700 701 702 703 704 705 706 707 708 709 710 711 712
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715
        g_free(notifier);
716 717 718 719
    }
    g_array_free(cpu->iommu_notifiers, true);
}

720
/* Called from RCU critical section */
721
MemoryRegionSection *
722
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 724
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
725
{
A
Avi Kivity 已提交
726
    MemoryRegionSection *section;
727 728 729 730
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
731
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
768

769
    assert(!memory_region_is_iommu(section->mr));
770
    *xlat = addr;
A
Avi Kivity 已提交
771
    return section;
772 773 774

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775
}
776
#endif
B
bellard 已提交
777

778
#if !defined(CONFIG_USER_ONLY)
779 780

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
781
{
782
    CPUState *cpu = opaque;
B
bellard 已提交
783

784 785
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
786
    cpu->interrupt_request &= ~0x01;
787
    tlb_flush(cpu);
788

789 790 791 792 793 794 795
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

796
    return 0;
B
bellard 已提交
797
}
B
bellard 已提交
798

799 800 801 802
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

803
    cpu->exception_index = -1;
804 805 806 807 808 809 810 811

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

812
    return tcg_enabled() && cpu->exception_index != -1;
813 814 815 816 817 818
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
819
    .needed = cpu_common_exception_index_needed,
820 821 822 823 824 825
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

844
const VMStateDescription vmstate_cpu_common = {
845 846 847
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
848
    .pre_load = cpu_common_pre_load,
849
    .post_load = cpu_common_post_load,
850
    .fields = (VMStateField[]) {
851 852
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
853
        VMSTATE_END_OF_LIST()
854
    },
855 856
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
857
        &vmstate_cpu_common_crash_occurred,
858
        NULL
859 860
    }
};
861

862
#endif
B
bellard 已提交
863

864
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
865
{
A
Andreas Färber 已提交
866
    CPUState *cpu;
B
bellard 已提交
867

A
Andreas Färber 已提交
868
    CPU_FOREACH(cpu) {
869
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
870
            return cpu;
871
        }
B
bellard 已提交
872
    }
873

A
Andreas Färber 已提交
874
    return NULL;
B
bellard 已提交
875 876
}

877
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
878 879
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
880
{
881
    CPUAddressSpace *newas;
P
Peter Xu 已提交
882
    AddressSpace *as = g_new0(AddressSpace, 1);
883
    char *as_name;
P
Peter Xu 已提交
884 885

    assert(mr);
886 887 888
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
889 890 891 892

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

893 894 895 896 897
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

898 899
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
900

901 902
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903
    }
904

905 906 907
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
908
    if (tcg_enabled()) {
909
        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 911
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
912
    }
913
}
914 915 916 917 918 919

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
920 921
#endif

922
void cpu_exec_unrealizefn(CPUState *cpu)
923
{
924 925
    CPUClass *cc = CPU_GET_CLASS(cpu);

926
    cpu_list_remove(cpu);
927 928 929 930 931 932 933

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
934 935 936
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
937 938
}

F
Fam Zheng 已提交
939 940 941
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
942
     * so users can wire up its memory. (This can't go in hw/core/cpu.c
F
Fam Zheng 已提交
943 944 945 946 947 948 949 950 951 952
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
953
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
954
{
955
    cpu->as = NULL;
956
    cpu->num_ases = 0;
957

958 959
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
960 961
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
962
#endif
L
Laurent Vivier 已提交
963 964
}

965
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
966
{
967
    CPUClass *cc = CPU_GET_CLASS(cpu);
968
    static bool tcg_target_initialized;
969

970
    cpu_list_add(cpu);
971

972 973
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
974 975
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
976
    tlb_init(cpu);
977

978
#ifndef CONFIG_USER_ONLY
979
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981
    }
982
    if (cc->vmsd != NULL) {
983
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984
    }
985

986
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987
#endif
B
bellard 已提交
988 989
}

990
const char *parse_cpu_option(const char *cpu_option)
991 992 993 994 995 996
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

997
    model_pieces = g_strsplit(cpu_option, ",", 2);
998 999 1000 1001
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1017
#if defined(CONFIG_USER_ONLY)
1018
void tb_invalidate_phys_addr(target_ulong addr)
1019
{
1020
    mmap_lock();
1021
    tb_invalidate_phys_page_range(addr, addr + 1);
1022 1023
    mmap_unlock();
}
1024 1025 1026 1027 1028

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1029
#else
1030 1031 1032 1033 1034 1035
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1036 1037 1038 1039
    if (!tcg_enabled()) {
        return;
    }

1040 1041 1042 1043 1044 1045 1046 1047
    rcu_read_lock();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        rcu_read_unlock();
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1048
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1049 1050 1051
    rcu_read_unlock();
}

1052 1053 1054 1055 1056 1057 1058 1059
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061
    }
1062
}
1063
#endif
B
bellard 已提交
1064

1065
#ifndef CONFIG_USER_ONLY
1066
/* Add a watchpoint.  */
1067
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068
                          int flags, CPUWatchpoint **watchpoint)
1069
{
1070
    CPUWatchpoint *wp;
1071

1072
    /* forbid ranges which are empty or run off the end of the address space */
1073
    if (len == 0 || (addr + len - 1) < addr) {
1074 1075
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1076 1077
        return -EINVAL;
    }
1078
    wp = g_malloc(sizeof(*wp));
1079 1080

    wp->vaddr = addr;
1081
    wp->len = len;
1082 1083
    wp->flags = flags;

1084
    /* keep all GDB-injected watchpoints in front */
1085 1086 1087 1088 1089
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1090

1091
    tlb_flush_page(cpu, addr);
1092 1093 1094 1095

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1096 1097
}

1098
/* Remove a specific watchpoint.  */
1099
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1100
                          int flags)
1101
{
1102
    CPUWatchpoint *wp;
1103

1104
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1105
        if (addr == wp->vaddr && len == wp->len
1106
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1107
            cpu_watchpoint_remove_by_ref(cpu, wp);
1108 1109 1110
            return 0;
        }
    }
1111
    return -ENOENT;
1112 1113
}

1114
/* Remove a specific watchpoint by reference.  */
1115
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1116
{
1117
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1118

1119
    tlb_flush_page(cpu, watchpoint->vaddr);
1120

1121
    g_free(watchpoint);
1122 1123 1124
}

/* Remove all matching watchpoints.  */
1125
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1126
{
1127
    CPUWatchpoint *wp, *next;
1128

1129
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1130 1131 1132
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1133
    }
1134
}
1135 1136 1137 1138 1139 1140

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
1141 1142
static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
                                              vaddr addr, vaddr len)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/* Return flags for watchpoints that match addr + prot.  */
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
{
    CPUWatchpoint *wp;
    int ret = 0;

    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
        if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
            ret |= wp->flags;
        }
    }
    return ret;
}
1168
#endif /* !CONFIG_USER_ONLY */
1169

1170
/* Add a breakpoint.  */
1171
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1172
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1173
{
1174
    CPUBreakpoint *bp;
1175

1176
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1177

1178 1179 1180
    bp->pc = pc;
    bp->flags = flags;

1181
    /* keep all GDB-injected breakpoints in front */
1182
    if (flags & BP_GDB) {
1183
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1184
    } else {
1185
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1186
    }
1187

1188
    breakpoint_invalidate(cpu, pc);
1189

1190
    if (breakpoint) {
1191
        *breakpoint = bp;
1192
    }
B
bellard 已提交
1193 1194 1195
    return 0;
}

1196
/* Remove a specific breakpoint.  */
1197
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1198 1199 1200
{
    CPUBreakpoint *bp;

1201
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1202
        if (bp->pc == pc && bp->flags == flags) {
1203
            cpu_breakpoint_remove_by_ref(cpu, bp);
1204 1205
            return 0;
        }
1206
    }
1207
    return -ENOENT;
1208 1209
}

1210
/* Remove a specific breakpoint by reference.  */
1211
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1212
{
1213 1214 1215
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1216

1217
    g_free(breakpoint);
1218 1219 1220
}

/* Remove all matching breakpoints. */
1221
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1222
{
1223
    CPUBreakpoint *bp, *next;
1224

1225
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1226 1227 1228
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1229
    }
B
bellard 已提交
1230 1231
}

B
bellard 已提交
1232 1233
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1234
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1235
{
1236 1237 1238
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1239
            kvm_update_guest_debug(cpu, 0);
1240
        } else {
S
Stuart Brady 已提交
1241
            /* must flush all the translated code to avoid inconsistencies */
1242
            /* XXX: only flush what is necessary */
1243
            tb_flush(cpu);
1244
        }
B
bellard 已提交
1245 1246 1247
    }
}

1248
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1249 1250
{
    va_list ap;
P
pbrook 已提交
1251
    va_list ap2;
B
bellard 已提交
1252 1253

    va_start(ap, fmt);
P
pbrook 已提交
1254
    va_copy(ap2, ap);
B
bellard 已提交
1255 1256 1257
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1258
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259
    if (qemu_log_separate()) {
1260
        qemu_log_lock();
1261 1262 1263
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1264
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1265
        qemu_log_flush();
1266
        qemu_log_unlock();
1267
        qemu_log_close();
1268
    }
P
pbrook 已提交
1269
    va_end(ap2);
1270
    va_end(ap);
1271
    replay_finish();
1272 1273 1274 1275 1276
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1277
        act.sa_flags = 0;
1278 1279 1280
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1281 1282 1283
    abort();
}

1284
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1285
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1286 1287 1288 1289
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1290
    block = atomic_rcu_read(&ram_list.mru_block);
1291
    if (block && addr - block->offset < block->max_length) {
1292
        return block;
P
Paolo Bonzini 已提交
1293
    }
P
Peter Xu 已提交
1294
    RAMBLOCK_FOREACH(block) {
1295
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1296 1297 1298 1299 1300 1301 1302 1303
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1320 1321 1322 1323
    ram_list.mru_block = block;
    return block;
}

1324
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1325
{
1326
    CPUState *cpu;
P
Paolo Bonzini 已提交
1327
    ram_addr_t start1;
1328 1329 1330
    RAMBlock *block;
    ram_addr_t end;

1331
    assert(tcg_enabled());
1332 1333
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1334

M
Mike Day 已提交
1335
    rcu_read_lock();
P
Paolo Bonzini 已提交
1336 1337
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1338
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1339 1340 1341
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
M
Mike Day 已提交
1342
    rcu_read_unlock();
J
Juan Quintela 已提交
1343 1344
}

P
pbrook 已提交
1345
/* Note: start and end must be within the same ram block.  */
1346 1347 1348
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1349
{
1350
    DirtyMemoryBlocks *blocks;
1351
    unsigned long end, page;
1352
    bool dirty = false;
1353 1354
    RAMBlock *ramblock;
    uint64_t mr_offset, mr_size;
1355 1356 1357 1358

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1359

1360 1361
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1362 1363 1364 1365

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1366 1367 1368 1369
    ramblock = qemu_get_ram_block(start);
    /* Range sanity check on the ramblock */
    assert(start >= ramblock->offset &&
           start + length <= ramblock->offset + ramblock->used_length);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                              offset, num);
        page += num;
    }

1381 1382 1383 1384
    mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
    mr_size = (end - page) << TARGET_PAGE_BITS;
    memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);

1385
    rcu_read_unlock();
1386 1387

    if (dirty && tcg_enabled()) {
1388
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1389
    }
1390 1391

    return dirty;
1392 1393
}

1394
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1395
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1396 1397
{
    DirtyMemoryBlocks *blocks;
1398
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    while (page < end) {
        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);

        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
        offset >>= BITS_PER_LEVEL;

        bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                     blocks->blocks[idx] + offset,
                                     num);
        page += num;
        dest += num >> BITS_PER_LEVEL;
    }

    rcu_read_unlock();

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

1440 1441
    memory_region_clear_dirty_bitmap(mr, offset, length);

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1466
/* Called from RCU critical section */
1467
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1468
                                       MemoryRegionSection *section)
B
Blue Swirl 已提交
1469
{
1470 1471
    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
    return section - d->map.sections;
B
Blue Swirl 已提交
1472
}
1473 1474
#endif /* defined(CONFIG_USER_ONLY) */

1475
#if !defined(CONFIG_USER_ONLY)
1476

1477 1478
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section);
1479
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1480

1481
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1482
                               qemu_anon_ram_alloc;
1483 1484 1485 1486 1487 1488

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1489
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1490 1491 1492 1493
{
    phys_mem_alloc = alloc;
}

1494 1495
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1496
{
1497 1498 1499 1500
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1501
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1502

1503 1504 1505 1506
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1507
    }
1508
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1509
    memory_region_ref(section->mr);
1510
    return map->sections_nb++;
1511 1512
}

1513 1514
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1515 1516
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1517 1518
    memory_region_unref(mr);

D
Don Slutz 已提交
1519
    if (have_sub_page) {
1520
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1521
        object_unref(OBJECT(&subpage->iomem));
1522 1523 1524 1525
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1526
static void phys_sections_free(PhysPageMap *map)
1527
{
1528 1529
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1530 1531
        phys_section_destroy(section->mr);
    }
1532 1533
    g_free(map->sections);
    g_free(map->nodes);
1534 1535
}

1536
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1537
{
1538
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1539
    subpage_t *subpage;
A
Avi Kivity 已提交
1540
    hwaddr base = section->offset_within_address_space
1541
        & TARGET_PAGE_MASK;
1542
    MemoryRegionSection *existing = phys_page_find(d, base);
1543 1544
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1545
        .size = int128_make64(TARGET_PAGE_SIZE),
1546
    };
A
Avi Kivity 已提交
1547
    hwaddr start, end;
1548

1549
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1550

1551
    if (!(existing->mr->subpage)) {
1552 1553
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1554
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1555
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1556
                      phys_section_add(&d->map, &subsection));
1557
    } else {
1558
        subpage = container_of(existing->mr, subpage_t, iomem);
1559 1560
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1561
    end = start + int128_get64(section->size) - 1;
1562 1563
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1564 1565 1566
}


1567
static void register_multipage(FlatView *fv,
1568
                               MemoryRegionSection *section)
1569
{
1570
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1571
    hwaddr start_addr = section->offset_within_address_space;
1572
    uint16_t section_index = phys_section_add(&d->map, section);
1573 1574
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1575

1576 1577
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1578 1579
}

1580 1581 1582 1583 1584 1585 1586
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1587
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1588
{
1589
    MemoryRegionSection remain = *section;
1590
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1591

1592 1593 1594 1595
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1596

1597
        MemoryRegionSection now = remain;
1598
        now.size = int128_min(int128_make64(left), now.size);
1599
        register_subpage(fv, &now);
1600 1601 1602
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1603 1604 1605
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1606 1607 1608 1609 1610 1611 1612 1613 1614
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1615
        }
1616 1617 1618
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1619
    }
1620 1621 1622

    /* register last subpage */
    register_subpage(fv, &remain);
1623 1624
}

1625 1626 1627 1628 1629 1630
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

    rcu_read_lock();
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
    rcu_read_unlock();
}

1661 1662 1663 1664 1665 1666 1667
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1668
static int find_min_backend_pagesize(Object *obj, void *opaque)
1669 1670 1671 1672
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1673 1674
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1675

1676
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1677
            *hpsize_min = hpsize;
1678 1679 1680 1681 1682 1683
        }
    }

    return 0;
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1705 1706 1707 1708
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;
1709
    MachineState *ms = MACHINE(qdev_get_machine());
1710

1711
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1725
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
1737 1738
        (ms->numa_state == NULL ||
         ms->numa_state->num_nodes == 0 ||
1739
         ms->numa_state->nodes[0].node_memdev == NULL)) {
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1762
#else
1763 1764 1765 1766 1767
long qemu_minrampagesize(void)
{
    return getpagesize();
}
long qemu_maxrampagesize(void)
1768 1769 1770 1771 1772
{
    return getpagesize();
}
#endif

1773
#ifdef CONFIG_POSIX
1774 1775
static int64_t get_file_size(int fd)
{
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    int64_t size;
#if defined(__linux__)
    struct stat st;

    if (fstat(fd, &st) < 0) {
        return -errno;
    }

    /* Special handling for devdax character devices */
    if (S_ISCHR(st.st_mode)) {
        g_autofree char *subsystem_path = NULL;
        g_autofree char *subsystem = NULL;

        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
                                         major(st.st_rdev), minor(st.st_rdev));
        subsystem = g_file_read_link(subsystem_path, NULL);

        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
            g_autofree char *size_path = NULL;
            g_autofree char *size_str = NULL;

            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
                                    major(st.st_rdev), minor(st.st_rdev));

            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
                return g_ascii_strtoll(size_str, NULL, 0);
            }
        }
    }
#endif /* defined(__linux__) */

    /* st.st_size may be zero for special files yet lseek(2) works */
    size = lseek(fd, 0, SEEK_END);
1809 1810 1811 1812 1813 1814
    if (size < 0) {
        return -errno;
    }
    return size;
}

1815 1816 1817 1818
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1819 1820
{
    char *filename;
1821 1822
    char *sanitized_name;
    char *c;
1823
    int fd = -1;
1824

1825
    *created = false;
1826 1827 1828 1829 1830
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1831
        }
1832 1833 1834 1835
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1836
                *created = true;
1837 1838 1839 1840 1841
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1842
            sanitized_name = g_strdup(region_name);
1843 1844 1845 1846 1847
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1848

1849 1850 1851
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1852

1853 1854 1855 1856 1857 1858 1859
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1860
        }
1861 1862 1863 1864
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1865
            return -1;
1866 1867 1868 1869 1870
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1871
    }
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1882
    MachineState *ms = MACHINE(qdev_get_machine());
1883 1884
    void *area;

1885
    block->page_size = qemu_fd_getpagesize(fd);
1886 1887 1888 1889 1890
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1891 1892 1893 1894
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1895 1896
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1897 1898 1899 1900 1901
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1902

1903
    if (memory < block->page_size) {
1904
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1905 1906
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1907
        return NULL;
1908 1909
    }

1910
    memory = ROUND_UP(memory, block->page_size);
1911 1912 1913 1914 1915 1916

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1917 1918 1919 1920 1921 1922 1923 1924
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1925
     */
1926
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1927
        perror("ftruncate");
1928
    }
1929

1930
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1931
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1932
    if (area == MAP_FAILED) {
1933
        error_setg_errno(errp, errno,
1934
                         "unable to map backing store for guest RAM");
1935
        return NULL;
1936
    }
1937 1938

    if (mem_prealloc) {
1939
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1940
        if (errp && *errp) {
1941
            qemu_ram_munmap(fd, area, memory);
1942
            return NULL;
1943
        }
1944 1945
    }

A
Alex Williamson 已提交
1946
    block->fd = fd;
1947 1948 1949 1950
    return area;
}
#endif

1951 1952 1953 1954
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1955
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1956 1957
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1958
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1959

1960 1961
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1962
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1963
        return 0;
M
Mike Day 已提交
1964
    }
A
Alex Williamson 已提交
1965

P
Peter Xu 已提交
1966
    RAMBLOCK_FOREACH(block) {
1967
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1968

1969 1970 1971
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1972
        candidate = block->offset + block->max_length;
1973
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1974

1975 1976 1977
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1978
        RAMBLOCK_FOREACH(next_block) {
1979
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1980 1981 1982
                next = MIN(next, next_block->offset);
            }
        }
1983 1984 1985 1986 1987 1988 1989 1990

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1991
        }
1992 1993

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1994
    }
A
Alex Williamson 已提交
1995 1996 1997 1998 1999 2000 2001

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

2002 2003
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
2004 2005 2006
    return offset;
}

2007
static unsigned long last_ram_page(void)
2008 2009 2010 2011
{
    RAMBlock *block;
    ram_addr_t last = 0;

M
Mike Day 已提交
2012
    rcu_read_lock();
P
Peter Xu 已提交
2013
    RAMBLOCK_FOREACH(block) {
2014
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
2015
    }
M
Mike Day 已提交
2016
    rcu_read_unlock();
2017
    return last >> TARGET_PAGE_BITS;
2018 2019
}

2020 2021 2022 2023 2024
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2025
    if (!machine_dump_guest_core(current_machine)) {
2026 2027 2028 2029 2030 2031 2032 2033 2034
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
2035 2036 2037 2038 2039
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2055 2056 2057 2058 2059
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2086
/* Called with iothread lock held.  */
G
Gonglei 已提交
2087
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2088
{
G
Gonglei 已提交
2089
    RAMBlock *block;
2090

2091 2092
    assert(new_block);
    assert(!new_block->idstr[0]);
2093

2094 2095
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2096 2097
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2098
            g_free(id);
2099 2100 2101 2102
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

G
Gonglei 已提交
2103
    rcu_read_lock();
P
Peter Xu 已提交
2104
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2105 2106
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2107 2108 2109 2110 2111
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
M
Mike Day 已提交
2112
    rcu_read_unlock();
2113 2114
}

2115
/* Called with iothread lock held.  */
G
Gonglei 已提交
2116
void qemu_ram_unset_idstr(RAMBlock *block)
2117
{
2118 2119 2120 2121
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2122 2123 2124 2125 2126
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2127 2128 2129 2130 2131
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2132 2133 2134 2135 2136 2137
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2138
    RAMBLOCK_FOREACH(block) {
2139 2140 2141 2142 2143 2144
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2145 2146
static int memory_try_enable_merging(void *addr, size_t len)
{
2147
    if (!machine_mem_merge(current_machine)) {
2148 2149 2150 2151 2152 2153 2154
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2155 2156 2157 2158 2159 2160 2161
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2162
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2163 2164 2165
{
    assert(block);

2166
    newsize = HOST_PAGE_ALIGN(newsize);
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2190 2191
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2192 2193 2194 2195 2196 2197 2198
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2240
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2241
{
2242
    RAMBlock *block;
M
Mike Day 已提交
2243
    RAMBlock *last_block = NULL;
2244
    ram_addr_t old_ram_size, new_ram_size;
2245
    Error *err = NULL;
2246

2247
    old_ram_size = last_ram_page();
2248

2249
    qemu_mutex_lock_ramlist();
2250
    new_block->offset = find_ram_offset(new_block->max_length);
2251 2252 2253

    if (!new_block->host) {
        if (xen_enabled()) {
2254
            xen_ram_alloc(new_block->offset, new_block->max_length,
2255 2256 2257 2258
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2259
                return;
2260
            }
2261
        } else {
2262
            new_block->host = phys_mem_alloc(new_block->max_length,
2263
                                             &new_block->mr->align, shared);
2264
            if (!new_block->host) {
2265 2266 2267 2268
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2269
                return;
2270
            }
2271
            memory_try_enable_merging(new_block->host, new_block->max_length);
2272
        }
2273
    }
P
pbrook 已提交
2274

L
Li Zhijian 已提交
2275 2276 2277
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2278
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2279
    }
M
Mike Day 已提交
2280 2281 2282 2283
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2284
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2285
        last_block = block;
2286
        if (block->max_length < new_block->max_length) {
2287 2288 2289 2290
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2291
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2292
    } else if (last_block) {
M
Mike Day 已提交
2293
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2294
    } else { /* list is empty */
M
Mike Day 已提交
2295
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2296
    }
2297
    ram_list.mru_block = NULL;
P
pbrook 已提交
2298

M
Mike Day 已提交
2299 2300
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2301
    ram_list.version++;
2302
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2303

2304
    cpu_physical_memory_set_dirty_range(new_block->offset,
2305 2306
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2307

2308 2309 2310
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2311
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2312
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2313
        ram_block_notify_add(new_block->host, new_block->max_length);
2314
    }
P
pbrook 已提交
2315
}
B
bellard 已提交
2316

2317
#ifdef CONFIG_POSIX
2318
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2319
                                 uint32_t ram_flags, int fd,
2320
                                 Error **errp)
2321 2322
{
    RAMBlock *new_block;
2323
    Error *local_err = NULL;
2324
    int64_t file_size;
2325

J
Junyan He 已提交
2326 2327 2328
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2329
    if (xen_enabled()) {
2330
        error_setg(errp, "-mem-path not supported with Xen");
2331
        return NULL;
2332 2333
    }

2334 2335 2336 2337 2338 2339
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2340 2341 2342 2343 2344 2345
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2346 2347
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2348
        return NULL;
2349 2350
    }

2351
    size = HOST_PAGE_ALIGN(size);
2352 2353 2354 2355 2356 2357 2358 2359
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2360 2361
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2362 2363
    new_block->used_length = size;
    new_block->max_length = size;
2364
    new_block->flags = ram_flags;
2365
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2366 2367
    if (!new_block->host) {
        g_free(new_block);
2368
        return NULL;
2369 2370
    }

2371
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2372 2373 2374
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2375
        return NULL;
2376
    }
2377
    return new_block;
2378 2379 2380 2381 2382

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2383
                                   uint32_t ram_flags, const char *mem_path,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2395
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2396 2397 2398 2399 2400 2401 2402 2403 2404
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2405
}
2406
#endif
2407

2408
static
2409 2410 2411 2412
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2413
                                  void *host, bool resizeable, bool share,
2414
                                  MemoryRegion *mr, Error **errp)
2415 2416
{
    RAMBlock *new_block;
2417
    Error *local_err = NULL;
2418

2419 2420
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2421 2422
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2423
    new_block->resized = resized;
2424 2425
    new_block->used_length = size;
    new_block->max_length = max_size;
2426
    assert(max_size >= size);
2427
    new_block->fd = -1;
2428
    new_block->page_size = getpagesize();
2429 2430
    new_block->host = host;
    if (host) {
2431
        new_block->flags |= RAM_PREALLOC;
2432
    }
2433 2434 2435
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2436
    ram_block_add(new_block, &local_err, share);
2437 2438 2439
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2440
        return NULL;
2441
    }
2442
    return new_block;
2443 2444
}

2445
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2446 2447
                                   MemoryRegion *mr, Error **errp)
{
2448 2449
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2450 2451
}

2452 2453
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2454
{
2455 2456
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2457 2458
}

2459
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2460 2461 2462 2463 2464
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2465 2466
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2467 2468
}

P
Paolo Bonzini 已提交
2469 2470 2471 2472 2473 2474 2475 2476
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2477
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2478 2479 2480 2481 2482 2483 2484 2485
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2486
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2487
{
2488 2489 2490 2491
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2492 2493 2494 2495
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2496
    qemu_mutex_lock_ramlist();
2497 2498 2499 2500 2501 2502
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2503
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2504 2505
}

H
Huang Ying 已提交
2506 2507 2508 2509 2510 2511 2512 2513
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2514
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2515
        offset = addr - block->offset;
2516
        if (offset < block->max_length) {
2517
            vaddr = ramblock_ptr(block, offset);
2518
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2519
                ;
2520 2521
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2522 2523
            } else {
                flags = MAP_FIXED;
2524
                if (block->fd >= 0) {
2525 2526
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2527 2528
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2529
                } else {
2530 2531 2532 2533 2534 2535 2536
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2537 2538 2539 2540 2541
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2542 2543 2544
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2545 2546
                    exit(1);
                }
2547
                memory_try_enable_merging(vaddr, length);
2548
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2549 2550 2551 2552 2553 2554
            }
        }
    }
}
#endif /* !_WIN32 */

2555
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2556 2557 2558
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2559
 *
2560
 * Called within RCU critical section.
2561
 */
2562
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2563
{
2564 2565 2566 2567
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2568
        addr -= block->offset;
2569
    }
2570 2571

    if (xen_enabled() && block->host == NULL) {
2572 2573 2574 2575 2576
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2577
            return xen_map_cache(addr, 0, 0, false);
2578
        }
2579

2580
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2581
    }
2582
    return ramblock_ptr(block, addr);
2583 2584
}

2585
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2586
 * but takes a size argument.
M
Mike Day 已提交
2587
 *
2588
 * Called within RCU critical section.
2589
 */
2590
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2591
                                 hwaddr *size, bool lock)
2592
{
2593
    RAMBlock *block = ram_block;
2594 2595 2596
    if (*size == 0) {
        return NULL;
    }
2597

2598 2599
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2600
        addr -= block->offset;
2601
    }
2602
    *size = MIN(*size, block->max_length - addr);
2603 2604 2605 2606 2607 2608 2609

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2610
            return xen_map_cache(addr, *size, lock, lock);
2611 2612
        }

2613
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2614
    }
2615

2616
    return ramblock_ptr(block, addr);
2617 2618
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2639 2640 2641 2642 2643 2644 2645
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2646 2647
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2648
{
P
pbrook 已提交
2649 2650 2651
    RAMBlock *block;
    uint8_t *host = ptr;

2652
    if (xen_enabled()) {
2653
        ram_addr_t ram_addr;
M
Mike Day 已提交
2654
        rcu_read_lock();
2655 2656
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2657
        if (block) {
2658
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2659
        }
M
Mike Day 已提交
2660
        rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2661
        return block;
2662 2663
    }

M
Mike Day 已提交
2664 2665
    rcu_read_lock();
    block = atomic_rcu_read(&ram_list.mru_block);
2666
    if (block && block->host && host - block->host < block->max_length) {
2667 2668 2669
        goto found;
    }

P
Peter Xu 已提交
2670
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2671 2672 2673 2674
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2675
        if (host - block->host < block->max_length) {
2676
            goto found;
A
Alex Williamson 已提交
2677
        }
P
pbrook 已提交
2678
    }
J
Jun Nakajima 已提交
2679

M
Mike Day 已提交
2680
    rcu_read_unlock();
2681
    return NULL;
2682 2683

found:
D
Dr. David Alan Gilbert 已提交
2684 2685 2686 2687
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
M
Mike Day 已提交
2688
    rcu_read_unlock();
D
Dr. David Alan Gilbert 已提交
2689 2690 2691
    return block;
}

D
Dr. David Alan Gilbert 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2703
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2704 2705 2706 2707 2708 2709 2710 2711
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2712 2713
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2714
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2715 2716
{
    RAMBlock *block;
2717
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2718

2719
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2720
    if (!block) {
2721
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2722 2723
    }

2724
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2725
}
A
Alex Williamson 已提交
2726

P
pbrook 已提交
2727
/* Generate a debug exception if a watchpoint has been hit.  */
2728 2729
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
                          MemTxAttrs attrs, int flags, uintptr_t ra)
P
pbrook 已提交
2730
{
2731
    CPUClass *cc = CPU_GET_CLASS(cpu);
2732
    CPUWatchpoint *wp;
P
pbrook 已提交
2733

2734
    assert(tcg_enabled());
2735
    if (cpu->watchpoint_hit) {
2736 2737 2738 2739 2740 2741
        /*
         * We re-entered the check after replacing the TB.
         * Now raise the debug interrupt so that it will
         * trigger after the current instruction.
         */
        qemu_mutex_lock_iothread();
2742
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2743
        qemu_mutex_unlock_iothread();
2744 2745
        return;
    }
2746 2747

    addr = cc->adjust_watchpoint_address(cpu, addr, len);
2748
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2749
        if (watchpoint_address_matches(wp, addr, len)
2750
            && (wp->flags & flags)) {
2751 2752 2753 2754 2755
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
2756
            wp->hitaddr = MAX(addr, wp->vaddr);
2757
            wp->hitattrs = attrs;
2758
            if (!cpu->watchpoint_hit) {
2759 2760 2761 2762 2763
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2764
                cpu->watchpoint_hit = wp;
2765

E
Emilio G. Cota 已提交
2766
                mmap_lock();
2767
                tb_check_watchpoint(cpu, ra);
2768
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2769
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2770
                    mmap_unlock();
2771
                    cpu_loop_exit_restore(cpu, ra);
2772
                } else {
2773 2774
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2775
                    mmap_unlock();
2776 2777 2778
                    if (ra) {
                        cpu_restore_state(cpu, ra, true);
                    }
2779
                    cpu_loop_exit_noexc(cpu);
2780
                }
2781
            }
2782 2783
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2784 2785 2786 2787
        }
    }
}

2788
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2789
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2790
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2791 2792
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2793
                                  bool is_write, MemTxAttrs attrs);
2794

2795 2796
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2797
{
2798
    subpage_t *subpage = opaque;
2799
    uint8_t buf[8];
2800
    MemTxResult res;
2801

2802
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2803
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2804
           subpage, len, addr);
2805
#endif
2806
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2807 2808
    if (res) {
        return res;
2809
    }
2810 2811
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2812 2813
}

2814 2815
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2816
{
2817
    subpage_t *subpage = opaque;
2818
    uint8_t buf[8];
2819

2820
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2821
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2822 2823
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2824
#endif
2825
    stn_p(buf, len, value);
2826
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2827 2828
}

2829
static bool subpage_accepts(void *opaque, hwaddr addr,
2830 2831
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2832
{
2833
    subpage_t *subpage = opaque;
2834
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2835
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2836
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2837 2838
#endif

2839
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2840
                                 len, is_write, attrs);
2841 2842
}

2843
static const MemoryRegionOps subpage_ops = {
2844 2845
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2846 2847 2848 2849
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2850
    .valid.accepts = subpage_accepts,
2851
    .endianness = DEVICE_NATIVE_ENDIAN,
2852 2853
};

2854 2855
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section)
2856 2857 2858 2859 2860 2861 2862 2863
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2864 2865
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2866 2867
#endif
    for (; idx <= eidx; idx++) {
2868
        mmio->sub_section[idx] = section;
2869 2870 2871 2872 2873
    }

    return 0;
}

2874
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2875
{
A
Anthony Liguori 已提交
2876
    subpage_t *mmio;
2877

2878
    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2879
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2880
    mmio->fv = fv;
2881
    mmio->base = base;
2882
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2883
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2884
    mmio->iomem.subpage = true;
2885
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2886 2887
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2888 2889 2890 2891 2892
#endif

    return mmio;
}

2893
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2894
{
2895
    assert(fv);
2896
    MemoryRegionSection section = {
2897
        .fv = fv,
2898 2899 2900
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2901
        .size = int128_2_64(),
2902 2903
    };

2904
    return phys_section_add(map, &section);
2905 2906
}

2907 2908
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2909
{
2910 2911
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2912
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2913
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2914

2915
    return &sections[index & ~TARGET_PAGE_MASK];
2916 2917
}

A
Avi Kivity 已提交
2918 2919
static void io_mem_init(void)
{
2920
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2921
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2922 2923
}

2924
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2925
{
2926 2927 2928
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2929
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2930
    assert(n == PHYS_SECTION_UNASSIGNED);
2931

M
Michael S. Tsirkin 已提交
2932
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2933 2934

    return d;
2935 2936
}

2937
void address_space_dispatch_free(AddressSpaceDispatch *d)
2938 2939 2940 2941 2942
{
    phys_sections_free(&d->map);
    g_free(d);
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static void do_nothing(CPUState *cpu, run_on_cpu_data d)
{
}

static void tcg_log_global_after_sync(MemoryListener *listener)
{
    CPUAddressSpace *cpuas;

    /* Wait for the CPU to end the current TB.  This avoids the following
     * incorrect race:
     *
     *      vCPU                         migration
     *      ----------------------       -------------------------
     *      TLB check -> slow path
     *        notdirty_mem_write
     *          write to RAM
     *          mark dirty
     *                                   clear dirty flag
     *      TLB check -> fast path
     *                                   read memory
     *        write to RAM
     *
     * by pushing the migration thread's memory read after the vCPU thread has
     * written the memory.
     */
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
    if (replay_mode == REPLAY_MODE_NONE) {
        /*
         * VGA can make calls to this function while updating the screen.
         * In record/replay mode this causes a deadlock, because
         * run_on_cpu waits for rr mutex. Therefore no races are possible
         * in this case and no need for making run_on_cpu when
         * record/replay is not enabled.
         */
        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
    }
2979 2980
}

2981
static void tcg_commit(MemoryListener *listener)
2982
{
2983 2984
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
2985

2986
    assert(tcg_enabled());
2987 2988
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
2989 2990 2991 2992 2993 2994
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
2995
    d = address_space_to_dispatch(cpuas->as);
2996
    atomic_rcu_set(&cpuas->memory_dispatch, d);
2997
    tlb_flush(cpuas->cpu);
2998 2999
}

A
Avi Kivity 已提交
3000 3001
static void memory_map_init(void)
{
3002
    system_memory = g_malloc(sizeof(*system_memory));
3003

3004
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3005
    address_space_init(&address_space_memory, system_memory, "memory");
3006

3007
    system_io = g_malloc(sizeof(*system_io));
3008 3009
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3010
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3011 3012 3013 3014 3015 3016 3017
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3018 3019 3020 3021 3022
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3023 3024
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3025 3026
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3027
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3028
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3029
{
3030 3031
    int flags;
    target_ulong l, page;
3032
    void * p;
B
bellard 已提交
3033 3034 3035 3036 3037 3038 3039 3040

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3041
            return -1;
B
bellard 已提交
3042 3043
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3044
                return -1;
3045
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3046
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3047
                return -1;
A
aurel32 已提交
3048 3049
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3050 3051
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3052
                return -1;
3053
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3054
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3055
                return -1;
A
aurel32 已提交
3056
            memcpy(buf, p, l);
A
aurel32 已提交
3057
            unlock_user(p, addr, 0);
B
bellard 已提交
3058 3059 3060 3061 3062
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3063
    return 0;
B
bellard 已提交
3064
}
B
bellard 已提交
3065

B
bellard 已提交
3066
#else
3067

3068
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3069
                                     hwaddr length)
3070
{
3071
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3072 3073
    addr += memory_region_get_ram_addr(mr);

3074 3075 3076 3077 3078 3079 3080 3081 3082
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3083
        assert(tcg_enabled());
3084 3085
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3086
    }
3087
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3088 3089
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3103
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3104
{
3105
    unsigned access_size_max = mr->ops->valid.max_access_size;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3119
    }
3120 3121 3122 3123

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3124
    }
3125
    l = pow2floor(l);
3126 3127

    return l;
3128 3129
}

3130
static bool prepare_mmio_access(MemoryRegion *mr)
3131
{
3132 3133 3134 3135 3136 3137 3138 3139
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3140
    if (mr->flush_coalesced_mmio) {
3141 3142 3143
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3144
        qemu_flush_coalesced_mmio_buffer();
3145 3146 3147
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3148
    }
3149 3150

    return release_lock;
3151 3152
}

3153
/* Called within RCU critical section.  */
3154 3155 3156
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3157
                                           hwaddr len, hwaddr addr1,
3158
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3159 3160
{
    uint8_t *ptr;
3161
    uint64_t val;
3162
    MemTxResult result = MEMTX_OK;
3163
    bool release_lock = false;
3164

3165
    for (;;) {
3166 3167 3168 3169 3170
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3171
            val = ldn_he_p(buf, l);
3172
            result |= memory_region_dispatch_write(mr, addr1, val,
3173
                                                   size_memop(l), attrs);
B
bellard 已提交
3174
        } else {
3175
            /* RAM case */
3176
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3177 3178
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3179
        }
3180 3181 3182 3183 3184 3185

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3186 3187 3188
        len -= l;
        buf += l;
        addr += l;
3189 3190 3191 3192 3193 3194

        if (!len) {
            break;
        }

        l = len;
3195
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3196
    }
3197

3198
    return result;
B
bellard 已提交
3199
}
B
bellard 已提交
3200

3201
/* Called from RCU critical section.  */
3202
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3203
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3204
{
3205 3206 3207 3208 3209
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3210
    l = len;
3211
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3212 3213
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3214 3215 3216 3217 3218

    return result;
}

/* Called within RCU critical section.  */
3219 3220
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3221
                                   hwaddr len, hwaddr addr1, hwaddr l,
3222
                                   MemoryRegion *mr)
3223 3224 3225 3226 3227
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3228

3229
    for (;;) {
3230 3231 3232 3233
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3234
            result |= memory_region_dispatch_read(mr, addr1, &val,
3235 3236
                                                  size_memop(l), attrs);
            stn_he_p(buf, l, val);
3237 3238
        } else {
            /* RAM case */
3239
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3251 3252 3253 3254 3255 3256

        if (!len) {
            break;
        }

        l = len;
3257
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3258 3259 3260 3261 3262
    }

    return result;
}

3263 3264
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3265
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3266 3267 3268 3269
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3270

3271
    l = len;
3272
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3273 3274
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3275 3276
}

3277
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3278
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3293 3294
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3295
                                const uint8_t *buf, hwaddr len)
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
        rcu_read_lock();
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
        rcu_read_unlock();
    }

    return result;
}

3310
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3311
                             uint8_t *buf, hwaddr len, bool is_write)
3312 3313 3314 3315 3316 3317 3318 3319
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3320
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3321
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3322
{
3323 3324
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3325 3326
}

3327 3328 3329 3330 3331
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3332 3333 3334 3335
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3336
                                                           hwaddr len,
3337
                                                           enum write_rom_type type)
B
bellard 已提交
3338
{
3339
    hwaddr l;
B
bellard 已提交
3340
    uint8_t *ptr;
3341
    hwaddr addr1;
3342
    MemoryRegion *mr;
3343

3344
    rcu_read_lock();
B
bellard 已提交
3345
    while (len > 0) {
3346
        l = len;
3347
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3348

3349 3350
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3351
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3352 3353
        } else {
            /* ROM/RAM case */
3354
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3355 3356 3357
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3358
                invalidate_and_set_dirty(mr, addr1, l);
3359 3360 3361 3362 3363
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3364 3365 3366 3367 3368
        }
        len -= l;
        buf += l;
        addr += l;
    }
3369
    rcu_read_unlock();
3370
    return MEMTX_OK;
B
bellard 已提交
3371 3372
}

3373
/* used for ROM loading : can write in RAM and ROM */
3374 3375
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3376
                                    const uint8_t *buf, hwaddr len)
3377
{
3378 3379
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3380 3381
}

3382
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3394 3395 3396
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3397 3398
}

3399
typedef struct {
3400
    MemoryRegion *mr;
3401
    void *buffer;
A
Avi Kivity 已提交
3402 3403
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3404
    bool in_use;
3405 3406 3407 3408
} BounceBuffer;

static BounceBuffer bounce;

3409
typedef struct MapClient {
3410
    QEMUBH *bh;
B
Blue Swirl 已提交
3411
    QLIST_ENTRY(MapClient) link;
3412 3413
} MapClient;

3414
QemuMutex map_client_list_lock;
3415
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3416
    = QLIST_HEAD_INITIALIZER(map_client_list);
3417

3418 3419 3420 3421 3422 3423
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3424 3425 3426 3427 3428 3429
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3430 3431
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3432 3433 3434
    }
}

3435
void cpu_register_map_client(QEMUBH *bh)
3436
{
3437
    MapClient *client = g_malloc(sizeof(*client));
3438

3439
    qemu_mutex_lock(&map_client_list_lock);
3440
    client->bh = bh;
B
Blue Swirl 已提交
3441
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3442 3443 3444
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3445
    qemu_mutex_unlock(&map_client_list_lock);
3446 3447
}

3448
void cpu_exec_init_all(void)
3449
{
3450
    qemu_mutex_init(&ram_list.mutex);
3451 3452 3453 3454 3455 3456 3457 3458
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3459
    io_mem_init();
3460
    memory_map_init();
3461
    qemu_mutex_init(&map_client_list_lock);
3462 3463
}

3464
void cpu_unregister_map_client(QEMUBH *bh)
3465 3466 3467
{
    MapClient *client;

3468 3469 3470 3471 3472 3473
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3474
    }
3475
    qemu_mutex_unlock(&map_client_list_lock);
3476 3477 3478 3479
}

static void cpu_notify_map_clients(void)
{
3480
    qemu_mutex_lock(&map_client_list_lock);
3481
    cpu_notify_map_clients_locked();
3482
    qemu_mutex_unlock(&map_client_list_lock);
3483 3484
}

3485
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3486
                                  bool is_write, MemTxAttrs attrs)
3487
{
3488
    MemoryRegion *mr;
3489 3490 3491 3492
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3493
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3494 3495
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3496
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3507
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3508
                                hwaddr len, bool is_write,
3509
                                MemTxAttrs attrs)
3510
{
3511 3512 3513 3514 3515
    FlatView *fv;
    bool result;

    rcu_read_lock();
    fv = address_space_to_flatview(as);
3516
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3517 3518
    rcu_read_unlock();
    return result;
3519 3520
}

3521
static hwaddr
3522
flatview_extend_translation(FlatView *fv, hwaddr addr,
3523 3524 3525
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3540
        this_mr = flatview_translate(fv, addr, &xlat,
3541
                                     &len, is_write, attrs);
3542 3543 3544 3545 3546 3547
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3548 3549 3550 3551
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3552 3553
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3554
 */
A
Avi Kivity 已提交
3555
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3556 3557
                        hwaddr addr,
                        hwaddr *plen,
3558 3559
                        bool is_write,
                        MemTxAttrs attrs)
3560
{
A
Avi Kivity 已提交
3561
    hwaddr len = *plen;
3562 3563
    hwaddr l, xlat;
    MemoryRegion *mr;
3564
    void *ptr;
3565
    FlatView *fv;
3566

3567 3568 3569
    if (len == 0) {
        return NULL;
    }
3570

3571
    l = len;
3572
    rcu_read_lock();
3573
    fv = address_space_to_flatview(as);
3574
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3575

3576
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3577
        if (atomic_xchg(&bounce.in_use, true)) {
3578
            rcu_read_unlock();
3579
            return NULL;
3580
        }
3581 3582 3583
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3584 3585
        bounce.addr = addr;
        bounce.len = l;
3586 3587 3588

        memory_region_ref(mr);
        bounce.mr = mr;
3589
        if (!is_write) {
3590
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3591
                               bounce.buffer, l);
3592
        }
3593

3594
        rcu_read_unlock();
3595 3596 3597 3598 3599
        *plen = l;
        return bounce.buffer;
    }


3600
    memory_region_ref(mr);
3601
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3602
                                        l, is_write, attrs);
3603
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3604 3605 3606
    rcu_read_unlock();

    return ptr;
3607 3608
}

A
Avi Kivity 已提交
3609
/* Unmaps a memory region previously mapped by address_space_map().
3610 3611 3612
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3613 3614
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3615 3616
{
    if (buffer != bounce.buffer) {
3617 3618 3619
        MemoryRegion *mr;
        ram_addr_t addr1;

3620
        mr = memory_region_from_host(buffer, &addr1);
3621
        assert(mr != NULL);
3622
        if (is_write) {
3623
            invalidate_and_set_dirty(mr, addr1, access_len);
3624
        }
3625
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3626
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3627
        }
3628
        memory_region_unref(mr);
3629 3630 3631
        return;
    }
    if (is_write) {
3632 3633
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3634
    }
3635
    qemu_vfree(bounce.buffer);
3636
    bounce.buffer = NULL;
3637
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3638
    atomic_mb_set(&bounce.in_use, false);
3639
    cpu_notify_map_clients();
3640
}
B
bellard 已提交
3641

A
Avi Kivity 已提交
3642 3643
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3644 3645
                              int is_write)
{
3646 3647
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3648 3649
}

A
Avi Kivity 已提交
3650 3651
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3652 3653 3654 3655
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3656 3657 3658 3659 3660 3661 3662
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3663

P
Paolo Bonzini 已提交
3664 3665 3666 3667 3668 3669
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3684 3685 3686 3687
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3688
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3689 3690
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3691 3692 3693 3694 3695 3696 3697 3698
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3699 3700 3701 3702 3703 3704
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3705 3706 3707 3708
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3709 3710 3711 3712
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3733
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3752
                                            &target_as, attrs);
3753 3754 3755 3756 3757 3758 3759 3760
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3761
                                   void *buf, hwaddr len)
3762 3763 3764 3765 3766
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3767 3768
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3779
                                    const void *buf, hwaddr len)
3780 3781 3782 3783 3784
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3785 3786
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3787 3788 3789
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3790 3791 3792 3793
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3794 3795 3796 3797
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3798 3799
#include "memory_ldst.inc.c"

3800
/* virtual memory access for debug (includes writing to ROM) */
3801
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3802
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3803
{
A
Avi Kivity 已提交
3804
    hwaddr phys_addr;
3805
    target_ulong l, page;
B
bellard 已提交
3806

3807
    cpu_synchronize_state(cpu);
B
bellard 已提交
3808
    while (len > 0) {
3809 3810 3811
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3812
        page = addr & TARGET_PAGE_MASK;
3813 3814
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3815 3816 3817 3818 3819 3820
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3821
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3822
        if (is_write) {
3823
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3824
                                    attrs, buf, l);
3825
        } else {
3826
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3827
                             attrs, buf, l, 0);
3828
        }
B
bellard 已提交
3829 3830 3831 3832 3833 3834
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3835 3836 3837 3838 3839

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3840
size_t qemu_target_page_size(void)
3841
{
3842
    return TARGET_PAGE_SIZE;
3843 3844
}

3845 3846 3847 3848 3849 3850 3851 3852 3853
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3854
#endif
B
bellard 已提交
3855

3856
bool target_words_bigendian(void)
3857 3858 3859 3860 3861 3862 3863 3864
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3865
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3866
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3867
{
3868
    MemoryRegion*mr;
3869
    hwaddr l = 1;
3870
    bool res;
3871

3872
    rcu_read_lock();
3873
    mr = address_space_translate(&address_space_memory,
3874 3875
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3876

3877 3878 3879
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    rcu_read_unlock();
    return res;
3880
}
3881

3882
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3883 3884
{
    RAMBlock *block;
3885
    int ret = 0;
3886

M
Mike Day 已提交
3887
    rcu_read_lock();
P
Peter Xu 已提交
3888
    RAMBLOCK_FOREACH(block) {
3889
        ret = func(block, opaque);
3890 3891 3892
        if (ret) {
            break;
        }
3893
    }
M
Mike Day 已提交
3894
    rcu_read_unlock();
3895
    return ret;
3896
}
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3919
        bool need_madvise, need_fallocate;
3920 3921 3922 3923 3924 3925 3926 3927 3928
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
3939 3940 3941 3942
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
3956 3957
#endif
        }
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
3976 3977
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
3978 3979
            goto err;
#endif
3980
        }
3981 3982
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
3993 3994 3995 3996 3997
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

3998
#endif
Y
Yang Zhong 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
4012 4013 4014

#if !defined(CONFIG_USER_ONLY)

4015
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4016 4017
{
    if (start == end - 1) {
4018
        qemu_printf("\t%3d      ", start);
4019
    } else {
4020
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4021
    }
4022
    qemu_printf(" skip=%d ", skip);
4023
    if (ptr == PHYS_MAP_NODE_NIL) {
4024
        qemu_printf(" ptr=NIL");
4025
    } else if (!skip) {
4026
        qemu_printf(" ptr=#%d", ptr);
4027
    } else {
4028
        qemu_printf(" ptr=[%d]", ptr);
4029
    }
4030
    qemu_printf("\n");
4031 4032 4033 4034 4035
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4036
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4037 4038 4039
{
    int i;

4040 4041
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4042 4043 4044 4045 4046 4047

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4048 4049
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4060
            qemu_printf(" alias=%s", s->mr->alias->name ?
4061 4062
                    s->mr->alias->name : "noname");
        }
4063
        qemu_printf("\n");
4064 4065
    }

4066
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4067 4068 4069 4070 4071 4072
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4073
        qemu_printf("      [%d]\n", i);
4074 4075 4076 4077 4078 4079 4080 4081

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4082
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4083 4084 4085 4086 4087 4088

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4089
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4090 4091 4092 4093 4094
        }
    }
}

#endif