exec.c 119.7 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45
#include "exec/memory.h"
P
Paolo Bonzini 已提交
46
#include "exec/ioport.h"
47
#include "sysemu/dma.h"
48
#include "sysemu/hostmem.h"
49
#include "sysemu/hw_accel.h"
50
#include "exec/address-spaces.h"
51
#include "sysemu/xen-mapcache.h"
52
#include "trace-root.h"
53

54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "migration/vmstate.h"

70
#include "qemu/range.h"
71 72 73
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
74

75 76
#include "monitor/monitor.h"

77
//#define DEBUG_SUBPAGE
T
ths 已提交
78

79
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
80 81 82
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
83
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
84 85

static MemoryRegion *system_memory;
86
static MemoryRegion *system_io;
A
Avi Kivity 已提交
87

88 89
AddressSpace address_space_io;
AddressSpace address_space_memory;
90

91
static MemoryRegion io_mem_unassigned;
92
#endif
93

94 95 96 97 98
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif

99 100
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
101 102
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
103
__thread CPUState *current_cpu;
P
pbrook 已提交
104
/* 0 = Do not count executed instructions.
T
ths 已提交
105
   1 = Precise instruction counting.
P
pbrook 已提交
106
   2 = Adaptive rate instruction counting.  */
107
int use_icount;
B
bellard 已提交
108

Y
Yang Zhong 已提交
109 110 111
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
bool set_preferred_target_page_bits(int bits)
{
    /* The target page size is the lowest common denominator for all
     * the CPUs in the system, so we can only make it smaller, never
     * larger. And we can't make it smaller once we've committed to
     * a particular size.
     */
#ifdef TARGET_PAGE_BITS_VARY
    assert(bits >= TARGET_PAGE_BITS_MIN);
    if (target_page_bits == 0 || target_page_bits > bits) {
        if (target_page_bits_decided) {
            return false;
        }
        target_page_bits = bits;
    }
#endif
    return true;
}

131
#if !defined(CONFIG_USER_ONLY)
132

133 134 135 136 137 138 139 140 141 142
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
    if (target_page_bits == 0) {
        target_page_bits = TARGET_PAGE_BITS_MIN;
    }
    target_page_bits_decided = true;
#endif
}

143 144 145
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
146
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
147
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
148
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149
    uint32_t ptr : 26;
150 151
};

152 153
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

154
/* Size of the L2 (and L3, etc) page tables.  */
155
#define ADDR_SPACE_BITS 64
156

M
Michael S. Tsirkin 已提交
157
#define P_L2_BITS 9
158 159 160 161 162
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
163

164
typedef struct PhysPageMap {
165 166
    struct rcu_head rcu;

167 168 169 170 171 172 173 174
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

175
struct AddressSpaceDispatch {
176
    MemoryRegionSection *mru_section;
177 178 179 180
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
181
    PhysPageMap map;
182 183
};

184 185 186
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
187
    FlatView *fv;
188
    hwaddr base;
189
    uint16_t sub_section[];
190 191
} subpage_t;

192
#define PHYS_SECTION_UNASSIGNED 0
193

194
static void io_mem_init(void);
A
Avi Kivity 已提交
195
static void memory_map_init(void);
196
static void tcg_log_global_after_sync(MemoryListener *listener);
197
static void tcg_commit(MemoryListener *listener);
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

213 214 215 216 217 218
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

219
#endif
B
bellard 已提交
220

221
#if !defined(CONFIG_USER_ONLY)
222

223
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224
{
225
    static unsigned alloc_hint = 16;
226
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227
        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
228
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229
        alloc_hint = map->nodes_nb_alloc;
230
    }
231 232
}

233
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
234 235
{
    unsigned i;
236
    uint32_t ret;
237 238
    PhysPageEntry e;
    PhysPageEntry *p;
239

240
    ret = map->nodes_nb++;
241
    p = map->nodes[ret];
242
    assert(ret != PHYS_MAP_NODE_NIL);
243
    assert(ret != map->nodes_nb_alloc);
244 245 246

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247
    for (i = 0; i < P_L2_SIZE; ++i) {
248
        memcpy(&p[i], &e, sizeof(e));
249
    }
250
    return ret;
251 252
}

253
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254
                                hwaddr *index, uint64_t *nb, uint16_t leaf,
255
                                int level)
256 257
{
    PhysPageEntry *p;
258
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
259

M
Michael S. Tsirkin 已提交
260
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
262
    }
263
    p = map->nodes[lp->ptr];
264
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
265

266
    while (*nb && lp < &p[P_L2_SIZE]) {
267
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
268
            lp->skip = 0;
269
            lp->ptr = leaf;
270 271
            *index += step;
            *nb -= step;
272
        } else {
273
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
274 275
        }
        ++lp;
276 277 278
    }
}

A
Avi Kivity 已提交
279
static void phys_page_set(AddressSpaceDispatch *d,
280
                          hwaddr index, uint64_t nb,
281
                          uint16_t leaf)
282
{
283
    /* Wildly overreserve - it doesn't matter much. */
284
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
285

286
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
287 288
}

289 290 291
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
292
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
312
            phys_page_compact(&p[i], nodes);
313 314 315 316 317 318 319 320 321 322 323
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
324 325
    if (P_L2_LEVELS >= (1 << 6) &&
        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

343
void address_space_dispatch_compact(AddressSpaceDispatch *d)
344 345
{
    if (d->phys_map.skip) {
346
        phys_page_compact(&d->phys_map, d->map.nodes);
347 348 349
    }
}

F
Fam Zheng 已提交
350 351 352 353 354 355
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
356
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
357
           range_covers_byte(section->offset_within_address_space,
358
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
359 360
}

361
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
362
{
363 364 365
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
366
    hwaddr index = addr >> TARGET_PAGE_BITS;
367
    int i;
368

M
Michael S. Tsirkin 已提交
369
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
370
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
371
            return &sections[PHYS_SECTION_UNASSIGNED];
372
        }
373
        p = nodes[lp.ptr];
374
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375
    }
376

F
Fam Zheng 已提交
377
    if (section_covers_addr(&sections[lp.ptr], addr)) {
378 379 380 381
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
382 383
}

384
/* Called from RCU critical section */
385
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
386 387
                                                        hwaddr addr,
                                                        bool resolve_subpage)
388
{
389
    MemoryRegionSection *section = atomic_read(&d->mru_section);
390 391
    subpage_t *subpage;

392 393
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
394
        section = phys_page_find(d, addr);
395
        atomic_set(&d->mru_section, section);
396
    }
397 398
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
399
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
400 401
    }
    return section;
402 403
}

404
/* Called from RCU critical section */
405
static MemoryRegionSection *
406
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
407
                                 hwaddr *plen, bool resolve_subpage)
408 409
{
    MemoryRegionSection *section;
410
    MemoryRegion *mr;
411
    Int128 diff;
412

413
    section = address_space_lookup_region(d, addr, resolve_subpage);
414 415 416 417 418 419
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

420
    mr = section->mr;
421 422 423 424 425 426 427 428 429 430 431 432

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
433
    if (memory_region_is_ram(mr)) {
434
        diff = int128_sub(section->size, int128_make64(addr));
435 436
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
437 438
    return section;
}
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
457
 * @attrs: transaction attributes
458 459 460 461 462 463 464 465 466 467
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
468 469
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
470 471 472 473 474 475 476
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
477 478 479 480 481 482 483 484 485
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
528
 * @target_as: the address space targeted by the IOMMU
529
 * @attrs: memory transaction attributes
530 531 532
 *
 * This function is called from RCU critical section
 */
533 534 535
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
536 537
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
538 539
                                                 bool is_write,
                                                 bool is_mmio,
540 541
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
542 543
{
    MemoryRegionSection *section;
544
    IOMMUMemoryRegion *iommu_mr;
545 546
    hwaddr plen = (hwaddr)(-1);

547 548
    if (!plen_out) {
        plen_out = &plen;
549
    }
550

551 552 553
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
554

555 556 557 558 559
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
560
                                             target_as, attrs);
561
    }
562
    if (page_mask_out) {
563 564
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
565 566
    }

567
    return *section;
568 569 570
}

/* Called from RCU critical section */
571
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
572
                                            bool is_write, MemTxAttrs attrs)
573
{
574
    MemoryRegionSection section;
575
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
576

577 578 579 580 581
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
582 583
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
584

585 586 587 588
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
589

590 591 592 593 594
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
595
        .target_as = as,
596 597 598
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
599 600 601 602 603 604 605 606 607
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
608
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
609 610
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
611 612 613
{
    MemoryRegion *mr;
    MemoryRegionSection section;
614
    AddressSpace *as = NULL;
615 616

    /* This can be MMIO, so setup MMIO bit. */
617
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
618
                                    is_write, true, &as, attrs);
619 620
    mr = section.mr;

621
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
622
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
623
        *plen = MIN(page, *plen);
624 625
    }

A
Avi Kivity 已提交
626
    return mr;
627 628
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
663 664
    Error *err = NULL;
    int i, ret;
665 666

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
667
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
668 669 670 671 672 673 674
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
675 676
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
693 694 695 696 697 698
        ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
                                                    &err);
        if (ret) {
            error_report_err(err);
            exit(1);
        }
699 700 701 702 703 704 705 706 707 708 709 710 711 712
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715
        g_free(notifier);
716 717 718 719
    }
    g_array_free(cpu->iommu_notifiers, true);
}

720
/* Called from RCU critical section */
721
MemoryRegionSection *
722
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 724
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
725
{
A
Avi Kivity 已提交
726
    MemoryRegionSection *section;
727 728 729 730
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
731
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
768

769
    assert(!memory_region_is_iommu(section->mr));
770
    *xlat = addr;
A
Avi Kivity 已提交
771
    return section;
772 773 774

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775
}
776
#endif
B
bellard 已提交
777

778
#if !defined(CONFIG_USER_ONLY)
779 780

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
781
{
782
    CPUState *cpu = opaque;
B
bellard 已提交
783

784 785
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
786
    cpu->interrupt_request &= ~0x01;
787
    tlb_flush(cpu);
788

789 790 791 792 793 794 795
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

796
    return 0;
B
bellard 已提交
797
}
B
bellard 已提交
798

799 800 801 802
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

803
    cpu->exception_index = -1;
804 805 806 807 808 809 810 811

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

812
    return tcg_enabled() && cpu->exception_index != -1;
813 814 815 816 817 818
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
819
    .needed = cpu_common_exception_index_needed,
820 821 822 823 824 825
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

844
const VMStateDescription vmstate_cpu_common = {
845 846 847
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
848
    .pre_load = cpu_common_pre_load,
849
    .post_load = cpu_common_post_load,
850
    .fields = (VMStateField[]) {
851 852
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
853
        VMSTATE_END_OF_LIST()
854
    },
855 856
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
857
        &vmstate_cpu_common_crash_occurred,
858
        NULL
859 860
    }
};
861

862
#endif
B
bellard 已提交
863

864
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
865
{
A
Andreas Färber 已提交
866
    CPUState *cpu;
B
bellard 已提交
867

A
Andreas Färber 已提交
868
    CPU_FOREACH(cpu) {
869
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
870
            return cpu;
871
        }
B
bellard 已提交
872
    }
873

A
Andreas Färber 已提交
874
    return NULL;
B
bellard 已提交
875 876
}

877
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
878 879
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
880
{
881
    CPUAddressSpace *newas;
P
Peter Xu 已提交
882
    AddressSpace *as = g_new0(AddressSpace, 1);
883
    char *as_name;
P
Peter Xu 已提交
884 885

    assert(mr);
886 887 888
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
889 890 891 892

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

893 894 895 896 897
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

898 899
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
900

901 902
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903
    }
904

905 906 907
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
908
    if (tcg_enabled()) {
909
        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 911
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
912
    }
913
}
914 915 916 917 918 919

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
920 921
#endif

922
void cpu_exec_unrealizefn(CPUState *cpu)
923
{
924 925
    CPUClass *cc = CPU_GET_CLASS(cpu);

926
    cpu_list_remove(cpu);
927 928 929 930 931 932 933

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
934 935 936
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
937 938
}

F
Fam Zheng 已提交
939 940 941
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
942
     * so users can wire up its memory. (This can't go in hw/core/cpu.c
F
Fam Zheng 已提交
943 944 945 946 947 948 949 950 951 952
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
953
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
954
{
955
    cpu->as = NULL;
956
    cpu->num_ases = 0;
957

958 959
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
960 961
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
962
#endif
L
Laurent Vivier 已提交
963 964
}

965
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
966
{
967
    CPUClass *cc = CPU_GET_CLASS(cpu);
968
    static bool tcg_target_initialized;
969

970
    cpu_list_add(cpu);
971

972 973
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
974 975
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
976
    tlb_init(cpu);
977

978
#ifndef CONFIG_USER_ONLY
979
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981
    }
982
    if (cc->vmsd != NULL) {
983
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984
    }
985

986
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987
#endif
B
bellard 已提交
988 989
}

990
const char *parse_cpu_option(const char *cpu_option)
991 992 993 994 995 996
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

997
    model_pieces = g_strsplit(cpu_option, ",", 2);
998 999 1000 1001
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

1017
#if defined(CONFIG_USER_ONLY)
1018
void tb_invalidate_phys_addr(target_ulong addr)
1019
{
1020
    mmap_lock();
1021
    tb_invalidate_phys_page_range(addr, addr + 1);
1022 1023
    mmap_unlock();
}
1024 1025 1026 1027 1028

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
1029
#else
1030 1031 1032 1033 1034 1035
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1036 1037 1038 1039
    if (!tcg_enabled()) {
        return;
    }

1040
    RCU_READ_LOCK_GUARD();
1041 1042 1043 1044 1045 1046
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1047
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1058
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1059
    }
1060
}
1061
#endif
B
bellard 已提交
1062

1063
#ifndef CONFIG_USER_ONLY
1064
/* Add a watchpoint.  */
1065
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1066
                          int flags, CPUWatchpoint **watchpoint)
1067
{
1068
    CPUWatchpoint *wp;
1069

1070
    /* forbid ranges which are empty or run off the end of the address space */
1071
    if (len == 0 || (addr + len - 1) < addr) {
1072 1073
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1074 1075
        return -EINVAL;
    }
1076
    wp = g_malloc(sizeof(*wp));
1077 1078

    wp->vaddr = addr;
1079
    wp->len = len;
1080 1081
    wp->flags = flags;

1082
    /* keep all GDB-injected watchpoints in front */
1083 1084 1085 1086 1087
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1088

1089
    tlb_flush_page(cpu, addr);
1090 1091 1092 1093

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1094 1095
}

1096
/* Remove a specific watchpoint.  */
1097
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1098
                          int flags)
1099
{
1100
    CPUWatchpoint *wp;
1101

1102
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1103
        if (addr == wp->vaddr && len == wp->len
1104
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1105
            cpu_watchpoint_remove_by_ref(cpu, wp);
1106 1107 1108
            return 0;
        }
    }
1109
    return -ENOENT;
1110 1111
}

1112
/* Remove a specific watchpoint by reference.  */
1113
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1114
{
1115
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1116

1117
    tlb_flush_page(cpu, watchpoint->vaddr);
1118

1119
    g_free(watchpoint);
1120 1121 1122
}

/* Remove all matching watchpoints.  */
1123
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1124
{
1125
    CPUWatchpoint *wp, *next;
1126

1127
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1128 1129 1130
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1131
    }
1132
}
1133 1134 1135 1136 1137 1138

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
1139 1140
static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
                                              vaddr addr, vaddr len)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/* Return flags for watchpoints that match addr + prot.  */
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
{
    CPUWatchpoint *wp;
    int ret = 0;

    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
        if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
            ret |= wp->flags;
        }
    }
    return ret;
}
1166
#endif /* !CONFIG_USER_ONLY */
1167

1168
/* Add a breakpoint.  */
1169
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1170
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1171
{
1172
    CPUBreakpoint *bp;
1173

1174
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1175

1176 1177 1178
    bp->pc = pc;
    bp->flags = flags;

1179
    /* keep all GDB-injected breakpoints in front */
1180
    if (flags & BP_GDB) {
1181
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1182
    } else {
1183
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1184
    }
1185

1186
    breakpoint_invalidate(cpu, pc);
1187

1188
    if (breakpoint) {
1189
        *breakpoint = bp;
1190
    }
B
bellard 已提交
1191 1192 1193
    return 0;
}

1194
/* Remove a specific breakpoint.  */
1195
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1196 1197 1198
{
    CPUBreakpoint *bp;

1199
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1200
        if (bp->pc == pc && bp->flags == flags) {
1201
            cpu_breakpoint_remove_by_ref(cpu, bp);
1202 1203
            return 0;
        }
1204
    }
1205
    return -ENOENT;
1206 1207
}

1208
/* Remove a specific breakpoint by reference.  */
1209
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1210
{
1211 1212 1213
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1214

1215
    g_free(breakpoint);
1216 1217 1218
}

/* Remove all matching breakpoints. */
1219
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1220
{
1221
    CPUBreakpoint *bp, *next;
1222

1223
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1224 1225 1226
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1227
    }
B
bellard 已提交
1228 1229
}

B
bellard 已提交
1230 1231
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1232
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1233
{
1234 1235 1236
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1237
            kvm_update_guest_debug(cpu, 0);
1238
        } else {
S
Stuart Brady 已提交
1239
            /* must flush all the translated code to avoid inconsistencies */
1240
            /* XXX: only flush what is necessary */
1241
            tb_flush(cpu);
1242
        }
B
bellard 已提交
1243 1244 1245
    }
}

1246
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1247 1248
{
    va_list ap;
P
pbrook 已提交
1249
    va_list ap2;
B
bellard 已提交
1250 1251

    va_start(ap, fmt);
P
pbrook 已提交
1252
    va_copy(ap2, ap);
B
bellard 已提交
1253 1254 1255
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1256
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1257
    if (qemu_log_separate()) {
1258
        qemu_log_lock();
1259 1260 1261
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1262
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1263
        qemu_log_flush();
1264
        qemu_log_unlock();
1265
        qemu_log_close();
1266
    }
P
pbrook 已提交
1267
    va_end(ap2);
1268
    va_end(ap);
1269
    replay_finish();
1270 1271 1272 1273 1274
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1275
        act.sa_flags = 0;
1276 1277 1278
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1279 1280 1281
    abort();
}

1282
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1283
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1284 1285 1286 1287
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1288
    block = atomic_rcu_read(&ram_list.mru_block);
1289
    if (block && addr - block->offset < block->max_length) {
1290
        return block;
P
Paolo Bonzini 已提交
1291
    }
P
Peter Xu 已提交
1292
    RAMBLOCK_FOREACH(block) {
1293
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1294 1295 1296 1297 1298 1299 1300 1301
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1318 1319 1320 1321
    ram_list.mru_block = block;
    return block;
}

1322
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1323
{
1324
    CPUState *cpu;
P
Paolo Bonzini 已提交
1325
    ram_addr_t start1;
1326 1327 1328
    RAMBlock *block;
    ram_addr_t end;

1329
    assert(tcg_enabled());
1330 1331
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1332

1333
    RCU_READ_LOCK_GUARD();
P
Paolo Bonzini 已提交
1334 1335
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1336
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1337 1338 1339
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
J
Juan Quintela 已提交
1340 1341
}

P
pbrook 已提交
1342
/* Note: start and end must be within the same ram block.  */
1343 1344 1345
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1346
{
1347
    DirtyMemoryBlocks *blocks;
1348
    unsigned long end, page;
1349
    bool dirty = false;
1350 1351
    RAMBlock *ramblock;
    uint64_t mr_offset, mr_size;
1352 1353 1354 1355

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1356

1357 1358
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1359

1360 1361 1362 1363 1364 1365
    WITH_RCU_READ_LOCK_GUARD() {
        blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
        ramblock = qemu_get_ram_block(start);
        /* Range sanity check on the ramblock */
        assert(start >= ramblock->offset &&
               start + length <= ramblock->offset + ramblock->used_length);
1366

1367 1368 1369 1370 1371
        while (page < end) {
            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long num = MIN(end - page,
                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1372

1373 1374 1375 1376
            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                                  offset, num);
            page += num;
        }
1377

1378 1379 1380
        mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
        mr_size = (end - page) << TARGET_PAGE_BITS;
        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1381 1382
    }

1383
    if (dirty && tcg_enabled()) {
1384
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1385
    }
1386 1387

    return dirty;
1388 1389
}

1390
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1391
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1392 1393
{
    DirtyMemoryBlocks *blocks;
1394
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

1410 1411
    WITH_RCU_READ_LOCK_GUARD() {
        blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1412

1413 1414 1415 1416 1417
        while (page < end) {
            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long num = MIN(end - page,
                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1418

1419 1420 1421
            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
            offset >>= BITS_PER_LEVEL;
1422

1423 1424 1425 1426 1427 1428
            bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                         blocks->blocks[idx] + offset,
                                         num);
            page += num;
            dest += num >> BITS_PER_LEVEL;
        }
1429 1430 1431 1432 1433 1434
    }

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

1435 1436
    memory_region_clear_dirty_bitmap(mr, offset, length);

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1461
/* Called from RCU critical section */
1462
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1463
                                       MemoryRegionSection *section)
B
Blue Swirl 已提交
1464
{
1465 1466
    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
    return section - d->map.sections;
B
Blue Swirl 已提交
1467
}
1468 1469
#endif /* defined(CONFIG_USER_ONLY) */

1470
#if !defined(CONFIG_USER_ONLY)
1471

1472 1473
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section);
1474
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1475

1476
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1477
                               qemu_anon_ram_alloc;
1478 1479 1480 1481 1482 1483

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1484
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1485 1486 1487 1488
{
    phys_mem_alloc = alloc;
}

1489 1490
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1491
{
1492 1493 1494 1495
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1496
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1497

1498 1499 1500 1501
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1502
    }
1503
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1504
    memory_region_ref(section->mr);
1505
    return map->sections_nb++;
1506 1507
}

1508 1509
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1510 1511
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1512 1513
    memory_region_unref(mr);

D
Don Slutz 已提交
1514
    if (have_sub_page) {
1515
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1516
        object_unref(OBJECT(&subpage->iomem));
1517 1518 1519 1520
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1521
static void phys_sections_free(PhysPageMap *map)
1522
{
1523 1524
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1525 1526
        phys_section_destroy(section->mr);
    }
1527 1528
    g_free(map->sections);
    g_free(map->nodes);
1529 1530
}

1531
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1532
{
1533
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1534
    subpage_t *subpage;
A
Avi Kivity 已提交
1535
    hwaddr base = section->offset_within_address_space
1536
        & TARGET_PAGE_MASK;
1537
    MemoryRegionSection *existing = phys_page_find(d, base);
1538 1539
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1540
        .size = int128_make64(TARGET_PAGE_SIZE),
1541
    };
A
Avi Kivity 已提交
1542
    hwaddr start, end;
1543

1544
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1545

1546
    if (!(existing->mr->subpage)) {
1547 1548
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1549
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1550
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1551
                      phys_section_add(&d->map, &subsection));
1552
    } else {
1553
        subpage = container_of(existing->mr, subpage_t, iomem);
1554 1555
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1556
    end = start + int128_get64(section->size) - 1;
1557 1558
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1559 1560 1561
}


1562
static void register_multipage(FlatView *fv,
1563
                               MemoryRegionSection *section)
1564
{
1565
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1566
    hwaddr start_addr = section->offset_within_address_space;
1567
    uint16_t section_index = phys_section_add(&d->map, section);
1568 1569
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1570

1571 1572
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1573 1574
}

1575 1576 1577 1578 1579 1580 1581
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1582
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1583
{
1584
    MemoryRegionSection remain = *section;
1585
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1586

1587 1588 1589 1590
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1591

1592
        MemoryRegionSection now = remain;
1593
        now.size = int128_min(int128_make64(left), now.size);
1594
        register_subpage(fv, &now);
1595 1596 1597
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1598 1599 1600
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1601 1602 1603 1604 1605 1606 1607 1608 1609
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1610
        }
1611 1612 1613
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1614
    }
1615 1616 1617

    /* register last subpage */
    register_subpage(fv, &remain);
1618 1619
}

1620 1621 1622 1623 1624 1625
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1636 1637 1638 1639 1640
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

1641
    RCU_READ_LOCK_GUARD();
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
}

1655 1656 1657 1658 1659 1660 1661
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1662
static int find_min_backend_pagesize(Object *obj, void *opaque)
1663 1664 1665 1666
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1667 1668
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1669

1670
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1671
            *hpsize_min = hpsize;
1672 1673 1674 1675 1676 1677
        }
    }

    return 0;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1699 1700 1701 1702
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;
1703
    MachineState *ms = MACHINE(qdev_get_machine());
1704

1705
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1719
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
1731 1732
        (ms->numa_state == NULL ||
         ms->numa_state->num_nodes == 0 ||
1733
         ms->numa_state->nodes[0].node_memdev == NULL)) {
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1756
#else
1757 1758
long qemu_minrampagesize(void)
{
1759
    return qemu_real_host_page_size;
1760 1761
}
long qemu_maxrampagesize(void)
1762
{
1763
    return qemu_real_host_page_size;
1764 1765 1766
}
#endif

1767
#ifdef CONFIG_POSIX
1768 1769
static int64_t get_file_size(int fd)
{
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
    int64_t size;
#if defined(__linux__)
    struct stat st;

    if (fstat(fd, &st) < 0) {
        return -errno;
    }

    /* Special handling for devdax character devices */
    if (S_ISCHR(st.st_mode)) {
        g_autofree char *subsystem_path = NULL;
        g_autofree char *subsystem = NULL;

        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
                                         major(st.st_rdev), minor(st.st_rdev));
        subsystem = g_file_read_link(subsystem_path, NULL);

        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
            g_autofree char *size_path = NULL;
            g_autofree char *size_str = NULL;

            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
                                    major(st.st_rdev), minor(st.st_rdev));

            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
                return g_ascii_strtoll(size_str, NULL, 0);
            }
        }
    }
#endif /* defined(__linux__) */

    /* st.st_size may be zero for special files yet lseek(2) works */
    size = lseek(fd, 0, SEEK_END);
1803 1804 1805 1806 1807 1808
    if (size < 0) {
        return -errno;
    }
    return size;
}

1809 1810 1811 1812
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1813 1814
{
    char *filename;
1815 1816
    char *sanitized_name;
    char *c;
1817
    int fd = -1;
1818

1819
    *created = false;
1820 1821 1822 1823 1824
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1825
        }
1826 1827 1828 1829
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1830
                *created = true;
1831 1832 1833 1834 1835
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1836
            sanitized_name = g_strdup(region_name);
1837 1838 1839 1840 1841
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1842

1843 1844 1845
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1846

1847 1848 1849 1850 1851 1852 1853
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1854
        }
1855 1856 1857 1858
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1859
            return -1;
1860 1861 1862 1863 1864
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1865
    }
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1876
    MachineState *ms = MACHINE(qdev_get_machine());
1877 1878
    void *area;

1879
    block->page_size = qemu_fd_getpagesize(fd);
1880 1881 1882 1883 1884
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1885 1886 1887 1888
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1889 1890
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1891 1892 1893 1894 1895
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1896

1897
    if (memory < block->page_size) {
1898
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1899 1900
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1901
        return NULL;
1902 1903
    }

1904
    memory = ROUND_UP(memory, block->page_size);
1905 1906 1907 1908 1909 1910

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1911 1912 1913 1914 1915 1916 1917 1918
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1919
     */
1920
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1921
        perror("ftruncate");
1922
    }
1923

1924
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1925
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1926
    if (area == MAP_FAILED) {
1927
        error_setg_errno(errp, errno,
1928
                         "unable to map backing store for guest RAM");
1929
        return NULL;
1930
    }
1931 1932

    if (mem_prealloc) {
1933
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1934
        if (errp && *errp) {
1935
            qemu_ram_munmap(fd, area, memory);
1936
            return NULL;
1937
        }
1938 1939
    }

A
Alex Williamson 已提交
1940
    block->fd = fd;
1941 1942 1943 1944
    return area;
}
#endif

1945 1946 1947 1948
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1949
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1950 1951
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1952
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1953

1954 1955
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1956
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1957
        return 0;
M
Mike Day 已提交
1958
    }
A
Alex Williamson 已提交
1959

P
Peter Xu 已提交
1960
    RAMBLOCK_FOREACH(block) {
1961
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1962

1963 1964 1965
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1966
        candidate = block->offset + block->max_length;
1967
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1968

1969 1970 1971
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1972
        RAMBLOCK_FOREACH(next_block) {
1973
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1974 1975 1976
                next = MIN(next, next_block->offset);
            }
        }
1977 1978 1979 1980 1981 1982 1983 1984

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1985
        }
1986 1987

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1988
    }
A
Alex Williamson 已提交
1989 1990 1991 1992 1993 1994 1995

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1996 1997
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
1998 1999 2000
    return offset;
}

2001
static unsigned long last_ram_page(void)
2002 2003 2004 2005
{
    RAMBlock *block;
    ram_addr_t last = 0;

2006
    RCU_READ_LOCK_GUARD();
P
Peter Xu 已提交
2007
    RAMBLOCK_FOREACH(block) {
2008
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
2009
    }
2010
    return last >> TARGET_PAGE_BITS;
2011 2012
}

2013 2014 2015 2016 2017
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2018
    if (!machine_dump_guest_core(current_machine)) {
2019 2020 2021 2022 2023 2024 2025 2026 2027
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
2028 2029 2030 2031 2032
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2048 2049 2050 2051 2052
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2079
/* Called with iothread lock held.  */
G
Gonglei 已提交
2080
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2081
{
G
Gonglei 已提交
2082
    RAMBlock *block;
2083

2084 2085
    assert(new_block);
    assert(!new_block->idstr[0]);
2086

2087 2088
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2089 2090
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2091
            g_free(id);
2092 2093 2094 2095
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

2096
    RCU_READ_LOCK_GUARD();
P
Peter Xu 已提交
2097
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2098 2099
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2100 2101 2102 2103 2104
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
2105 2106
}

2107
/* Called with iothread lock held.  */
G
Gonglei 已提交
2108
void qemu_ram_unset_idstr(RAMBlock *block)
2109
{
2110 2111 2112 2113
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2114 2115 2116 2117 2118
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2119 2120 2121 2122 2123
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2124 2125 2126 2127 2128 2129
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2130
    RAMBLOCK_FOREACH(block) {
2131 2132 2133 2134 2135 2136
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2137 2138
static int memory_try_enable_merging(void *addr, size_t len)
{
2139
    if (!machine_mem_merge(current_machine)) {
2140 2141 2142 2143 2144 2145 2146
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2147 2148 2149 2150 2151 2152 2153
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2154
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2155 2156 2157
{
    assert(block);

2158
    newsize = HOST_PAGE_ALIGN(newsize);
2159

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2182 2183
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2184 2185 2186 2187 2188 2189 2190
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2232
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2233
{
2234
    RAMBlock *block;
M
Mike Day 已提交
2235
    RAMBlock *last_block = NULL;
2236
    ram_addr_t old_ram_size, new_ram_size;
2237
    Error *err = NULL;
2238

2239
    old_ram_size = last_ram_page();
2240

2241
    qemu_mutex_lock_ramlist();
2242
    new_block->offset = find_ram_offset(new_block->max_length);
2243 2244 2245

    if (!new_block->host) {
        if (xen_enabled()) {
2246
            xen_ram_alloc(new_block->offset, new_block->max_length,
2247 2248 2249 2250
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2251
                return;
2252
            }
2253
        } else {
2254
            new_block->host = phys_mem_alloc(new_block->max_length,
2255
                                             &new_block->mr->align, shared);
2256
            if (!new_block->host) {
2257 2258 2259 2260
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2261
                return;
2262
            }
2263
            memory_try_enable_merging(new_block->host, new_block->max_length);
2264
        }
2265
    }
P
pbrook 已提交
2266

L
Li Zhijian 已提交
2267 2268 2269
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2270
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2271
    }
M
Mike Day 已提交
2272 2273 2274 2275
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2276
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2277
        last_block = block;
2278
        if (block->max_length < new_block->max_length) {
2279 2280 2281 2282
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2283
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2284
    } else if (last_block) {
M
Mike Day 已提交
2285
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2286
    } else { /* list is empty */
M
Mike Day 已提交
2287
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2288
    }
2289
    ram_list.mru_block = NULL;
P
pbrook 已提交
2290

M
Mike Day 已提交
2291 2292
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2293
    ram_list.version++;
2294
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2295

2296
    cpu_physical_memory_set_dirty_range(new_block->offset,
2297 2298
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2299

2300 2301 2302
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2303
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2304
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2305
        ram_block_notify_add(new_block->host, new_block->max_length);
2306
    }
P
pbrook 已提交
2307
}
B
bellard 已提交
2308

2309
#ifdef CONFIG_POSIX
2310
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2311
                                 uint32_t ram_flags, int fd,
2312
                                 Error **errp)
2313 2314
{
    RAMBlock *new_block;
2315
    Error *local_err = NULL;
2316
    int64_t file_size;
2317

J
Junyan He 已提交
2318 2319 2320
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2321
    if (xen_enabled()) {
2322
        error_setg(errp, "-mem-path not supported with Xen");
2323
        return NULL;
2324 2325
    }

2326 2327 2328 2329 2330 2331
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2332 2333 2334 2335 2336 2337
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2338 2339
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2340
        return NULL;
2341 2342
    }

2343
    size = HOST_PAGE_ALIGN(size);
2344 2345 2346 2347 2348 2349 2350 2351
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2352 2353
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2354 2355
    new_block->used_length = size;
    new_block->max_length = size;
2356
    new_block->flags = ram_flags;
2357
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2358 2359
    if (!new_block->host) {
        g_free(new_block);
2360
        return NULL;
2361 2362
    }

2363
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2364 2365 2366
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2367
        return NULL;
2368
    }
2369
    return new_block;
2370 2371 2372 2373 2374

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2375
                                   uint32_t ram_flags, const char *mem_path,
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2387
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2388 2389 2390 2391 2392 2393 2394 2395 2396
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2397
}
2398
#endif
2399

2400
static
2401 2402 2403 2404
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2405
                                  void *host, bool resizeable, bool share,
2406
                                  MemoryRegion *mr, Error **errp)
2407 2408
{
    RAMBlock *new_block;
2409
    Error *local_err = NULL;
2410

2411 2412
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2413 2414
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2415
    new_block->resized = resized;
2416 2417
    new_block->used_length = size;
    new_block->max_length = max_size;
2418
    assert(max_size >= size);
2419
    new_block->fd = -1;
2420
    new_block->page_size = qemu_real_host_page_size;
2421 2422
    new_block->host = host;
    if (host) {
2423
        new_block->flags |= RAM_PREALLOC;
2424
    }
2425 2426 2427
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2428
    ram_block_add(new_block, &local_err, share);
2429 2430 2431
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2432
        return NULL;
2433
    }
2434
    return new_block;
2435 2436
}

2437
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2438 2439
                                   MemoryRegion *mr, Error **errp)
{
2440 2441
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2442 2443
}

2444 2445
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2446
{
2447 2448
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2449 2450
}

2451
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2452 2453 2454 2455 2456
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2457 2458
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2459 2460
}

P
Paolo Bonzini 已提交
2461 2462 2463 2464 2465 2466 2467 2468
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2469
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2470 2471 2472 2473 2474 2475 2476 2477
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2478
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2479
{
2480 2481 2482 2483
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2484 2485 2486 2487
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2488
    qemu_mutex_lock_ramlist();
2489 2490 2491 2492 2493 2494
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2495
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2496 2497
}

H
Huang Ying 已提交
2498 2499 2500 2501 2502 2503 2504 2505
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2506
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2507
        offset = addr - block->offset;
2508
        if (offset < block->max_length) {
2509
            vaddr = ramblock_ptr(block, offset);
2510
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2511
                ;
2512 2513
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2514 2515
            } else {
                flags = MAP_FIXED;
2516
                if (block->fd >= 0) {
2517 2518
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2519 2520
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2521
                } else {
2522 2523 2524 2525 2526 2527 2528
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2529 2530 2531 2532 2533
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2534 2535 2536
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2537 2538
                    exit(1);
                }
2539
                memory_try_enable_merging(vaddr, length);
2540
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2541 2542 2543 2544 2545 2546
            }
        }
    }
}
#endif /* !_WIN32 */

2547
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2548 2549 2550
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2551
 *
2552
 * Called within RCU critical section.
2553
 */
2554
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2555
{
2556 2557 2558 2559
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2560
        addr -= block->offset;
2561
    }
2562 2563

    if (xen_enabled() && block->host == NULL) {
2564 2565 2566 2567 2568
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2569
            return xen_map_cache(addr, 0, 0, false);
2570
        }
2571

2572
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2573
    }
2574
    return ramblock_ptr(block, addr);
2575 2576
}

2577
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2578
 * but takes a size argument.
M
Mike Day 已提交
2579
 *
2580
 * Called within RCU critical section.
2581
 */
2582
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2583
                                 hwaddr *size, bool lock)
2584
{
2585
    RAMBlock *block = ram_block;
2586 2587 2588
    if (*size == 0) {
        return NULL;
    }
2589

2590 2591
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2592
        addr -= block->offset;
2593
    }
2594
    *size = MIN(*size, block->max_length - addr);
2595 2596 2597 2598 2599 2600 2601

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2602
            return xen_map_cache(addr, *size, lock, lock);
2603 2604
        }

2605
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2606
    }
2607

2608
    return ramblock_ptr(block, addr);
2609 2610
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2631 2632 2633 2634 2635 2636 2637
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2638 2639
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2640
{
P
pbrook 已提交
2641 2642 2643
    RAMBlock *block;
    uint8_t *host = ptr;

2644
    if (xen_enabled()) {
2645
        ram_addr_t ram_addr;
2646
        RCU_READ_LOCK_GUARD();
2647 2648
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2649
        if (block) {
2650
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2651 2652
        }
        return block;
2653 2654
    }

2655
    RCU_READ_LOCK_GUARD();
M
Mike Day 已提交
2656
    block = atomic_rcu_read(&ram_list.mru_block);
2657
    if (block && block->host && host - block->host < block->max_length) {
2658 2659 2660
        goto found;
    }

P
Peter Xu 已提交
2661
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2662 2663 2664 2665
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2666
        if (host - block->host < block->max_length) {
2667
            goto found;
A
Alex Williamson 已提交
2668
        }
P
pbrook 已提交
2669
    }
J
Jun Nakajima 已提交
2670

2671
    return NULL;
2672 2673

found:
D
Dr. David Alan Gilbert 已提交
2674 2675 2676 2677 2678 2679 2680
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
    return block;
}

D
Dr. David Alan Gilbert 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2692
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2693 2694 2695 2696 2697 2698 2699 2700
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2701 2702
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2703
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2704 2705
{
    RAMBlock *block;
2706
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2707

2708
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2709
    if (!block) {
2710
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2711 2712
    }

2713
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2714
}
A
Alex Williamson 已提交
2715

P
pbrook 已提交
2716
/* Generate a debug exception if a watchpoint has been hit.  */
2717 2718
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
                          MemTxAttrs attrs, int flags, uintptr_t ra)
P
pbrook 已提交
2719
{
2720
    CPUClass *cc = CPU_GET_CLASS(cpu);
2721
    CPUWatchpoint *wp;
P
pbrook 已提交
2722

2723
    assert(tcg_enabled());
2724
    if (cpu->watchpoint_hit) {
2725 2726 2727 2728 2729 2730
        /*
         * We re-entered the check after replacing the TB.
         * Now raise the debug interrupt so that it will
         * trigger after the current instruction.
         */
        qemu_mutex_lock_iothread();
2731
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2732
        qemu_mutex_unlock_iothread();
2733 2734
        return;
    }
2735 2736

    addr = cc->adjust_watchpoint_address(cpu, addr, len);
2737
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2738
        if (watchpoint_address_matches(wp, addr, len)
2739
            && (wp->flags & flags)) {
2740 2741 2742 2743 2744
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
2745
            wp->hitaddr = MAX(addr, wp->vaddr);
2746
            wp->hitattrs = attrs;
2747
            if (!cpu->watchpoint_hit) {
2748 2749 2750 2751 2752
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2753
                cpu->watchpoint_hit = wp;
2754

E
Emilio G. Cota 已提交
2755
                mmap_lock();
2756
                tb_check_watchpoint(cpu, ra);
2757
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2758
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2759
                    mmap_unlock();
2760
                    cpu_loop_exit_restore(cpu, ra);
2761
                } else {
2762 2763
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2764
                    mmap_unlock();
2765 2766 2767
                    if (ra) {
                        cpu_restore_state(cpu, ra, true);
                    }
2768
                    cpu_loop_exit_noexc(cpu);
2769
                }
2770
            }
2771 2772
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2773 2774 2775 2776
        }
    }
}

2777
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2778
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2779
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2780 2781
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2782
                                  bool is_write, MemTxAttrs attrs);
2783

2784 2785
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2786
{
2787
    subpage_t *subpage = opaque;
2788
    uint8_t buf[8];
2789
    MemTxResult res;
2790

2791
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2792
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2793
           subpage, len, addr);
2794
#endif
2795
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2796 2797
    if (res) {
        return res;
2798
    }
2799 2800
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2801 2802
}

2803 2804
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2805
{
2806
    subpage_t *subpage = opaque;
2807
    uint8_t buf[8];
2808

2809
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2810
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2811 2812
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2813
#endif
2814
    stn_p(buf, len, value);
2815
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2816 2817
}

2818
static bool subpage_accepts(void *opaque, hwaddr addr,
2819 2820
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2821
{
2822
    subpage_t *subpage = opaque;
2823
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2824
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2825
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2826 2827
#endif

2828
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2829
                                 len, is_write, attrs);
2830 2831
}

2832
static const MemoryRegionOps subpage_ops = {
2833 2834
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2835 2836 2837 2838
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2839
    .valid.accepts = subpage_accepts,
2840
    .endianness = DEVICE_NATIVE_ENDIAN,
2841 2842
};

2843 2844
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section)
2845 2846 2847 2848 2849 2850 2851 2852
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2853 2854
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2855 2856
#endif
    for (; idx <= eidx; idx++) {
2857
        mmio->sub_section[idx] = section;
2858 2859 2860 2861 2862
    }

    return 0;
}

2863
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2864
{
A
Anthony Liguori 已提交
2865
    subpage_t *mmio;
2866

2867
    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2868
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2869
    mmio->fv = fv;
2870
    mmio->base = base;
2871
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2872
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2873
    mmio->iomem.subpage = true;
2874
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2875 2876
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2877 2878 2879 2880 2881
#endif

    return mmio;
}

2882
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2883
{
2884
    assert(fv);
2885
    MemoryRegionSection section = {
2886
        .fv = fv,
2887 2888 2889
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2890
        .size = int128_2_64(),
2891 2892
    };

2893
    return phys_section_add(map, &section);
2894 2895
}

2896 2897
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2898
{
2899 2900
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2901
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2902
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2903

2904
    return &sections[index & ~TARGET_PAGE_MASK];
2905 2906
}

A
Avi Kivity 已提交
2907 2908
static void io_mem_init(void)
{
2909
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2910
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2911 2912
}

2913
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2914
{
2915 2916 2917
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2918
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2919
    assert(n == PHYS_SECTION_UNASSIGNED);
2920

M
Michael S. Tsirkin 已提交
2921
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2922 2923

    return d;
2924 2925
}

2926
void address_space_dispatch_free(AddressSpaceDispatch *d)
2927 2928 2929 2930 2931
{
    phys_sections_free(&d->map);
    g_free(d);
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
static void do_nothing(CPUState *cpu, run_on_cpu_data d)
{
}

static void tcg_log_global_after_sync(MemoryListener *listener)
{
    CPUAddressSpace *cpuas;

    /* Wait for the CPU to end the current TB.  This avoids the following
     * incorrect race:
     *
     *      vCPU                         migration
     *      ----------------------       -------------------------
     *      TLB check -> slow path
     *        notdirty_mem_write
     *          write to RAM
     *          mark dirty
     *                                   clear dirty flag
     *      TLB check -> fast path
     *                                   read memory
     *        write to RAM
     *
     * by pushing the migration thread's memory read after the vCPU thread has
     * written the memory.
     */
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
    if (replay_mode == REPLAY_MODE_NONE) {
        /*
         * VGA can make calls to this function while updating the screen.
         * In record/replay mode this causes a deadlock, because
         * run_on_cpu waits for rr mutex. Therefore no races are possible
         * in this case and no need for making run_on_cpu when
         * record/replay is not enabled.
         */
        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
    }
2968 2969
}

2970
static void tcg_commit(MemoryListener *listener)
2971
{
2972 2973
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
2974

2975
    assert(tcg_enabled());
2976 2977
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
2978 2979 2980 2981 2982 2983
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
2984
    d = address_space_to_dispatch(cpuas->as);
2985
    atomic_rcu_set(&cpuas->memory_dispatch, d);
2986
    tlb_flush(cpuas->cpu);
2987 2988
}

A
Avi Kivity 已提交
2989 2990
static void memory_map_init(void)
{
2991
    system_memory = g_malloc(sizeof(*system_memory));
2992

2993
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2994
    address_space_init(&address_space_memory, system_memory, "memory");
2995

2996
    system_io = g_malloc(sizeof(*system_io));
2997 2998
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
2999
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3000 3001 3002 3003 3004 3005 3006
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3007 3008 3009 3010 3011
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3012 3013
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3014 3015
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3016
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3017
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3018
{
3019 3020
    int flags;
    target_ulong l, page;
3021
    void * p;
B
bellard 已提交
3022 3023 3024 3025 3026 3027 3028 3029

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3030
            return -1;
B
bellard 已提交
3031 3032
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3033
                return -1;
3034
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3035
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3036
                return -1;
A
aurel32 已提交
3037 3038
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3039 3040
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3041
                return -1;
3042
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3043
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3044
                return -1;
A
aurel32 已提交
3045
            memcpy(buf, p, l);
A
aurel32 已提交
3046
            unlock_user(p, addr, 0);
B
bellard 已提交
3047 3048 3049 3050 3051
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3052
    return 0;
B
bellard 已提交
3053
}
B
bellard 已提交
3054

B
bellard 已提交
3055
#else
3056

3057
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3058
                                     hwaddr length)
3059
{
3060
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3061 3062
    addr += memory_region_get_ram_addr(mr);

3063 3064 3065 3066 3067 3068 3069 3070 3071
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3072
        assert(tcg_enabled());
3073 3074
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3075
    }
3076
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3077 3078
}

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3092
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3093
{
3094
    unsigned access_size_max = mr->ops->valid.max_access_size;
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3108
    }
3109 3110 3111 3112

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3113
    }
3114
    l = pow2floor(l);
3115 3116

    return l;
3117 3118
}

3119
static bool prepare_mmio_access(MemoryRegion *mr)
3120
{
3121 3122 3123 3124 3125 3126 3127 3128
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3129
    if (mr->flush_coalesced_mmio) {
3130 3131 3132
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3133
        qemu_flush_coalesced_mmio_buffer();
3134 3135 3136
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3137
    }
3138 3139

    return release_lock;
3140 3141
}

3142
/* Called within RCU critical section.  */
3143 3144 3145
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3146
                                           hwaddr len, hwaddr addr1,
3147
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3148 3149
{
    uint8_t *ptr;
3150
    uint64_t val;
3151
    MemTxResult result = MEMTX_OK;
3152
    bool release_lock = false;
3153

3154
    for (;;) {
3155 3156 3157 3158 3159
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3160
            val = ldn_he_p(buf, l);
3161
            result |= memory_region_dispatch_write(mr, addr1, val,
3162
                                                   size_memop(l), attrs);
B
bellard 已提交
3163
        } else {
3164
            /* RAM case */
3165
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3166 3167
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3168
        }
3169 3170 3171 3172 3173 3174

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3175 3176 3177
        len -= l;
        buf += l;
        addr += l;
3178 3179 3180 3181 3182 3183

        if (!len) {
            break;
        }

        l = len;
3184
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3185
    }
3186

3187
    return result;
B
bellard 已提交
3188
}
B
bellard 已提交
3189

3190
/* Called from RCU critical section.  */
3191
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3192
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3193
{
3194 3195 3196 3197 3198
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3199
    l = len;
3200
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3201 3202
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3203 3204 3205 3206 3207

    return result;
}

/* Called within RCU critical section.  */
3208 3209
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3210
                                   hwaddr len, hwaddr addr1, hwaddr l,
3211
                                   MemoryRegion *mr)
3212 3213 3214 3215 3216
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3217

3218
    for (;;) {
3219 3220 3221 3222
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3223
            result |= memory_region_dispatch_read(mr, addr1, &val,
3224 3225
                                                  size_memop(l), attrs);
            stn_he_p(buf, l, val);
3226 3227
        } else {
            /* RAM case */
3228
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3240 3241 3242 3243 3244 3245

        if (!len) {
            break;
        }

        l = len;
3246
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3247 3248 3249 3250 3251
    }

    return result;
}

3252 3253
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3254
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3255 3256 3257 3258
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3259

3260
    l = len;
3261
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3262 3263
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3264 3265
}

3266
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3267
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3268 3269 3270 3271 3272
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
3273
        RCU_READ_LOCK_GUARD();
3274 3275 3276 3277 3278 3279 3280
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
    }

    return result;
}

3281 3282
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3283
                                const uint8_t *buf, hwaddr len)
3284 3285 3286 3287 3288
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
3289
        RCU_READ_LOCK_GUARD();
3290 3291 3292 3293 3294 3295 3296
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
    }

    return result;
}

3297
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3298
                             uint8_t *buf, hwaddr len, bool is_write)
3299 3300 3301 3302 3303 3304 3305 3306
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3307
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3308
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3309
{
3310 3311
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3312 3313
}

3314 3315 3316 3317 3318
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3319 3320 3321 3322
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3323
                                                           hwaddr len,
3324
                                                           enum write_rom_type type)
B
bellard 已提交
3325
{
3326
    hwaddr l;
B
bellard 已提交
3327
    uint8_t *ptr;
3328
    hwaddr addr1;
3329
    MemoryRegion *mr;
3330

3331
    RCU_READ_LOCK_GUARD();
B
bellard 已提交
3332
    while (len > 0) {
3333
        l = len;
3334
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3335

3336 3337
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3338
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3339 3340
        } else {
            /* ROM/RAM case */
3341
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3342 3343 3344
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3345
                invalidate_and_set_dirty(mr, addr1, l);
3346 3347 3348 3349 3350
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3351 3352 3353 3354 3355
        }
        len -= l;
        buf += l;
        addr += l;
    }
3356
    return MEMTX_OK;
B
bellard 已提交
3357 3358
}

3359
/* used for ROM loading : can write in RAM and ROM */
3360 3361
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3362
                                    const uint8_t *buf, hwaddr len)
3363
{
3364 3365
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3366 3367
}

3368
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3380 3381 3382
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3383 3384
}

3385
typedef struct {
3386
    MemoryRegion *mr;
3387
    void *buffer;
A
Avi Kivity 已提交
3388 3389
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3390
    bool in_use;
3391 3392 3393 3394
} BounceBuffer;

static BounceBuffer bounce;

3395
typedef struct MapClient {
3396
    QEMUBH *bh;
B
Blue Swirl 已提交
3397
    QLIST_ENTRY(MapClient) link;
3398 3399
} MapClient;

3400
QemuMutex map_client_list_lock;
3401
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3402
    = QLIST_HEAD_INITIALIZER(map_client_list);
3403

3404 3405 3406 3407 3408 3409
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3410 3411 3412 3413 3414 3415
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3416 3417
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3418 3419 3420
    }
}

3421
void cpu_register_map_client(QEMUBH *bh)
3422
{
3423
    MapClient *client = g_malloc(sizeof(*client));
3424

3425
    qemu_mutex_lock(&map_client_list_lock);
3426
    client->bh = bh;
B
Blue Swirl 已提交
3427
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3428 3429 3430
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3431
    qemu_mutex_unlock(&map_client_list_lock);
3432 3433
}

3434
void cpu_exec_init_all(void)
3435
{
3436
    qemu_mutex_init(&ram_list.mutex);
3437 3438 3439 3440 3441 3442 3443 3444
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3445
    io_mem_init();
3446
    memory_map_init();
3447
    qemu_mutex_init(&map_client_list_lock);
3448 3449
}

3450
void cpu_unregister_map_client(QEMUBH *bh)
3451 3452 3453
{
    MapClient *client;

3454 3455 3456 3457 3458 3459
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3460
    }
3461
    qemu_mutex_unlock(&map_client_list_lock);
3462 3463 3464 3465
}

static void cpu_notify_map_clients(void)
{
3466
    qemu_mutex_lock(&map_client_list_lock);
3467
    cpu_notify_map_clients_locked();
3468
    qemu_mutex_unlock(&map_client_list_lock);
3469 3470
}

3471
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3472
                                  bool is_write, MemTxAttrs attrs)
3473
{
3474
    MemoryRegion *mr;
3475 3476 3477 3478
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3479
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3480 3481
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3482
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3493
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3494
                                hwaddr len, bool is_write,
3495
                                MemTxAttrs attrs)
3496
{
3497 3498 3499
    FlatView *fv;
    bool result;

3500
    RCU_READ_LOCK_GUARD();
3501
    fv = address_space_to_flatview(as);
3502
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3503
    return result;
3504 3505
}

3506
static hwaddr
3507
flatview_extend_translation(FlatView *fv, hwaddr addr,
3508 3509 3510
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3525
        this_mr = flatview_translate(fv, addr, &xlat,
3526
                                     &len, is_write, attrs);
3527 3528 3529 3530 3531 3532
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3533 3534 3535 3536
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3537 3538
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3539
 */
A
Avi Kivity 已提交
3540
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3541 3542
                        hwaddr addr,
                        hwaddr *plen,
3543 3544
                        bool is_write,
                        MemTxAttrs attrs)
3545
{
A
Avi Kivity 已提交
3546
    hwaddr len = *plen;
3547 3548
    hwaddr l, xlat;
    MemoryRegion *mr;
3549
    void *ptr;
3550
    FlatView *fv;
3551

3552 3553 3554
    if (len == 0) {
        return NULL;
    }
3555

3556
    l = len;
3557
    RCU_READ_LOCK_GUARD();
3558
    fv = address_space_to_flatview(as);
3559
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3560

3561
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3562
        if (atomic_xchg(&bounce.in_use, true)) {
3563
            return NULL;
3564
        }
3565 3566 3567
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3568 3569
        bounce.addr = addr;
        bounce.len = l;
3570 3571 3572

        memory_region_ref(mr);
        bounce.mr = mr;
3573
        if (!is_write) {
3574
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3575
                               bounce.buffer, l);
3576
        }
3577

3578 3579 3580 3581 3582
        *plen = l;
        return bounce.buffer;
    }


3583
    memory_region_ref(mr);
3584
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3585
                                        l, is_write, attrs);
3586
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3587 3588

    return ptr;
3589 3590
}

A
Avi Kivity 已提交
3591
/* Unmaps a memory region previously mapped by address_space_map().
3592 3593 3594
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3595 3596
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3597 3598
{
    if (buffer != bounce.buffer) {
3599 3600 3601
        MemoryRegion *mr;
        ram_addr_t addr1;

3602
        mr = memory_region_from_host(buffer, &addr1);
3603
        assert(mr != NULL);
3604
        if (is_write) {
3605
            invalidate_and_set_dirty(mr, addr1, access_len);
3606
        }
3607
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3608
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3609
        }
3610
        memory_region_unref(mr);
3611 3612 3613
        return;
    }
    if (is_write) {
3614 3615
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3616
    }
3617
    qemu_vfree(bounce.buffer);
3618
    bounce.buffer = NULL;
3619
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3620
    atomic_mb_set(&bounce.in_use, false);
3621
    cpu_notify_map_clients();
3622
}
B
bellard 已提交
3623

A
Avi Kivity 已提交
3624 3625
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3626 3627
                              int is_write)
{
3628 3629
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3630 3631
}

A
Avi Kivity 已提交
3632 3633
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3634 3635 3636 3637
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3638 3639 3640 3641 3642 3643 3644
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3645

P
Paolo Bonzini 已提交
3646 3647 3648 3649 3650 3651
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3666 3667 3668 3669
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3670
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3671 3672
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3673 3674 3675 3676 3677 3678 3679 3680
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3681 3682 3683 3684 3685 3686
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3687 3688 3689 3690
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3691 3692 3693 3694
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3715
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3734
                                            &target_as, attrs);
3735 3736 3737 3738 3739 3740 3741 3742
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3743
                                   void *buf, hwaddr len)
3744 3745 3746 3747 3748
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3749 3750
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3761
                                    const void *buf, hwaddr len)
3762 3763 3764 3765 3766
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3767 3768
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3769 3770 3771
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3772 3773 3774 3775
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3776 3777 3778 3779
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3780 3781
#include "memory_ldst.inc.c"

3782
/* virtual memory access for debug (includes writing to ROM) */
3783
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3784
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3785
{
A
Avi Kivity 已提交
3786
    hwaddr phys_addr;
3787
    target_ulong l, page;
B
bellard 已提交
3788

3789
    cpu_synchronize_state(cpu);
B
bellard 已提交
3790
    while (len > 0) {
3791 3792 3793
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3794
        page = addr & TARGET_PAGE_MASK;
3795 3796
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3797 3798 3799 3800 3801 3802
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3803
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3804
        if (is_write) {
3805
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3806
                                    attrs, buf, l);
3807
        } else {
3808
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3809
                             attrs, buf, l, 0);
3810
        }
B
bellard 已提交
3811 3812 3813 3814 3815 3816
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3817 3818 3819 3820 3821

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3822
size_t qemu_target_page_size(void)
3823
{
3824
    return TARGET_PAGE_SIZE;
3825 3826
}

3827 3828 3829 3830 3831 3832 3833 3834 3835
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3836
#endif
B
bellard 已提交
3837

3838
bool target_words_bigendian(void)
3839 3840 3841 3842 3843 3844 3845 3846
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3847
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3848
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3849
{
3850
    MemoryRegion*mr;
3851
    hwaddr l = 1;
3852
    bool res;
3853

3854
    RCU_READ_LOCK_GUARD();
3855
    mr = address_space_translate(&address_space_memory,
3856 3857
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3858

3859 3860
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    return res;
3861
}
3862

3863
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3864 3865
{
    RAMBlock *block;
3866
    int ret = 0;
3867

3868
    RCU_READ_LOCK_GUARD();
P
Peter Xu 已提交
3869
    RAMBLOCK_FOREACH(block) {
3870
        ret = func(block, opaque);
3871 3872 3873
        if (ret) {
            break;
        }
3874
    }
3875
    return ret;
3876
}
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3899
        bool need_madvise, need_fallocate;
3900 3901 3902 3903 3904 3905 3906 3907 3908
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
3919 3920 3921 3922
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
3936 3937
#endif
        }
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
3956 3957
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
3958 3959
            goto err;
#endif
3960
        }
3961 3962
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
3973 3974 3975 3976 3977
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

3978
#endif
Y
Yang Zhong 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
3992 3993 3994

#if !defined(CONFIG_USER_ONLY)

3995
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3996 3997
{
    if (start == end - 1) {
3998
        qemu_printf("\t%3d      ", start);
3999
    } else {
4000
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4001
    }
4002
    qemu_printf(" skip=%d ", skip);
4003
    if (ptr == PHYS_MAP_NODE_NIL) {
4004
        qemu_printf(" ptr=NIL");
4005
    } else if (!skip) {
4006
        qemu_printf(" ptr=#%d", ptr);
4007
    } else {
4008
        qemu_printf(" ptr=[%d]", ptr);
4009
    }
4010
    qemu_printf("\n");
4011 4012 4013 4014 4015
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4016
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4017 4018 4019
{
    int i;

4020 4021
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4022 4023 4024 4025 4026 4027

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4028 4029
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4040
            qemu_printf(" alias=%s", s->mr->alias->name ?
4041 4042
                    s->mr->alias->name : "noname");
        }
4043
        qemu_printf("\n");
4044 4045
    }

4046
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4047 4048 4049 4050 4051 4052
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4053
        qemu_printf("      [%d]\n", i);
4054 4055 4056 4057 4058 4059 4060 4061

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4062
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4063 4064 4065 4066 4067 4068

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4069
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4070 4071 4072 4073 4074
        }
    }
}

#endif