ib_srpt.c 92.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
B
Bart Van Assche 已提交
44
#include <rdma/ib_cache.h>
45
#include <scsi/scsi_proto.h>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
71 72
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
73 74 75 76 77 78 79 80 81 82 83

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

84
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
85 86 87 88 89 90 91 92 93 94
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
95
static void srpt_release_cmd(struct se_cmd *se_cmd);
96
static void srpt_free_ch(struct kref *kref);
97
static int srpt_queue_status(struct se_cmd *cmd);
98 99
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
100
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
101

102 103 104
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
105
 */
106
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
107 108 109
{
	unsigned long flags;
	enum rdma_ch_state prev;
110
	bool changed = false;
111 112 113

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
114
	if (new > prev) {
115
		ch->state = new;
116 117
		changed = true;
	}
118
	spin_unlock_irqrestore(&ch->spinlock, flags);
119 120

	return changed;
121 122 123
}

/**
124 125 126
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
127 128 129 130 131 132 133 134 135 136 137
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
138
	u8 port_num;
139 140 141 142 143 144

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
145
		 sdev->device->name);
146 147 148

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
149 150 151
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
152 153
			sport->lid = 0;
			sport->sm_lid = 0;
154 155 156 157
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
158 159 160 161 162 163 164
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
165
	case IB_EVENT_GID_CHANGE:
166
		/* Refresh port data asynchronously. */
167 168 169
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
170 171
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
172 173 174 175
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
176 177 178
		}
		break;
	default:
179
		pr_err("received unrecognized IB event %d\n", event->event);
180 181 182 183 184
		break;
	}
}

/**
185 186 187
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
188 189 190
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
191
	pr_debug("SRQ event %d\n", event->event);
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

211
/**
212 213 214
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
215 216 217 218
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
219
		 event->event, ch->cm_id, ch->sess_name, ch->state);
220 221 222 223 224 225

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
226 227 228
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
229 230
		break;
	default:
231
		pr_err("received unrecognized IB QP event %d\n", event->event);
232 233 234 235 236
		break;
	}
}

/**
237 238
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
261 262
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
263 264 265 266 267 268 269 270 271
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
272
	memset(cif, 0, sizeof(*cif));
273 274 275
	cif->base_version = 1;
	cif->class_version = 1;

276
	ib_set_cpi_resp_time(cif, 20);
277 278 279 280
	mad->mad_hdr.status = 0;
}

/**
281 282
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
283 284 285 286 287 288 289 290 291 292 293
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
294
	ioui->change_id = cpu_to_be16(1);
295 296 297 298 299 300 301 302 303 304 305
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
306 307 308 309
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
310 311 312 313 314 315 316 317 318 319
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
320
	int send_queue_depth;
321 322 323 324 325

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
326
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
327 328 329 330 331
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
332
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
333 334 335
		return;
	}

336 337 338
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
339
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
340 341
				       sdev->device->attrs.max_qp_wr);

342
	memset(iocp, 0, sizeof(*iocp));
343 344
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
345 346 347 348
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349
	iocp->subsys_device_id = 0x0;
350 351 352 353
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
354
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
355 356 357 358 359 360 361 362 363 364 365 366
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
367 368 369 370 371 372
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
373 374 375 376 377 378 379 380 381 382 383 384 385
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
386
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
387 388 389 390 391
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
392
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
393 394 395 396
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
397
	memset(svc_entries, 0, sizeof(*svc_entries));
398 399 400 401 402 403 404 405 406 407 408
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
409 410
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
443
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
444 445 446 447 448
		break;
	}
}

/**
449 450 451
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
452 453 454 455
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
456
	rdma_destroy_ah(mad_wc->send_buf->ah);
457 458 459 460
	ib_free_send_mad(mad_wc->send_buf);
}

/**
461 462 463 464
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
465 466
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
467
				  struct ib_mad_send_buf *send_buf,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
488 489
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
490 491 492 493 494 495
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
496
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
497 498 499 500 501 502 503 504 505
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
506
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
507 508 509
		break;
	default:
		dm_mad->mad_hdr.status =
510
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
511 512 513 514 515 516 517 518 519 520 521 522
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
523
	rdma_destroy_ah(ah);
524 525 526 527
err:
	ib_free_recv_mad(mad_wc);
}

528 529 530 531 532 533 534 535 536
static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
{
	const __be16 *g = (const __be16 *)guid;

	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
}

537
/**
538 539
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
540 541 542 543 544 545 546 547 548 549 550 551 552 553
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

554
	memset(&port_modify, 0, sizeof(port_modify));
555 556 557 558 559 560 561 562 563 564 565 566 567 568
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

569 570
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
571 572 573
	if (ret)
		goto err_query_port;

574
	sport->port_guid_wwn.priv = sport;
575 576
	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
			 &sport->gid.global.interface_id);
577 578 579 580 581
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
582

583
	if (!sport->mad_agent) {
584
		memset(&reg_req, 0, sizeof(reg_req));
585 586 587 588 589 590 591 592 593 594 595
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
596
							 sport, 0);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
618 619
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
635
			pr_err("disabling MAD processing failed.\n");
636 637 638 639 640 641 642 643
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
644 645 646 647 648
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
679 680 681 682 683
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
684 685 686 687 688 689 690 691 692 693 694 695 696
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
697
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
729
	ring = NULL;
730 731 732 733 734
out:
	return ring;
}

/**
735 736 737 738 739 740
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
741 742 743 744 745 746 747
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

748 749 750
	if (!ioctx_ring)
		return;

751 752 753 754 755 756
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
757 758 759
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;

	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;

	return previous;
}

/**
777 778 779 780
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
797

798 799 800 801
	return previous == old;
}

/**
802 803 804 805
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
806
 */
807
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
808 809 810 811 812 813 814 815
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
816
	list.lkey = sdev->lkey;
817

818 819
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
820 821 822 823
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

824 825 826 827
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
828 829
}

830
/**
831 832
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
833 834 835 836 837 838 839 840 841 842
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

843 844 845
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);

846 847 848 849 850 851 852 853 854 855 856
	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

857 858 859
	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
		 wc->status);

860 861 862 863 864 865
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
866 867
			pr_debug("%s-%d: already disconnected.\n",
				 ch->sess_name, ch->qp->qp_num);
868
	}
869 870
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

975
/**
976
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
977 978 979 980
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
981 982
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
983 984 985 986 987 988 989 990 991
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
992 993
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1009 1010 1011 1012 1013
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1014 1015 1016

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1017
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1018 1019

		*data_len = be32_to_cpu(db->len);
1020
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1021 1022
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1023 1024 1025
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1026

1027
		if (nbufs >
1028
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1029
			pr_err("received unsupported SRP_CMD request"
1030 1031 1032 1033
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1034 1035
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1036 1037 1038
		}

		*data_len = be32_to_cpu(idb->len);
1039 1040 1041 1042 1043
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1044 1045 1046 1047
	}
}

/**
1048 1049 1050
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1051 1052 1053 1054 1055 1056 1057 1058 1059
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1060
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1061 1062 1063 1064
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1065
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1066
	attr->port_num = ch->sport->port;
B
Bart Van Assche 已提交
1067 1068 1069 1070 1071 1072

	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
				  ch->pkey, &attr->pkey_index);
	if (ret < 0)
		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
		       ch->pkey, ret);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1083
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1113
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1143 1144
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1155 1156
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1157 1158 1159 1160
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1161
	unsigned long flags;
1162 1163 1164

	BUG_ON(!ch);

1165 1166 1167 1168 1169 1170
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1171
	}
1172 1173 1174 1175 1176 1177
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1178
	ioctx->state = SRPT_STATE_NEW;
1179
	ioctx->n_rdma = 0;
1180
	ioctx->n_rw_ctx = 0;
1181 1182 1183 1184 1185 1186 1187
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1188 1189 1190 1191 1192

	return ioctx;
}

/**
1193
 * srpt_abort_cmd - abort a SCSI command
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1204
	 * the ib_srpt driver, change the state to the next state.
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	 */

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1217 1218
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1219 1220 1221
		break;
	}

1222 1223
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1224 1225 1226 1227 1228

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1229
	case SRPT_STATE_DONE:
1230 1231 1232 1233 1234 1235
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1236 1237 1238
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1239 1240 1241 1242 1243 1244
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1245
		transport_generic_free_cmd(&ioctx->cmd, 0);
1246 1247
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1248
		transport_generic_free_cmd(&ioctx->cmd, 0);
1249 1250
		break;
	default:
G
Grant Grundler 已提交
1251
		WARN(1, "Unexpected command state (%d)", state);
1252 1253 1254 1255 1256 1257 1258
		break;
	}

	return state;
}

/**
1259 1260 1261 1262
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1263 1264
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1265
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1266
 * be cleaned up.
1267
 */
1268
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1269
{
1270 1271
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1272
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1273

1274 1275
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1276
	ioctx->n_rdma = 0;
1277

1278 1279 1280 1281 1282
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1283
	}
1284 1285 1286 1287 1288 1289

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
1290
		       __LINE__, ioctx->state);
1291 1292 1293
}

/**
1294
 * srpt_build_cmd_rsp - build a SRP_RSP response
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1329
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1330 1331
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1332
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1333 1334 1335 1336 1337 1338 1339
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1340 1341
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1354
 * srpt_build_tskmgmt_rsp - build a task management response
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1374
	resp_data_len = 4;
1375 1376 1377 1378
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1379
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1380 1381

	srp_rsp->opcode = SRP_RSP;
1382 1383
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1384 1385
	srp_rsp->tag = tag;

1386 1387 1388
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1389 1390 1391 1392 1393 1394

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1395 1396
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1397

1398
	return target_put_sess_cmd(&ioctx->cmd);
1399 1400 1401
}

/**
1402 1403 1404 1405
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1406
 */
1407 1408 1409
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1410 1411 1412
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1413 1414
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1415 1416
	u64 data_len;
	enum dma_data_direction dir;
1417
	int rc;
1418 1419 1420 1421 1422

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1423
	cmd->tag = srp_cmd->tag;
1424 1425 1426

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1427
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1428 1429 1430
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1431
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1432 1433
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1434
		cmd->sam_task_attr = TCM_HEAD_TAG;
1435 1436
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1437
		cmd->sam_task_attr = TCM_ACA_TAG;
1438 1439 1440
		break;
	}

1441 1442 1443 1444 1445 1446 1447
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1448
		goto release_ioctx;
1449 1450
	}

1451
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1452 1453
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1454 1455
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1456
	if (rc != 0) {
1457 1458 1459
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1460
	}
1461
	return;
1462

1463 1464 1465
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1487 1488 1489 1490
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1503
	struct se_session *sess = ch->sess;
1504
	int tcm_tmr;
1505
	int rc;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1517
	send_ioctx->cmd.tag = srp_tsk->tag;
1518
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1519 1520 1521 1522
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1523 1524
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1525
		goto fail;
1526
	}
1527 1528 1529
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1530 1531 1532
}

/**
1533
 * srpt_handle_new_iu - process a newly received information unit
1534
 * @ch:    RDMA channel through which the information unit has been received.
1535
 * @recv_ioctx: Receive I/O context associated with the information unit.
1536
 */
1537 1538
static bool
srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1539
{
1540
	struct srpt_send_ioctx *send_ioctx = NULL;
1541
	struct srp_cmd *srp_cmd;
1542 1543
	bool res = false;
	u8 opcode;
1544 1545 1546 1547

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

1548 1549 1550
	if (unlikely(ch->state == CH_CONNECTING))
		goto push;

1551 1552 1553 1554 1555
	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

	srp_cmd = recv_ioctx->ioctx.buf;
1556 1557 1558
	opcode = srp_cmd->opcode;
	if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
		send_ioctx = srpt_get_send_ioctx(ch);
1559
		if (unlikely(!send_ioctx))
1560
			goto push;
1561 1562
	}

1563 1564 1565 1566 1567 1568
	if (!list_empty(&recv_ioctx->wait_list)) {
		WARN_ON_ONCE(!ch->processing_wait_list);
		list_del_init(&recv_ioctx->wait_list);
	}

	switch (opcode) {
1569 1570 1571 1572 1573 1574 1575
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1576
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1577 1578 1579 1580 1581 1582 1583 1584
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1585
		pr_err("Received SRP_RSP\n");
1586 1587
		break;
	default:
1588
		pr_err("received IU with unknown opcode 0x%x\n", opcode);
1589 1590 1591
		break;
	}

1592
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1593
	res = true;
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603
out:
	return res;

push:
	if (list_empty(&recv_ioctx->wait_list)) {
		WARN_ON_ONCE(ch->processing_wait_list);
		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
	}
	goto out;
1604 1605
}

1606
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1607
{
1608 1609 1610
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1611 1612 1613 1614 1615 1616

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1617
			pr_err("req_lim = %d < 0\n", req_lim);
1618
		srpt_handle_new_iu(ch, ioctx);
1619
	} else {
1620 1621
		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
				    ioctx, wc->status);
1622 1623 1624
	}
}

1625 1626 1627 1628 1629 1630 1631
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
1632
	struct srpt_recv_ioctx *recv_ioctx, *tmp;
1633

1634
	WARN_ON_ONCE(ch->state == CH_CONNECTING);
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (list_empty(&ch->cmd_wait_list))
		return;

	WARN_ON_ONCE(ch->processing_wait_list);
	ch->processing_wait_list = true;
	list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
				 wait_list) {
		if (!srpt_handle_new_iu(ch, recv_ioctx))
			break;
1645
	}
1646
	ch->processing_wait_list = false;
1647 1648
}

1649
/**
1650 1651 1652 1653
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1666
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1667
{
1668 1669 1670 1671
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1672

1673 1674 1675 1676 1677
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1678
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1679

1680
	if (wc->status != IB_WC_SUCCESS)
1681 1682 1683 1684 1685
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1686
	} else {
1687 1688
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1689 1690
	}

1691
	srpt_process_wait_list(ch);
1692 1693 1694
}

/**
1695 1696
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1697 1698 1699 1700 1701 1702
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1703
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1704
	int sq_size = sport->port_attrib.srp_sq_size;
1705
	int i, ret;
1706 1707 1708 1709

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1710
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1711 1712 1713
	if (!qp_init)
		goto out;

1714
retry:
1715
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1716
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1717 1718
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1719
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1720
		       ch->rq_size + sq_size, ret);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1731 1732 1733 1734 1735 1736 1737
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1738 1739
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1740
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1741
	qp_init->port_num = ch->sport->port;
1742 1743 1744 1745 1746 1747
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1748 1749 1750 1751

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1752
		if (ret == -ENOMEM) {
1753 1754
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1755 1756 1757 1758
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1759
		pr_err("failed to create_qp ret= %d\n", ret);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1773 1774 1775 1776
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1777 1778 1779 1780 1781 1782 1783
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1784
	ib_free_cq(ch->cq);
1785 1786 1787 1788 1789 1790
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1791
	ib_free_cq(ch->cq);
1792 1793 1794
}

/**
1795 1796
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1797
 *
1798 1799
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1800
 *
1801 1802
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1803
 */
1804
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1805
{
1806
	int ret;
1807

1808 1809 1810 1811
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1812 1813
	}

1814
	kref_get(&ch->kref);
1815

1816 1817 1818 1819
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1830

1831 1832 1833
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1844
 */
1845
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1846 1847 1848
{
	int ret;

1849 1850
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1851

1852 1853 1854
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1855

1856 1857
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1858

1859 1860 1861
	return ret;
}

B
Bart Van Assche 已提交
1862
static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1863
{
1864
	struct srpt_nexus *nexus;
1865 1866 1867 1868
	struct srpt_rdma_ch *ch2;
	bool res = true;

	rcu_read_lock();
1869 1870 1871 1872 1873 1874
	list_for_each_entry(nexus, &sport->nexus_list, entry) {
		list_for_each_entry(ch2, &nexus->ch_list, list) {
			if (ch2 == ch) {
				res = false;
				goto done;
			}
1875 1876
		}
	}
1877
done:
1878 1879 1880 1881 1882
	rcu_read_unlock();

	return res;
}

1883 1884
/* Send DREQ and wait for DREP. */
static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1885
{
B
Bart Van Assche 已提交
1886
	struct srpt_port *sport = ch->sport;
1887 1888 1889 1890

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

1891 1892
	mutex_lock(&sport->mutex);
	srpt_disconnect_ch(ch);
B
Bart Van Assche 已提交
1893
	mutex_unlock(&sport->mutex);
1894

B
Bart Van Assche 已提交
1895
	while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1896
				  5 * HZ) == 0)
1897 1898 1899 1900 1901
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

}

1902
static void __srpt_close_all_ch(struct srpt_port *sport)
1903
{
1904
	struct srpt_nexus *nexus;
1905 1906
	struct srpt_rdma_ch *ch;

B
Bart Van Assche 已提交
1907
	lockdep_assert_held(&sport->mutex);
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	list_for_each_entry(nexus, &sport->nexus_list, entry) {
		list_for_each_entry(ch, &nexus->ch_list, list) {
			if (srpt_disconnect_ch(ch) >= 0)
				pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
					ch->sess_name, ch->qp->qp_num,
					sport->sdev->device->name, sport->port);
			srpt_close_ch(ch);
		}
	}
}

/*
 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
 * it does not yet exist.
 */
static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
					 const u8 i_port_id[16],
					 const u8 t_port_id[16])
{
	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	for (;;) {
		mutex_lock(&sport->mutex);
		list_for_each_entry(n, &sport->nexus_list, entry) {
			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
				nexus = n;
				break;
			}
		}
		if (!nexus && tmp_nexus) {
			list_add_tail_rcu(&tmp_nexus->entry,
					  &sport->nexus_list);
			swap(nexus, tmp_nexus);
		}
		mutex_unlock(&sport->mutex);

		if (nexus)
			break;
		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
		if (!tmp_nexus) {
			nexus = ERR_PTR(-ENOMEM);
			break;
1952
		}
1953 1954 1955 1956
		init_rcu_head(&tmp_nexus->rcu);
		INIT_LIST_HEAD(&tmp_nexus->ch_list);
		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
1957
	}
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	kfree(tmp_nexus);

	return nexus;
}

static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sport->mutex)
{
	lockdep_assert_held(&sport->mutex);

	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (!enabled)
		__srpt_close_all_ch(sport);
1974 1975
}

1976 1977 1978 1979
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

1980
	kfree_rcu(ch, rcu);
1981 1982 1983 1984 1985 1986
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
B
Bart Van Assche 已提交
1987
	struct srpt_port *sport;
1988
	struct se_session *se_sess;
1989 1990

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1991
	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
1992 1993 1994 1995

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1996 1997 1998
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1999
	target_sess_cmd_list_set_waiting(se_sess);
2000
	target_wait_for_sess_cmds(se_sess);
2001 2002 2003

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
2004 2005
	ch->sess = NULL;

2006 2007
	ib_destroy_cm_id(ch->cm_id);

2008 2009 2010 2011
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2012
			     ch->max_rsp_size, DMA_TO_DEVICE);
2013

2014 2015 2016 2017
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

B
Bart Van Assche 已提交
2018 2019
	sport = ch->sport;
	mutex_lock(&sport->mutex);
2020
	list_del_rcu(&ch->list);
B
Bart Van Assche 已提交
2021
	mutex_unlock(&sport->mutex);
2022

B
Bart Van Assche 已提交
2023
	wake_up(&sport->ch_releaseQ);
2024

2025
	kref_put(&ch->kref, srpt_free_ch);
2026 2027 2028
}

/**
2029 2030 2031 2032
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
2043
	struct srpt_nexus *nexus;
2044
	struct srp_login_req *req;
2045 2046 2047 2048
	struct srp_login_rsp *rsp = NULL;
	struct srp_login_rej *rej = NULL;
	struct ib_cm_rep_param *rep_param = NULL;
	struct srpt_rdma_ch *ch;
2049
	char i_port_id[36];
2050
	u32 it_iu_len;
2051
	int i, ret;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

B
Bart Van Assche 已提交
2062
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2063
		req->initiator_port_id, req->target_port_id, it_iu_len,
B
Bart Van Assche 已提交
2064 2065
		param->port, &sport->gid,
		be16_to_cpu(param->primary_path->pkey));
2066

2067 2068 2069 2070 2071 2072 2073
	nexus = srpt_get_nexus(sport, req->initiator_port_id,
			       req->target_port_id);
	if (IS_ERR(nexus)) {
		ret = PTR_ERR(nexus);
		goto out;
	}

2074
	ret = -ENOMEM;
2075 2076 2077
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2078
	if (!rsp || !rej || !rep_param)
2079 2080
		goto out;

2081
	ret = -EINVAL;
2082
	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2083
		rej->reason = cpu_to_be32(
2084 2085
				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2086 2087 2088 2089 2090
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2091 2092 2093
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
			sport->sdev->device->name, param->port);
2094 2095 2096 2097 2098 2099
		goto reject;
	}

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2100
		rej->reason = cpu_to_be32(
2101 2102
				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2103 2104 2105
		goto reject;
	}

2106
	ret = -ENOMEM;
2107
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2108
	if (!ch) {
2109 2110
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2111 2112 2113
		goto reject;
	}

2114
	init_rcu_head(&ch->rcu);
2115
	kref_init(&ch->kref);
B
Bart Van Assche 已提交
2116
	ch->pkey = be16_to_cpu(param->primary_path->pkey);
2117
	ch->nexus = nexus;
2118
	ch->zw_cqe.done = srpt_zerolength_write_done;
2119 2120 2121
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2122
	cm_id->context = ch;
2123
	/*
2124 2125 2126
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2127
	 */
2128
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2129 2130 2131
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2132
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2133 2134 2135 2136

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2137
				      ch->max_rsp_size, DMA_TO_DEVICE);
2138 2139 2140
	if (!ch->ioctx_ring) {
		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2141
		goto free_ch;
2142
	}
2143

2144 2145 2146 2147 2148
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
2161 2162
		for (i = 0; i < ch->rq_size; i++)
			INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2163
	}
2164

2165 2166
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2167
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2168 2169
		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
		goto free_recv_ring;
2170
	}
2171

2172
	srpt_format_guid(ch->sess_name, sizeof(ch->sess_name),
2173
			 &param->primary_path->dgid.global.interface_id);
2174
	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2175 2176
			be64_to_cpu(*(__be64 *)nexus->i_port_id),
			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2177 2178 2179

	pr_debug("registering session %s\n", ch->sess_name);

2180 2181 2182
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
2183
						ch->sess_name, ch, NULL);
2184 2185
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2186
					TARGET_PROT_NORMAL, i_port_id, ch,
2187 2188
					NULL);
	/* Retry without leading "0x" */
2189 2190
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2191
						TARGET_PROT_NORMAL,
2192
						i_port_id + 2, ch, NULL);
2193
	if (IS_ERR_OR_NULL(ch->sess)) {
2194 2195 2196 2197
		ret = PTR_ERR(ch->sess);
		pr_info("Rejected login for initiator %s: ret = %d.\n",
			ch->sess_name, ret);
		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2198
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2199
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		goto reject;
	}

	mutex_lock(&sport->mutex);

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		struct srpt_rdma_ch *ch2;

		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

		list_for_each_entry(ch2, &nexus->ch_list, list) {
			if (srpt_disconnect_ch(ch2) < 0)
				continue;
			pr_info("Relogin - closed existing channel %s\n",
				ch2->sess_name);
			rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
		}
	} else {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
	}

	list_add_tail_rcu(&ch->list, &nexus->ch_list);

	if (!sport->enabled) {
		rej->reason = cpu_to_be32(
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
			sdev->device->name, param->port);
		mutex_unlock(&sport->mutex);
		goto reject;
	}

	mutex_unlock(&sport->mutex);

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
		       ret);
2239
		goto destroy_ib;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2251 2252
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
				   SRP_BUF_FORMAT_INDIRECT);
2253 2254 2255 2256 2257 2258 2259
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2260
	rep_param->private_data_len = sizeof(*rsp);
2261 2262 2263 2264 2265 2266 2267
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

2268 2269 2270 2271
	/*
	 * Hold the sport mutex while accepting a connection to avoid that
	 * srpt_disconnect_ch() is invoked concurrently with this code.
	 */
B
Bart Van Assche 已提交
2272
	mutex_lock(&sport->mutex);
2273 2274 2275 2276
	if (sport->enabled && ch->state == CH_CONNECTING)
		ret = ib_send_cm_rep(cm_id, rep_param);
	else
		ret = -EINVAL;
B
Bart Van Assche 已提交
2277
	mutex_unlock(&sport->mutex);
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	switch (ret) {
	case 0:
		break;
	case -EINVAL:
		goto reject;
	default:
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
		       ret);
		goto reject;
	}
2290

2291
	goto out;
2292 2293 2294 2295

destroy_ib:
	srpt_destroy_ch_ib(ch);

2296 2297 2298 2299 2300
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2301 2302 2303
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2304
			     ch->max_rsp_size, DMA_TO_DEVICE);
2305
free_ch:
2306
	cm_id->context = NULL;
2307
	kfree(ch);
2308 2309 2310
	ch = NULL;

	WARN_ON_ONCE(ret == 0);
2311 2312

reject:
2313
	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2314 2315
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2316 2317
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
				   SRP_BUF_FORMAT_INDIRECT);
2318 2319

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2320
			     (void *)rej, sizeof(*rej));
2321 2322 2323 2324 2325 2326 2327 2328 2329

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2330 2331 2332 2333
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2334
{
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2347 2348 2349
}

/**
2350 2351
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2352 2353 2354 2355
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2356
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2357 2358 2359
{
	int ret;

2360 2361 2362 2363 2364 2365
	ret = srpt_ch_qp_rts(ch, ch->qp);
	if (ret < 0) {
		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
		       ch->qp->qp_num);
		srpt_close_ch(ch);
		return;
2366
	}
2367 2368 2369 2370 2371 2372

	/*
	 * Note: calling srpt_close_ch() if the transition to the LIVE state
	 * fails is not necessary since that means that that function has
	 * already been invoked from another thread.
	 */
2373
	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2374 2375
		pr_err("%s-%d: channel transition to LIVE state failed\n",
		       ch->sess_name, ch->qp->qp_num);
2376 2377 2378 2379 2380 2381
		return;
	}

	/* Trigger wait list processing. */
	ret = srpt_zerolength_write(ch);
	WARN_ONCE(ret < 0, "%d\n", ret);
2382 2383 2384
}

/**
2385 2386 2387
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2398
	struct srpt_rdma_ch *ch = cm_id->context;
2399 2400 2401 2402 2403 2404 2405 2406 2407
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2408 2409 2410
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2411 2412 2413
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2414
		srpt_cm_rtu_recv(ch);
2415 2416
		break;
	case IB_CM_DREQ_RECEIVED:
2417
		srpt_disconnect_ch(ch);
2418 2419
		break;
	case IB_CM_DREP_RECEIVED:
2420 2421
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2422
		srpt_close_ch(ch);
2423 2424
		break;
	case IB_CM_TIMEWAIT_EXIT:
2425 2426
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2427
		srpt_close_ch(ch);
2428 2429
		break;
	case IB_CM_REP_ERROR:
2430 2431
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2432 2433
		break;
	case IB_CM_DREQ_ERROR:
2434
		pr_info("Received CM DREQ ERROR event.\n");
2435 2436
		break;
	case IB_CM_MRA_RECEIVED:
2437
		pr_info("Received CM MRA event\n");
2438 2439
		break;
	default:
2440
		pr_err("received unrecognized CM event %d\n", event->event);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2452
	return ioctx->state == SRPT_STATE_NEED_DATA;
2453 2454 2455
}

/*
2456
 * srpt_write_pending - Start data transfer from initiator to target (write).
2457 2458 2459
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2460 2461 2462
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2463 2464
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2465
	enum srpt_command_state new_state;
2466
	int ret, i;
2467 2468 2469

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2486

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2513 2514
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2515 2516 2517 2518
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2519
static void srpt_queue_response(struct se_cmd *cmd)
2520
{
2521 2522 2523 2524
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2525
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2526
	struct ib_sge sge;
2527
	enum srpt_command_state state;
2528
	int resp_len, ret, i;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	u8 srp_tm_status;

	BUG_ON(!ch);

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}

B
Bart Van Assche 已提交
2548
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2549
		return;
2550 2551

	/* For read commands, transfer the data to the initiator. */
2552 2553
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2554
	    !ioctx->queue_status_only) {
2555 2556 2557 2558
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2559
					ch->sport->port, NULL, first_wr);
2560 2561 2562 2563
		}
	}

	if (state != SRPT_STATE_MGMT)
2564
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2565 2566 2567 2568 2569
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2570
						 ioctx->cmd.tag);
2571
	}
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2588
	sge.lkey = sdev->lkey;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2603
	}
2604 2605 2606 2607 2608 2609 2610 2611

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2612
}
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2623 2624
}

2625 2626 2627 2628
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2639 2640
	srpt_queue_response(cmd);
	return 0;
2641 2642 2643 2644 2645 2646 2647 2648 2649
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static bool srpt_ch_list_empty(struct srpt_port *sport)
{
	struct srpt_nexus *nexus;
	bool res = true;

	rcu_read_lock();
	list_for_each_entry(nexus, &sport->nexus_list, entry)
		if (!list_empty(&nexus->ch_list))
			res = false;
	rcu_read_unlock();

	return res;
}

2664
/**
B
Bart Van Assche 已提交
2665 2666
 * srpt_release_sport - disable login and wait for associated channels
 * @sport: SRPT HCA port.
2667
 */
B
Bart Van Assche 已提交
2668
static int srpt_release_sport(struct srpt_port *sport)
2669
{
2670 2671
	struct srpt_nexus *nexus, *next_n;
	struct srpt_rdma_ch *ch;
2672 2673 2674

	WARN_ON_ONCE(irqs_disabled());

B
Bart Van Assche 已提交
2675 2676 2677
	mutex_lock(&sport->mutex);
	srpt_set_enabled(sport, false);
	mutex_unlock(&sport->mutex);
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	while (wait_event_timeout(sport->ch_releaseQ,
				  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
		pr_info("%s_%d: waiting for session unregistration ...\n",
			sport->sdev->device->name, sport->port);
		rcu_read_lock();
		list_for_each_entry(nexus, &sport->nexus_list, entry) {
			list_for_each_entry(ch, &nexus->ch_list, list) {
				pr_info("%s-%d: state %s\n",
					ch->sess_name, ch->qp->qp_num,
					get_ch_state_name(ch->state));
			}
		}
		rcu_read_unlock();
	}

	mutex_lock(&sport->mutex);
	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
		list_del(&nexus->entry);
		kfree_rcu(nexus, rcu);
	}
	mutex_unlock(&sport->mutex);
2700 2701 2702 2703

	return 0;
}

2704
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2719 2720 2721 2722
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2723 2724 2725 2726 2727 2728
		}
	}

	return NULL;
}

2729
static struct se_wwn *srpt_lookup_wwn(const char *name)
2730
{
2731
	struct se_wwn *wwn;
2732 2733

	spin_lock(&srpt_dev_lock);
2734
	wwn = __srpt_lookup_wwn(name);
2735 2736
	spin_unlock(&srpt_dev_lock);

2737
	return wwn;
2738 2739
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

2786 2787
	for (i = 0; i < sdev->srq_size; ++i) {
		INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
2788
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
2789
	}
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2810
/**
2811 2812
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2813 2814 2815 2816 2817 2818 2819
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2820
	pr_debug("device = %p\n", device);
2821

2822
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2823 2824 2825 2826
	if (!sdev)
		goto err;

	sdev->device = device;
B
Bart Van Assche 已提交
2827
	mutex_init(&sdev->sdev_mutex);
2828

2829
	sdev->pd = ib_alloc_pd(device, 0);
2830 2831 2832
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2833
	sdev->lkey = sdev->pd->local_dma_lkey;
2834

2835
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2836

2837
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2838 2839 2840 2841 2842 2843

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2844
		goto err_ring;
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2857
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2858 2859 2860 2861
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2862
	ib_register_event_handler(&sdev->event_handler);
2863

2864
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2865 2866 2867

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
2868
		INIT_LIST_HEAD(&sport->nexus_list);
B
Bart Van Assche 已提交
2869 2870
		init_waitqueue_head(&sport->ch_releaseQ);
		mutex_init(&sport->mutex);
2871 2872 2873 2874 2875
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2876
		sport->port_attrib.use_srq = false;
2877 2878 2879
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2880
			pr_err("MAD registration failed for %s-%d.\n",
2881
			       sdev->device->name, i);
2882
			goto err_event;
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2899
err_ring:
2900
	srpt_free_srq(sdev);
2901 2902 2903 2904 2905
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2906
	pr_info("%s(%s) failed.\n", __func__, device->name);
2907 2908 2909 2910
	goto out;
}

/**
2911 2912 2913
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2914
 */
2915
static void srpt_remove_one(struct ib_device *device, void *client_data)
2916
{
2917
	struct srpt_device *sdev = client_data;
2918 2919 2920
	int i;

	if (!sdev) {
2921
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
B
Bart Van Assche 已提交
2943 2944 2945

	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		srpt_release_sport(&sdev->port[i]);
2946

2947 2948
	srpt_free_srq(sdev);

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2975 2976 2977 2978 2979
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2980 2981
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2982
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2983

2984 2985 2986 2987
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
3002 3003 3004
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
3005
	unsigned long flags;
3006

3007 3008
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3009

3010 3011 3012
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
3013 3014
	}

3015 3016 3017
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
3018 3019 3020
}

/**
3021 3022
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
3023 3024 3025 3026 3027 3028 3029
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
3030
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3031

3032
	srpt_disconnect_ch_sync(ch);
3033 3034 3035
}

/**
3036 3037
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3059
	return ioctx->state;
3060 3061
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

3075
/**
3076
 * srpt_parse_i_port_id - parse an initiator port ID
3077 3078 3079 3080 3081 3082 3083
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
3084
	int ret;
3085 3086

	p = name;
3087
	if (strncasecmp(p, "0x", 2) == 0)
3088 3089 3090 3091 3092 3093 3094 3095
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
3096 3097 3098
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
3099 3100 3101 3102 3103 3104 3105 3106
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
3107
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3108
{
3109
	u64 guid;
3110
	u8 i_port_id[16];
3111
	int ret;
3112

3113 3114 3115 3116
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
3117
		pr_err("invalid initiator port ID %s\n", name);
3118
	return ret;
3119 3120
}

3121 3122
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3123
{
3124
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3125
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3126 3127 3128 3129

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3130 3131
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3132
{
3133
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3134
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3135 3136 3137
	unsigned long val;
	int ret;

3138
	ret = kstrtoul(page, 0, &val);
3139
	if (ret < 0) {
3140
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3158 3159
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3160
{
3161
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3162
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3163 3164 3165 3166

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3167 3168
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3169
{
3170
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3171
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3172 3173 3174
	unsigned long val;
	int ret;

3175
	ret = kstrtoul(page, 0, &val);
3176
	if (ret < 0) {
3177
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3195 3196
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3197
{
3198
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3199
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3200 3201 3202 3203

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3204 3205
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3206
{
3207
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3208
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3209 3210 3211
	unsigned long val;
	int ret;

3212
	ret = kstrtoul(page, 0, &val);
3213
	if (ret < 0) {
3214
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3246
	struct srpt_device *sdev = sport->sdev;
3247
	unsigned long val;
3248
	bool enabled;
3249 3250 3251 3252 3253 3254 3255
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3256

B
Bart Van Assche 已提交
3257
	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3258 3259
	if (ret < 0)
		return ret;
B
Bart Van Assche 已提交
3260 3261 3262
	ret = mutex_lock_interruptible(&sport->mutex);
	if (ret < 0)
		goto unlock_sdev;
3263 3264 3265
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3266
	sport->port_attrib.use_srq = val;
3267 3268
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
B
Bart Van Assche 已提交
3269 3270 3271 3272
	ret = count;
	mutex_unlock(&sport->mutex);
unlock_sdev:
	mutex_unlock(&sdev->sdev_mutex);
3273

B
Bart Van Assche 已提交
3274
	return ret;
3275 3276
}

3277 3278 3279
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3280
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3281 3282

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3283 3284 3285
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3286
	&srpt_tpg_attrib_attr_use_srq,
3287 3288 3289
	NULL,
};

3290
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3291
{
3292
	struct se_portal_group *se_tpg = to_tpg(item);
3293
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3294 3295 3296 3297

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3298 3299
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3300
{
3301
	struct se_portal_group *se_tpg = to_tpg(item);
3302
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3303 3304 3305
	unsigned long tmp;
        int ret;

3306
	ret = kstrtoul(page, 0, &tmp);
3307
	if (ret < 0) {
3308
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3309 3310 3311 3312
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3313
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3314 3315 3316
		return -EINVAL;
	}

B
Bart Van Assche 已提交
3317
	mutex_lock(&sport->mutex);
3318
	srpt_set_enabled(sport, tmp);
B
Bart Van Assche 已提交
3319
	mutex_unlock(&sport->mutex);
3320

3321 3322 3323
	return count;
}

3324
CONFIGFS_ATTR(srpt_tpg_, enable);
3325 3326

static struct configfs_attribute *srpt_tpg_attrs[] = {
3327
	&srpt_tpg_attr_enable,
3328 3329 3330 3331
	NULL,
};

/**
3332 3333 3334 3335
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3336 3337 3338 3339 3340
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3341 3342
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3343 3344
	int res;

3345 3346 3347 3348 3349
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3350 3351 3352
	if (res)
		return ERR_PTR(res);

3353
	return tpg;
3354 3355 3356
}

/**
3357 3358
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3359 3360 3361
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3362
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3363 3364

	sport->enabled = false;
3365
	core_tpg_deregister(tpg);
3366 3367 3368
}

/**
3369 3370 3371 3372
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3373 3374 3375 3376 3377
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3378
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3379 3380 3381
}

/**
3382 3383
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3384 3385 3386 3387 3388
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3389
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3390 3391 3392 3393
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3394
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3395 3396

static struct configfs_attribute *srpt_wwn_attrs[] = {
3397
	&srpt_wwn_attr_version,
3398 3399 3400
	NULL,
};

3401 3402 3403
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3421
	.queue_data_in			= srpt_queue_data_in,
3422
	.queue_status			= srpt_queue_status,
3423
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3424
	.aborted_task			= srpt_aborted_task,
3425 3426 3427 3428 3429 3430 3431 3432
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3433
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3434 3435 3436 3437

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3438 3439 3440
};

/**
3441
 * srpt_init_module - kernel module initialization
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3454
		pr_err("invalid value %d for kernel module parameter"
3455 3456 3457 3458 3459 3460 3461
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3462
		pr_err("invalid value %d for kernel module parameter"
3463 3464 3465 3466 3467
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3468 3469
	ret = target_register_template(&srpt_template);
	if (ret)
3470 3471 3472 3473
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3474
		pr_err("couldn't register IB client\n");
3475 3476 3477 3478 3479 3480
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3481
	target_unregister_template(&srpt_template);
3482 3483 3484 3485 3486 3487 3488
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3489
	target_unregister_template(&srpt_template);
3490 3491 3492 3493
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);