ib_srpt.c 89.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
B
Bart Van Assche 已提交
44
#include <rdma/ib_cache.h>
45
#include <scsi/scsi_proto.h>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
71 72
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
73 74 75 76 77 78 79 80 81 82 83

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

84
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
85 86 87 88 89 90 91 92 93 94
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
95
static void srpt_release_cmd(struct se_cmd *se_cmd);
96
static void srpt_free_ch(struct kref *kref);
97
static int srpt_queue_status(struct se_cmd *cmd);
98 99
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
100
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
101

102 103 104
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
105
 */
106
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
107 108 109
{
	unsigned long flags;
	enum rdma_ch_state prev;
110
	bool changed = false;
111 112 113

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
114
	if (new > prev) {
115
		ch->state = new;
116 117
		changed = true;
	}
118
	spin_unlock_irqrestore(&ch->spinlock, flags);
119 120

	return changed;
121 122 123
}

/**
124 125 126
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
127 128 129 130 131 132 133 134 135 136 137
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
138
	u8 port_num;
139 140 141 142 143 144

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
145
		 sdev->device->name);
146 147 148

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
149 150 151
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
152 153
			sport->lid = 0;
			sport->sm_lid = 0;
154 155 156 157
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
158 159 160 161 162 163 164
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
165
	case IB_EVENT_GID_CHANGE:
166
		/* Refresh port data asynchronously. */
167 168 169
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
170 171
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
172 173 174 175
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
176 177 178
		}
		break;
	default:
179
		pr_err("received unrecognized IB event %d\n", event->event);
180 181 182 183 184
		break;
	}
}

/**
185 186 187
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
188 189 190
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
191
	pr_debug("SRQ event %d\n", event->event);
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

211
/**
212 213 214
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
215 216 217 218
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
219
		 event->event, ch->cm_id, ch->sess_name, ch->state);
220 221 222 223 224 225

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
226 227 228
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
229 230
		break;
	default:
231
		pr_err("received unrecognized IB QP event %d\n", event->event);
232 233 234 235 236
		break;
	}
}

/**
237 238
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
261 262
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
263 264 265 266 267 268 269 270 271
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
272
	memset(cif, 0, sizeof(*cif));
273 274 275
	cif->base_version = 1;
	cif->class_version = 1;

276
	ib_set_cpi_resp_time(cif, 20);
277 278 279 280
	mad->mad_hdr.status = 0;
}

/**
281 282
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
283 284 285 286 287 288 289 290 291 292 293
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
294
	ioui->change_id = cpu_to_be16(1);
295 296 297 298 299 300 301 302 303 304 305
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
306 307 308 309
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
310 311 312 313 314 315 316 317 318 319
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
320
	int send_queue_depth;
321 322 323 324 325

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
326
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
327 328 329 330 331
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
332
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
333 334 335
		return;
	}

336 337 338
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
339
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
340 341
				       sdev->device->attrs.max_qp_wr);

342
	memset(iocp, 0, sizeof(*iocp));
343 344
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
345 346 347 348
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349
	iocp->subsys_device_id = 0x0;
350 351 352 353
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
354
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
355 356 357 358 359 360 361 362 363 364 365 366
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
367 368 369 370 371 372
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
373 374 375 376 377 378 379 380 381 382 383 384 385
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
386
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
387 388 389 390 391
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
392
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
393 394 395 396
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
397
	memset(svc_entries, 0, sizeof(*svc_entries));
398 399 400 401 402 403 404 405 406 407 408
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
409 410
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
443
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
444 445 446 447 448
		break;
	}
}

/**
449 450 451
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
452 453 454 455
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
456
	rdma_destroy_ah(mad_wc->send_buf->ah);
457 458 459 460
	ib_free_send_mad(mad_wc->send_buf);
}

/**
461 462 463 464
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
465 466
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
467
				  struct ib_mad_send_buf *send_buf,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
488 489
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
490 491 492 493 494 495
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
496
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
497 498 499 500 501 502 503 504 505
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
506
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
507 508 509
		break;
	default:
		dm_mad->mad_hdr.status =
510
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
511 512 513 514 515 516 517 518 519 520 521 522
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
523
	rdma_destroy_ah(ah);
524 525 526 527
err:
	ib_free_recv_mad(mad_wc);
}

528 529 530 531 532 533 534 535 536
static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
{
	const __be16 *g = (const __be16 *)guid;

	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
}

537
/**
538 539
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
540 541 542 543 544 545 546 547 548 549 550 551 552 553
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

554
	memset(&port_modify, 0, sizeof(port_modify));
555 556 557 558 559 560 561 562 563 564 565 566 567 568
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

569 570
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
571 572 573
	if (ret)
		goto err_query_port;

574
	sport->port_guid_wwn.priv = sport;
575 576
	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
			 &sport->gid.global.interface_id);
577 578 579 580 581
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
582

583
	if (!sport->mad_agent) {
584
		memset(&reg_req, 0, sizeof(reg_req));
585 586 587 588 589 590 591 592 593 594 595
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
596
							 sport, 0);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
618 619
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
635
			pr_err("disabling MAD processing failed.\n");
636 637 638 639 640 641 642 643
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
644 645 646 647 648
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
679 680 681 682 683
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
684 685 686 687 688 689 690 691 692 693 694 695 696
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
697
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
729
	ring = NULL;
730 731 732 733 734
out:
	return ring;
}

/**
735 736 737 738 739 740
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
741 742 743 744 745 746 747
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

748 749 750
	if (!ioctx_ring)
		return;

751 752 753 754 755 756
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
757 758 759
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;

	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;

	return previous;
}

/**
777 778 779 780
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
797

798 799 800 801
	return previous == old;
}

/**
802 803 804 805
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
806
 */
807
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
808 809 810 811 812 813 814 815
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
816
	list.lkey = sdev->lkey;
817

818 819
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
820 821 822 823
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

824 825 826 827
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
828 829
}

830
/**
831 832
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

854 855 856 857 858 859
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
860 861
			pr_debug("%s-%d: already disconnected.\n",
				 ch->sess_name, ch->qp->qp_num);
862
	}
863 864
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

969
/**
970
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
971 972 973 974
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
975 976
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
977 978 979 980 981 982 983 984 985
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
986 987
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1003 1004 1005 1006 1007
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1008 1009 1010

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1011
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1012 1013

		*data_len = be32_to_cpu(db->len);
1014
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1015 1016
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1017 1018 1019
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1020

1021
		if (nbufs >
1022
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1023
			pr_err("received unsupported SRP_CMD request"
1024 1025 1026 1027
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1028 1029
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1030 1031 1032
		}

		*data_len = be32_to_cpu(idb->len);
1033 1034 1035 1036 1037
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1038 1039 1040 1041
	}
}

/**
1042 1043 1044
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1045 1046 1047 1048 1049 1050 1051 1052 1053
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1054
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1055 1056 1057 1058
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1059
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1060
	attr->port_num = ch->sport->port;
B
Bart Van Assche 已提交
1061 1062 1063 1064 1065 1066

	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
				  ch->pkey, &attr->pkey_index);
	if (ret < 0)
		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
		       ch->pkey, ret);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1077
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1107
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1137 1138
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1149 1150
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1151 1152 1153 1154
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1155
	unsigned long flags;
1156 1157 1158

	BUG_ON(!ch);

1159 1160 1161 1162 1163 1164
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1165
	}
1166 1167 1168 1169 1170 1171
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1172
	ioctx->state = SRPT_STATE_NEW;
1173
	ioctx->n_rdma = 0;
1174
	ioctx->n_rw_ctx = 0;
1175 1176 1177 1178 1179 1180 1181
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1182 1183 1184 1185 1186

	return ioctx;
}

/**
1187
 * srpt_abort_cmd - abort a SCSI command
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1198
	 * the ib_srpt driver, change the state to the next state.
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	 */

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1211 1212
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1213 1214 1215
		break;
	}

1216 1217
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1218 1219 1220 1221 1222

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1223
	case SRPT_STATE_DONE:
1224 1225 1226 1227 1228 1229
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1230 1231 1232
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1233 1234 1235 1236 1237 1238
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1239
		transport_generic_free_cmd(&ioctx->cmd, 0);
1240 1241
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1242
		transport_generic_free_cmd(&ioctx->cmd, 0);
1243 1244
		break;
	default:
G
Grant Grundler 已提交
1245
		WARN(1, "Unexpected command state (%d)", state);
1246 1247 1248 1249 1250 1251 1252
		break;
	}

	return state;
}

/**
1253 1254 1255 1256
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1257 1258
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1259
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1260
 * be cleaned up.
1261
 */
1262
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1263
{
1264 1265
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1266
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1267

1268 1269
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1270
	ioctx->n_rdma = 0;
1271

1272 1273 1274 1275 1276
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1277
	}
1278 1279 1280 1281 1282 1283

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
1284
		       __LINE__, ioctx->state);
1285 1286 1287
}

/**
1288
 * srpt_build_cmd_rsp - build a SRP_RSP response
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1323
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1324 1325
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1326
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1327 1328 1329 1330 1331 1332 1333
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1334 1335
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1348
 * srpt_build_tskmgmt_rsp - build a task management response
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1368
	resp_data_len = 4;
1369 1370 1371 1372
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1373
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1374 1375

	srp_rsp->opcode = SRP_RSP;
1376 1377
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1378 1379
	srp_rsp->tag = tag;

1380 1381 1382
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1383 1384 1385 1386 1387 1388

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1389 1390
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1391

1392
	return target_put_sess_cmd(&ioctx->cmd);
1393 1394 1395
}

/**
1396 1397 1398 1399
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1400
 */
1401 1402 1403
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1404 1405 1406
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1407 1408
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1409 1410
	u64 data_len;
	enum dma_data_direction dir;
1411
	int rc;
1412 1413 1414 1415 1416

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1417
	cmd->tag = srp_cmd->tag;
1418 1419 1420

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1421
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1422 1423 1424
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1425
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1426 1427
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1428
		cmd->sam_task_attr = TCM_HEAD_TAG;
1429 1430
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1431
		cmd->sam_task_attr = TCM_ACA_TAG;
1432 1433 1434
		break;
	}

1435 1436 1437 1438 1439 1440 1441
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1442
		goto release_ioctx;
1443 1444
	}

1445
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1446 1447
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1448 1449
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1450
	if (rc != 0) {
1451 1452 1453
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1454
	}
1455
	return;
1456

1457 1458 1459
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1481 1482 1483 1484
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1497
	struct se_session *sess = ch->sess;
1498
	int tcm_tmr;
1499
	int rc;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1511
	send_ioctx->cmd.tag = srp_tsk->tag;
1512
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1513 1514 1515 1516
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1517 1518
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1519
		goto fail;
1520
	}
1521 1522 1523
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1524 1525 1526
}

/**
1527
 * srpt_handle_new_iu - process a newly received information unit
1528
 * @ch:    RDMA channel through which the information unit has been received.
1529 1530
 * @recv_ioctx: Receive I/O context associated with the information unit.
 * @send_ioctx: Send I/O context.
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1545 1546
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1547

1548
	if (unlikely(ch->state != CH_LIVE))
1549
		return;
1550 1551 1552

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1553 1554 1555
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1556 1557
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1558 1559
		if (unlikely(!send_ioctx))
			goto out_wait;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1570
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1571 1572 1573 1574 1575 1576 1577 1578
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1579
		pr_err("Received SRP_RSP\n");
1580 1581
		break;
	default:
1582
		pr_err("received IU with unknown opcode 0x%x\n",
1583 1584 1585 1586
		       srp_cmd->opcode);
		break;
	}

1587
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1588
	return;
1589 1590 1591

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1592 1593
}

1594
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1595
{
1596 1597 1598
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1599 1600 1601 1602 1603 1604

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1605
			pr_err("req_lim = %d < 0\n", req_lim);
1606 1607
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1608 1609
		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
				    ioctx, wc->status);
1610 1611 1612
	}
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1635
/**
1636 1637 1638 1639
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1652
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1653
{
1654 1655 1656 1657
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1658

1659 1660 1661 1662 1663
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1664
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1665

1666
	if (wc->status != IB_WC_SUCCESS)
1667 1668 1669 1670 1671
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1672
	} else {
1673 1674
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1675 1676
	}

1677
	srpt_process_wait_list(ch);
1678 1679 1680
}

/**
1681 1682
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1683 1684 1685 1686 1687 1688
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1689
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1690
	int sq_size = sport->port_attrib.srp_sq_size;
1691
	int i, ret;
1692 1693 1694 1695

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1696
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1697 1698 1699
	if (!qp_init)
		goto out;

1700
retry:
1701
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1702
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1703 1704
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1705
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1706
		       ch->rq_size + sq_size, ret);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1717 1718 1719 1720 1721 1722 1723
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1724 1725
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1726
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1727
	qp_init->port_num = ch->sport->port;
1728 1729 1730 1731 1732 1733
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1734 1735 1736 1737

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1738
		if (ret == -ENOMEM) {
1739 1740
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1741 1742 1743 1744
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1745
		pr_err("failed to create_qp ret= %d\n", ret);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1759 1760 1761 1762
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1763 1764 1765 1766 1767 1768 1769
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1770
	ib_free_cq(ch->cq);
1771 1772 1773 1774 1775 1776
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1777
	ib_free_cq(ch->cq);
1778 1779 1780
}

/**
1781 1782
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1783
 *
1784 1785
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1786
 *
1787 1788
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1789
 */
1790
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1791
{
1792
	int ret;
1793

1794 1795 1796 1797
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1798 1799
	}

1800
	kref_get(&ch->kref);
1801

1802 1803 1804 1805
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1818

1819 1820 1821
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1822 1823
}

1824 1825 1826 1827 1828 1829 1830 1831
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1832
 */
1833
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1834 1835 1836
{
	int ret;

1837 1838
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1839

1840 1841 1842
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1843

1844 1845
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1846

1847 1848 1849
	return ret;
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static bool srpt_ch_closed(struct srpt_device *sdev, struct srpt_rdma_ch *ch)
{
	struct srpt_rdma_ch *ch2;
	bool res = true;

	rcu_read_lock();
	list_for_each_entry(ch2, &sdev->rch_list, list) {
		if (ch2 == ch) {
			res = false;
			break;
		}
	}
	rcu_read_unlock();

	return res;
}

1867 1868 1869 1870 1871 1872
/*
 * Send DREQ and wait for DREP. Return true if and only if this function
 * changed the state of @ch.
 */
static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
	__must_hold(&sdev->mutex)
1873
{
1874
	struct srpt_device *sdev = ch->sport->sdev;
1875
	int ret;
1876 1877 1878 1879 1880 1881

	lockdep_assert_held(&sdev->mutex);

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

1882
	ret = srpt_disconnect_ch(ch);
1883 1884
	mutex_unlock(&sdev->mutex);

1885 1886
	while (wait_event_timeout(sdev->ch_releaseQ, srpt_ch_closed(sdev, ch),
				  5 * HZ) == 0)
1887 1888 1889 1890
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

	mutex_lock(&sdev->mutex);
1891
	return ret == 0;
1892 1893
}

1894 1895
static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sdev->mutex)
1896
{
1897
	struct srpt_device *sdev = sport->sdev;
1898 1899 1900 1901
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

1902 1903 1904 1905 1906 1907 1908
	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (sport->enabled)
		return;

again:
1909
	list_for_each_entry(ch, &sdev->rch_list, list) {
1910 1911 1912 1913 1914 1915 1916
		if (ch->sport == sport) {
			pr_info("%s: closing channel %s-%d\n",
				sdev->device->name, ch->sess_name,
				ch->qp->qp_num);
			if (srpt_disconnect_ch_sync(ch))
				goto again;
		}
1917
	}
1918

1919 1920
}

1921 1922 1923 1924
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

1925
	kfree_rcu(ch, rcu);
1926 1927 1928 1929 1930 1931
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1932
	struct se_session *se_sess;
1933 1934

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1935
	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
1936 1937 1938 1939

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1940 1941 1942
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1943
	target_sess_cmd_list_set_waiting(se_sess);
1944
	target_wait_for_sess_cmds(se_sess);
1945 1946 1947

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1948 1949
	ch->sess = NULL;

1950 1951
	ib_destroy_cm_id(ch->cm_id);

1952 1953 1954 1955
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
1956
			     ch->max_rsp_size, DMA_TO_DEVICE);
1957

1958 1959 1960 1961
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

1962
	mutex_lock(&sdev->mutex);
1963 1964 1965
	list_del_rcu(&ch->list);
	mutex_unlock(&sdev->mutex);

1966 1967
	wake_up(&sdev->ch_releaseQ);

1968
	kref_put(&ch->kref, srpt_free_ch);
1969 1970 1971
}

/**
1972 1973 1974 1975
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
	u32 it_iu_len;
1992
	int i, ret = 0;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

B
Bart Van Assche 已提交
2003
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2004
		req->initiator_port_id, req->target_port_id, it_iu_len,
B
Bart Van Assche 已提交
2005 2006
		param->port, &sport->gid,
		be16_to_cpu(param->primary_path->pkey));
2007

2008 2009 2010
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2011 2012 2013 2014 2015 2016 2017

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2018 2019
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2020
		ret = -EINVAL;
2021
		pr_err("rejected SRP_LOGIN_REQ because its"
2022 2023 2024 2025 2026 2027
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2028 2029
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2030
		ret = -EINVAL;
2031
		pr_err("rejected SRP_LOGIN_REQ because the target port"
2032 2033 2034 2035 2036 2037 2038
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

2039
		mutex_lock(&sdev->mutex);
2040 2041 2042 2043 2044 2045 2046

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
2047
				if (srpt_disconnect_ch(ch) < 0)
2048
					continue;
2049 2050
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
2051 2052 2053 2054 2055
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

2056
		mutex_unlock(&sdev->mutex);
2057 2058 2059 2060 2061 2062 2063

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2064 2065
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2066
		ret = -ENOMEM;
2067
		pr_err("rejected SRP_LOGIN_REQ because it"
2068 2069 2070 2071
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2072
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2073
	if (!ch) {
2074 2075
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2076
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2077 2078 2079 2080
		ret = -ENOMEM;
		goto reject;
	}

2081
	init_rcu_head(&ch->rcu);
2082
	kref_init(&ch->kref);
B
Bart Van Assche 已提交
2083
	ch->pkey = be16_to_cpu(param->primary_path->pkey);
2084
	ch->zw_cqe.done = srpt_zerolength_write_done;
2085 2086 2087 2088 2089
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2090
	cm_id->context = ch;
2091
	/*
2092 2093 2094
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2095
	 */
2096
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2097 2098 2099
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2100
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2101 2102 2103 2104

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2105
				      ch->max_rsp_size, DMA_TO_DEVICE);
2106 2107 2108
	if (!ch->ioctx_ring)
		goto free_ch;

2109 2110 2111 2112 2113
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2127

2128 2129
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2130 2131
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2132
		pr_err("rejected SRP_LOGIN_REQ because creating"
2133
		       " a new RDMA channel failed.\n");
2134
		goto free_recv_ring;
2135 2136 2137 2138
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2139
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2140
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2141 2142 2143
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2144

2145 2146
	srpt_format_guid(ch->ini_guid, sizeof(ch->ini_guid),
			 &param->primary_path->dgid.global.interface_id);
2147 2148 2149 2150 2151 2152
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

2153 2154 2155 2156 2157 2158
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
						ch->ini_guid, ch, NULL);
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2159 2160 2161
					TARGET_PROT_NORMAL, ch->sess_name, ch,
					NULL);
	/* Retry without leading "0x" */
2162 2163
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2164 2165
						TARGET_PROT_NORMAL,
						ch->sess_name + 2, ch, NULL);
2166
	if (IS_ERR_OR_NULL(ch->sess)) {
2167 2168
		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
			ch->sess_name);
2169 2170
		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2171 2172
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2184 2185
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2186 2187 2188 2189 2190 2191 2192
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2193
	rep_param->private_data_len = sizeof(*rsp);
2194 2195 2196 2197 2198 2199 2200 2201 2202
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2203
		pr_err("sending SRP_LOGIN_REQ response failed"
2204 2205 2206 2207
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2208
	mutex_lock(&sdev->mutex);
2209
	list_add_tail_rcu(&ch->list, &sdev->rch_list);
2210
	mutex_unlock(&sdev->mutex);
2211 2212 2213 2214

	goto out;

release_channel:
2215
	srpt_disconnect_ch(ch);
2216 2217 2218 2219 2220 2221 2222
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

2223 2224 2225 2226 2227
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2228 2229 2230
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2231
			     ch->max_rsp_size, DMA_TO_DEVICE);
2232 2233 2234 2235 2236 2237
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2238 2239
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2240 2241

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2242
			     (void *)rej, sizeof(*rej));
2243 2244 2245 2246 2247 2248 2249 2250 2251

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2252 2253 2254 2255
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2256
{
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2269 2270 2271
}

/**
2272 2273
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2274 2275 2276 2277
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2278
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2279 2280 2281
{
	int ret;

2282
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2283 2284
		ret = srpt_ch_qp_rts(ch, ch->qp);

2285 2286 2287 2288 2289
		if (ret == 0) {
			/* Trigger wait list processing. */
			ret = srpt_zerolength_write(ch);
			WARN_ONCE(ret < 0, "%d\n", ret);
		} else {
2290
			srpt_close_ch(ch);
2291
		}
2292 2293 2294 2295
	}
}

/**
2296 2297 2298
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2309
	struct srpt_rdma_ch *ch = cm_id->context;
2310 2311 2312 2313 2314 2315 2316 2317 2318
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2319 2320 2321
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2322 2323 2324
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2325
		srpt_cm_rtu_recv(ch);
2326 2327
		break;
	case IB_CM_DREQ_RECEIVED:
2328
		srpt_disconnect_ch(ch);
2329 2330
		break;
	case IB_CM_DREP_RECEIVED:
2331 2332
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2333
		srpt_close_ch(ch);
2334 2335
		break;
	case IB_CM_TIMEWAIT_EXIT:
2336 2337
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2338
		srpt_close_ch(ch);
2339 2340
		break;
	case IB_CM_REP_ERROR:
2341 2342
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2343 2344
		break;
	case IB_CM_DREQ_ERROR:
2345
		pr_info("Received CM DREQ ERROR event.\n");
2346 2347
		break;
	case IB_CM_MRA_RECEIVED:
2348
		pr_info("Received CM MRA event\n");
2349 2350
		break;
	default:
2351
		pr_err("received unrecognized CM event %d\n", event->event);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2363
	return ioctx->state == SRPT_STATE_NEED_DATA;
2364 2365 2366
}

/*
2367
 * srpt_write_pending - Start data transfer from initiator to target (write).
2368 2369 2370
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2371 2372 2373
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2374 2375
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2376
	enum srpt_command_state new_state;
2377
	int ret, i;
2378 2379 2380

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2424 2425
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2426 2427 2428 2429
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2430
static void srpt_queue_response(struct se_cmd *cmd)
2431
{
2432 2433 2434 2435
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2436
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2437
	struct ib_sge sge;
2438
	enum srpt_command_state state;
2439
	int resp_len, ret, i;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	u8 srp_tm_status;

	BUG_ON(!ch);

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}

B
Bart Van Assche 已提交
2459
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2460
		return;
2461 2462

	/* For read commands, transfer the data to the initiator. */
2463 2464
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2465
	    !ioctx->queue_status_only) {
2466 2467 2468 2469
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2470
					ch->sport->port, NULL, first_wr);
2471 2472 2473 2474
		}
	}

	if (state != SRPT_STATE_MGMT)
2475
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2476 2477 2478 2479 2480
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2481
						 ioctx->cmd.tag);
2482
	}
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2499
	sge.lkey = sdev->lkey;
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2514
	}
2515 2516 2517 2518 2519 2520 2521 2522

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2523
}
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2534 2535
}

2536 2537 2538 2539
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2550 2551
	srpt_queue_response(cmd);
	return 0;
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
2562 2563
 * srpt_release_sdev - disable login and wait for associated channels
 * @sdev: SRPT HCA pointer.
2564 2565 2566
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2567
	int i, res;
2568 2569 2570 2571 2572

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2573
	mutex_lock(&sdev->mutex);
2574
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2575
		srpt_set_enabled(&sdev->port[i], false);
2576
	mutex_unlock(&sdev->mutex);
2577 2578

	res = wait_event_interruptible(sdev->ch_releaseQ,
2579
				       list_empty_careful(&sdev->rch_list));
2580
	if (res)
2581
		pr_err("%s: interrupted.\n", __func__);
2582 2583 2584 2585

	return 0;
}

2586
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2601 2602 2603 2604
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2605 2606 2607 2608 2609 2610
		}
	}

	return NULL;
}

2611
static struct se_wwn *srpt_lookup_wwn(const char *name)
2612
{
2613
	struct se_wwn *wwn;
2614 2615

	spin_lock(&srpt_dev_lock);
2616
	wwn = __srpt_lookup_wwn(name);
2617 2618
	spin_unlock(&srpt_dev_lock);

2619
	return wwn;
2620 2621
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2690
/**
2691 2692
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2693 2694 2695 2696 2697 2698 2699
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2700
	pr_debug("device = %p\n", device);
2701

2702
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2703 2704 2705 2706 2707 2708
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2709
	mutex_init(&sdev->mutex);
2710

2711
	sdev->pd = ib_alloc_pd(device, 0);
2712 2713 2714
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2715
	sdev->lkey = sdev->pd->local_dma_lkey;
2716

2717
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2718

2719
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2720 2721 2722 2723 2724 2725

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2726
		goto err_ring;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2739
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2740 2741 2742 2743
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2744
	ib_register_event_handler(&sdev->event_handler);
2745

2746
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2747 2748 2749 2750 2751 2752 2753 2754

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2755
		sport->port_attrib.use_srq = false;
2756 2757 2758
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2759
			pr_err("MAD registration failed for %s-%d.\n",
2760
			       sdev->device->name, i);
2761
			goto err_event;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2778
err_ring:
2779
	srpt_free_srq(sdev);
2780 2781 2782 2783 2784
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2785
	pr_info("%s(%s) failed.\n", __func__, device->name);
2786 2787 2788 2789
	goto out;
}

/**
2790 2791 2792
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2793
 */
2794
static void srpt_remove_one(struct ib_device *device, void *client_data)
2795
{
2796
	struct srpt_device *sdev = client_data;
2797 2798 2799
	int i;

	if (!sdev) {
2800
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

2824 2825
	srpt_free_srq(sdev);

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2852 2853 2854 2855 2856
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2857 2858
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2859
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2860

2861 2862 2863 2864
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2879 2880 2881
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2882
	unsigned long flags;
2883

2884 2885
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2886

2887 2888 2889
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
2890 2891
	}

2892 2893 2894
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2895 2896 2897
}

/**
2898 2899
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
2900 2901 2902 2903 2904 2905 2906
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
2907 2908
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
2909

2910
	mutex_lock(&sdev->mutex);
2911
	srpt_disconnect_ch_sync(ch);
2912
	mutex_unlock(&sdev->mutex);
2913 2914 2915
}

/**
2916 2917
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2939
	return ioctx->state;
2940 2941
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

2955
/**
2956
 * srpt_parse_i_port_id - parse an initiator port ID
2957 2958 2959 2960 2961 2962 2963
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
2964
	int ret;
2965 2966

	p = name;
2967
	if (strncasecmp(p, "0x", 2) == 0)
2968 2969 2970 2971 2972 2973 2974 2975
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
2976 2977 2978
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2979 2980 2981 2982 2983 2984 2985 2986
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
2987
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2988
{
2989
	u64 guid;
2990
	u8 i_port_id[16];
2991
	int ret;
2992

2993 2994 2995 2996
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
2997
		pr_err("invalid initiator port ID %s\n", name);
2998
	return ret;
2999 3000
}

3001 3002
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3003
{
3004
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3005
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3006 3007 3008 3009

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3010 3011
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3012
{
3013
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3014
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3015 3016 3017
	unsigned long val;
	int ret;

3018
	ret = kstrtoul(page, 0, &val);
3019
	if (ret < 0) {
3020
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3038 3039
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3040
{
3041
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3042
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3043 3044 3045 3046

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3047 3048
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3049
{
3050
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3051
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3052 3053 3054
	unsigned long val;
	int ret;

3055
	ret = kstrtoul(page, 0, &val);
3056
	if (ret < 0) {
3057
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3075 3076
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3077
{
3078
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3079
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3080 3081 3082 3083

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3084 3085
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3086
{
3087
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3088
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3089 3090 3091
	unsigned long val;
	int ret;

3092
	ret = kstrtoul(page, 0, &val);
3093
	if (ret < 0) {
3094
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3126
	struct srpt_device *sdev = sport->sdev;
3127
	unsigned long val;
3128
	bool enabled;
3129 3130 3131 3132 3133 3134 3135
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3136 3137 3138 3139 3140 3141 3142

	ret = mutex_lock_interruptible(&sdev->mutex);
	if (ret < 0)
		return ret;
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3143
	sport->port_attrib.use_srq = val;
3144 3145 3146
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
	mutex_unlock(&sdev->mutex);
3147 3148 3149 3150

	return count;
}

3151 3152 3153
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3154
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3155 3156

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3157 3158 3159
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3160
	&srpt_tpg_attrib_attr_use_srq,
3161 3162 3163
	NULL,
};

3164
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3165
{
3166
	struct se_portal_group *se_tpg = to_tpg(item);
3167
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3168 3169 3170 3171

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3172 3173
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3174
{
3175
	struct se_portal_group *se_tpg = to_tpg(item);
3176
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3177
	struct srpt_device *sdev = sport->sdev;
3178 3179 3180
	unsigned long tmp;
        int ret;

3181
	ret = kstrtoul(page, 0, &tmp);
3182
	if (ret < 0) {
3183
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3184 3185 3186 3187
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3188
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3189 3190 3191
		return -EINVAL;
	}

3192
	mutex_lock(&sdev->mutex);
3193
	srpt_set_enabled(sport, tmp);
3194 3195
	mutex_unlock(&sdev->mutex);

3196 3197 3198
	return count;
}

3199
CONFIGFS_ATTR(srpt_tpg_, enable);
3200 3201

static struct configfs_attribute *srpt_tpg_attrs[] = {
3202
	&srpt_tpg_attr_enable,
3203 3204 3205 3206
	NULL,
};

/**
3207 3208 3209 3210
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3211 3212 3213 3214 3215
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3216 3217
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3218 3219
	int res;

3220 3221 3222 3223 3224
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3225 3226 3227
	if (res)
		return ERR_PTR(res);

3228
	return tpg;
3229 3230 3231
}

/**
3232 3233
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3234 3235 3236
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3237
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3238 3239

	sport->enabled = false;
3240
	core_tpg_deregister(tpg);
3241 3242 3243
}

/**
3244 3245 3246 3247
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3248 3249 3250 3251 3252
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3253
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3254 3255 3256
}

/**
3257 3258
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3259 3260 3261 3262 3263
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3264
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3265 3266 3267 3268
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3269
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3270 3271

static struct configfs_attribute *srpt_wwn_attrs[] = {
3272
	&srpt_wwn_attr_version,
3273 3274 3275
	NULL,
};

3276 3277 3278
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3296
	.queue_data_in			= srpt_queue_data_in,
3297
	.queue_status			= srpt_queue_status,
3298
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3299
	.aborted_task			= srpt_aborted_task,
3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3308
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3309 3310 3311 3312

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3313 3314 3315
};

/**
3316
 * srpt_init_module - kernel module initialization
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3329
		pr_err("invalid value %d for kernel module parameter"
3330 3331 3332 3333 3334 3335 3336
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3337
		pr_err("invalid value %d for kernel module parameter"
3338 3339 3340 3341 3342
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3343 3344
	ret = target_register_template(&srpt_template);
	if (ret)
3345 3346 3347 3348
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3349
		pr_err("couldn't register IB client\n");
3350 3351 3352 3353 3354 3355
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3356
	target_unregister_template(&srpt_template);
3357 3358 3359 3360 3361 3362 3363
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3364
	target_unregister_template(&srpt_template);
3365 3366 3367 3368
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);