ib_srpt.c 88.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
44
#include <scsi/scsi_proto.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
70 71
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 73 74 75 76 77 78 79 80 81 82

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

83
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 85 86 87 88 89 90 91 92 93
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
94
static void srpt_release_cmd(struct se_cmd *se_cmd);
95
static void srpt_free_ch(struct kref *kref);
96
static int srpt_queue_status(struct se_cmd *cmd);
97 98
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100

101 102 103
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
104
 */
105
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 107 108
{
	unsigned long flags;
	enum rdma_ch_state prev;
109
	bool changed = false;
110 111 112

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
113
	if (new > prev) {
114
		ch->state = new;
115 116
		changed = true;
	}
117
	spin_unlock_irqrestore(&ch->spinlock, flags);
118 119

	return changed;
120 121 122
}

/**
123 124 125
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
126 127 128 129 130 131 132 133 134 135 136
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
137
	u8 port_num;
138 139 140 141 142 143

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
144
		 sdev->device->name);
145 146 147

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
148 149 150
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
151 152
			sport->lid = 0;
			sport->sm_lid = 0;
153 154 155 156
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
157 158 159 160 161 162 163
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
164
	case IB_EVENT_GID_CHANGE:
165
		/* Refresh port data asynchronously. */
166 167 168
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
169 170
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
171 172 173 174
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
175 176 177
		}
		break;
	default:
178
		pr_err("received unrecognized IB event %d\n", event->event);
179 180 181 182 183
		break;
	}
}

/**
184 185 186
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
187 188 189
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
190
	pr_debug("SRQ event %d\n", event->event);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

210
/**
211 212 213
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
214 215 216 217
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
218
		 event->event, ch->cm_id, ch->sess_name, ch->state);
219 220 221 222 223 224

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
225 226 227
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
228 229
		break;
	default:
230
		pr_err("received unrecognized IB QP event %d\n", event->event);
231 232 233 234 235
		break;
	}
}

/**
236 237
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
260 261
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
262 263 264 265 266 267 268 269 270
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
271
	memset(cif, 0, sizeof(*cif));
272 273 274
	cif->base_version = 1;
	cif->class_version = 1;

275
	ib_set_cpi_resp_time(cif, 20);
276 277 278 279
	mad->mad_hdr.status = 0;
}

/**
280 281
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
282 283 284 285 286 287 288 289 290 291 292
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
293
	ioui->change_id = cpu_to_be16(1);
294 295 296 297 298 299 300 301 302 303 304
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
305 306 307 308
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
309 310 311 312 313 314 315 316 317 318
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
319
	int send_queue_depth;
320 321 322 323 324

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
325
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
326 327 328 329 330
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
331
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
332 333 334
		return;
	}

335 336 337
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
338
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
339 340
				       sdev->device->attrs.max_qp_wr);

341
	memset(iocp, 0, sizeof(*iocp));
342 343
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
344 345 346 347
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
348
	iocp->subsys_device_id = 0x0;
349 350 351 352
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
354 355 356 357 358 359 360 361 362 363 364 365
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
366 367 368 369 370 371
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
372 373 374 375 376 377 378 379 380 381 382 383 384
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
385
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
386 387 388 389 390
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
391
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
392 393 394 395
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
396
	memset(svc_entries, 0, sizeof(*svc_entries));
397 398 399 400 401 402 403 404 405 406 407
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
408 409
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
442
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
443 444 445 446 447
		break;
	}
}

/**
448 449 450
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
451 452 453 454
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
455
	rdma_destroy_ah(mad_wc->send_buf->ah);
456 457 458 459
	ib_free_send_mad(mad_wc->send_buf);
}

/**
460 461 462 463
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
464 465
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
466
				  struct ib_mad_send_buf *send_buf,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
487 488
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
489 490 491 492 493 494
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
495
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
496 497 498 499 500 501 502 503 504
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
505
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
506 507 508
		break;
	default:
		dm_mad->mad_hdr.status =
509
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
510 511 512 513 514 515 516 517 518 519 520 521
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
522
	rdma_destroy_ah(ah);
523 524 525 526
err:
	ib_free_recv_mad(mad_wc);
}

527 528 529 530 531 532 533 534 535
static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
{
	const __be16 *g = (const __be16 *)guid;

	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
}

536
/**
537 538
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
539 540 541 542 543 544 545 546 547 548 549 550 551 552
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

553
	memset(&port_modify, 0, sizeof(port_modify));
554 555 556 557 558 559 560 561 562 563 564 565 566 567
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

568 569
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
570 571 572
	if (ret)
		goto err_query_port;

573
	sport->port_guid_wwn.priv = sport;
574 575
	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
			 &sport->gid.global.interface_id);
576 577 578 579 580
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
581

582
	if (!sport->mad_agent) {
583
		memset(&reg_req, 0, sizeof(reg_req));
584 585 586 587 588 589 590 591 592 593 594
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
595
							 sport, 0);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
617 618
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
634
			pr_err("disabling MAD processing failed.\n");
635 636 637 638 639 640 641 642
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
643 644 645 646 647
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
678 679 680 681 682
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
683 684 685 686 687 688 689 690 691 692 693 694 695
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
696
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
728
	ring = NULL;
729 730 731 732 733
out:
	return ring;
}

/**
734 735 736 737 738 739
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
740 741 742 743 744 745 746
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

747 748 749
	if (!ioctx_ring)
		return;

750 751 752 753 754 755
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
756 757 758
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;

	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;

	return previous;
}

/**
776 777 778 779
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
796

797 798 799 800
	return previous == old;
}

/**
801 802 803 804
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
805
 */
806
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
807 808 809 810 811 812 813 814
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
815
	list.lkey = sdev->lkey;
816

817 818
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
819 820 821 822
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

823 824 825 826
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
827 828
}

829
/**
830 831
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

853 854 855 856 857 858
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
859 860
			pr_debug("%s-%d: already disconnected.\n",
				 ch->sess_name, ch->qp->qp_num);
861
	}
862 863
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

968
/**
969
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
970 971 972 973
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
974 975
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
976 977 978 979 980 981 982 983 984
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
985 986
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1002 1003 1004 1005 1006
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1007 1008 1009

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1010
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1011 1012

		*data_len = be32_to_cpu(db->len);
1013
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1014 1015
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1016 1017 1018
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1019

1020
		if (nbufs >
1021
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1022
			pr_err("received unsupported SRP_CMD request"
1023 1024 1025 1026
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1027 1028
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1029 1030 1031
		}

		*data_len = be32_to_cpu(idb->len);
1032 1033 1034 1035 1036
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1037 1038 1039 1040
	}
}

/**
1041 1042 1043
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1044 1045 1046 1047 1048 1049 1050 1051 1052
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1053
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1054 1055 1056 1057
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1058
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1071
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1101
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1131 1132
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1143 1144
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1145 1146 1147 1148
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1149
	unsigned long flags;
1150 1151 1152

	BUG_ON(!ch);

1153 1154 1155 1156 1157 1158
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1159
	}
1160 1161 1162 1163 1164 1165
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1166
	ioctx->state = SRPT_STATE_NEW;
1167
	ioctx->n_rdma = 0;
1168
	ioctx->n_rw_ctx = 0;
1169 1170 1171 1172 1173 1174 1175
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1176 1177 1178 1179 1180

	return ioctx;
}

/**
1181
 * srpt_abort_cmd - abort a SCSI command
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1192
	 * the ib_srpt driver, change the state to the next state.
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	 */

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1205 1206
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1207 1208 1209
		break;
	}

1210 1211
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1212 1213 1214 1215 1216

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1217
	case SRPT_STATE_DONE:
1218 1219 1220 1221 1222 1223
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1224 1225 1226
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1227 1228 1229 1230 1231 1232
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1233
		transport_generic_free_cmd(&ioctx->cmd, 0);
1234 1235
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1236
		transport_generic_free_cmd(&ioctx->cmd, 0);
1237 1238
		break;
	default:
G
Grant Grundler 已提交
1239
		WARN(1, "Unexpected command state (%d)", state);
1240 1241 1242 1243 1244 1245 1246
		break;
	}

	return state;
}

/**
1247 1248 1249 1250
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1251 1252
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1253
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1254
 * be cleaned up.
1255
 */
1256
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1257
{
1258 1259
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1260
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1261

1262 1263
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1264
	ioctx->n_rdma = 0;
1265

1266 1267 1268 1269 1270
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1271
	}
1272 1273 1274 1275 1276 1277

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
1278
		       __LINE__, ioctx->state);
1279 1280 1281
}

/**
1282
 * srpt_build_cmd_rsp - build a SRP_RSP response
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1317
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1318 1319
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1320
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1321 1322 1323 1324 1325 1326 1327
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1328 1329
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1342
 * srpt_build_tskmgmt_rsp - build a task management response
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1362
	resp_data_len = 4;
1363 1364 1365 1366
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1367
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1368 1369

	srp_rsp->opcode = SRP_RSP;
1370 1371
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1372 1373
	srp_rsp->tag = tag;

1374 1375 1376
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1377 1378 1379 1380 1381 1382

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1383 1384
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1385

1386
	return target_put_sess_cmd(&ioctx->cmd);
1387 1388 1389
}

/**
1390 1391 1392 1393
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1394
 */
1395 1396 1397
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1398 1399 1400
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1401 1402
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1403 1404
	u64 data_len;
	enum dma_data_direction dir;
1405
	int rc;
1406 1407 1408 1409 1410

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1411
	cmd->tag = srp_cmd->tag;
1412 1413 1414

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1415
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1416 1417 1418
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1419
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1420 1421
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1422
		cmd->sam_task_attr = TCM_HEAD_TAG;
1423 1424
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1425
		cmd->sam_task_attr = TCM_ACA_TAG;
1426 1427 1428
		break;
	}

1429 1430 1431 1432 1433 1434 1435
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1436
		goto release_ioctx;
1437 1438
	}

1439
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1440 1441
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1442 1443
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1444
	if (rc != 0) {
1445 1446 1447
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1448
	}
1449
	return;
1450

1451 1452 1453
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1475 1476 1477 1478
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1491
	struct se_session *sess = ch->sess;
1492
	int tcm_tmr;
1493
	int rc;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1505
	send_ioctx->cmd.tag = srp_tsk->tag;
1506
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1507 1508 1509 1510
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1511 1512
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1513
		goto fail;
1514
	}
1515 1516 1517
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1518 1519 1520
}

/**
1521
 * srpt_handle_new_iu - process a newly received information unit
1522
 * @ch:    RDMA channel through which the information unit has been received.
1523 1524
 * @recv_ioctx: Receive I/O context associated with the information unit.
 * @send_ioctx: Send I/O context.
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1539 1540
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1541

1542
	if (unlikely(ch->state != CH_LIVE))
1543
		return;
1544 1545 1546

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1547 1548 1549
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1550 1551
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1552 1553
		if (unlikely(!send_ioctx))
			goto out_wait;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1564
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1565 1566 1567 1568 1569 1570 1571 1572
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1573
		pr_err("Received SRP_RSP\n");
1574 1575
		break;
	default:
1576
		pr_err("received IU with unknown opcode 0x%x\n",
1577 1578 1579 1580
		       srp_cmd->opcode);
		break;
	}

1581
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1582
	return;
1583 1584 1585

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1586 1587
}

1588
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1589
{
1590 1591 1592
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1593 1594 1595 1596 1597 1598

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1599
			pr_err("req_lim = %d < 0\n", req_lim);
1600 1601
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1602 1603
		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
				    ioctx, wc->status);
1604 1605 1606
	}
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1629
/**
1630 1631 1632 1633
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1646
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1647
{
1648 1649 1650 1651
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1652

1653 1654 1655 1656 1657
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1658
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1659

1660
	if (wc->status != IB_WC_SUCCESS)
1661 1662 1663 1664 1665
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1666
	} else {
1667 1668
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1669 1670
	}

1671
	srpt_process_wait_list(ch);
1672 1673 1674
}

/**
1675 1676
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1677 1678 1679 1680 1681 1682
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1683
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1684
	int sq_size = sport->port_attrib.srp_sq_size;
1685
	int i, ret;
1686 1687 1688 1689

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1690
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1691 1692 1693
	if (!qp_init)
		goto out;

1694
retry:
1695
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1696
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1697 1698
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1699
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1700
		       ch->rq_size + sq_size, ret);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1711 1712 1713 1714 1715 1716 1717
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1718 1719
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1720
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1721
	qp_init->port_num = ch->sport->port;
1722 1723 1724 1725 1726 1727
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1728 1729 1730 1731

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1732
		if (ret == -ENOMEM) {
1733 1734
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1735 1736 1737 1738
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1739
		pr_err("failed to create_qp ret= %d\n", ret);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1753 1754 1755 1756
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1757 1758 1759 1760 1761 1762 1763
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1764
	ib_free_cq(ch->cq);
1765 1766 1767 1768 1769 1770
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1771
	ib_free_cq(ch->cq);
1772 1773 1774
}

/**
1775 1776
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1777
 *
1778 1779
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1780
 *
1781 1782
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1783
 */
1784
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1785
{
1786
	int ret;
1787

1788 1789 1790 1791
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1792 1793
	}

1794
	kref_get(&ch->kref);
1795

1796 1797 1798 1799
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1812

1813 1814 1815
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1826
 */
1827
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1828 1829 1830
{
	int ret;

1831 1832
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1833

1834 1835 1836
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1837

1838 1839
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1840

1841 1842 1843
	return ret;
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static bool srpt_ch_closed(struct srpt_device *sdev, struct srpt_rdma_ch *ch)
{
	struct srpt_rdma_ch *ch2;
	bool res = true;

	rcu_read_lock();
	list_for_each_entry(ch2, &sdev->rch_list, list) {
		if (ch2 == ch) {
			res = false;
			break;
		}
	}
	rcu_read_unlock();

	return res;
}

1861 1862 1863 1864 1865 1866
/*
 * Send DREQ and wait for DREP. Return true if and only if this function
 * changed the state of @ch.
 */
static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
	__must_hold(&sdev->mutex)
1867
{
1868
	struct srpt_device *sdev = ch->sport->sdev;
1869
	int ret;
1870 1871 1872 1873 1874 1875

	lockdep_assert_held(&sdev->mutex);

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

1876
	ret = srpt_disconnect_ch(ch);
1877 1878
	mutex_unlock(&sdev->mutex);

1879 1880
	while (wait_event_timeout(sdev->ch_releaseQ, srpt_ch_closed(sdev, ch),
				  5 * HZ) == 0)
1881 1882 1883 1884
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

	mutex_lock(&sdev->mutex);
1885
	return ret == 0;
1886 1887
}

1888 1889
static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sdev->mutex)
1890
{
1891
	struct srpt_device *sdev = sport->sdev;
1892 1893 1894 1895
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

1896 1897 1898 1899 1900 1901 1902
	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (sport->enabled)
		return;

again:
1903
	list_for_each_entry(ch, &sdev->rch_list, list) {
1904 1905 1906 1907 1908 1909 1910
		if (ch->sport == sport) {
			pr_info("%s: closing channel %s-%d\n",
				sdev->device->name, ch->sess_name,
				ch->qp->qp_num);
			if (srpt_disconnect_ch_sync(ch))
				goto again;
		}
1911
	}
1912

1913 1914
}

1915 1916 1917 1918
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

1919
	kfree_rcu(ch, rcu);
1920 1921 1922 1923 1924 1925
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1926
	struct se_session *se_sess;
1927 1928

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1929
	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
1930 1931 1932 1933

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1934 1935 1936
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1937
	target_sess_cmd_list_set_waiting(se_sess);
1938
	target_wait_for_sess_cmds(se_sess);
1939 1940 1941

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1942 1943
	ch->sess = NULL;

1944 1945
	ib_destroy_cm_id(ch->cm_id);

1946 1947 1948 1949
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
1950
			     ch->max_rsp_size, DMA_TO_DEVICE);
1951

1952 1953 1954 1955
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

1956
	mutex_lock(&sdev->mutex);
1957 1958 1959
	list_del_rcu(&ch->list);
	mutex_unlock(&sdev->mutex);

1960 1961
	wake_up(&sdev->ch_releaseQ);

1962
	kref_put(&ch->kref, srpt_free_ch);
1963 1964 1965
}

/**
1966 1967 1968 1969
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
	u32 it_iu_len;
1986
	int i, ret = 0;
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

1997 1998 1999
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6)\n",
		req->initiator_port_id, req->target_port_id, it_iu_len,
		param->port, &sport->gid);
2000

2001 2002 2003
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2004 2005 2006 2007 2008 2009 2010

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2011 2012
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2013
		ret = -EINVAL;
2014
		pr_err("rejected SRP_LOGIN_REQ because its"
2015 2016 2017 2018 2019 2020
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2021 2022
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2023
		ret = -EINVAL;
2024
		pr_err("rejected SRP_LOGIN_REQ because the target port"
2025 2026 2027 2028 2029 2030 2031
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

2032
		mutex_lock(&sdev->mutex);
2033 2034 2035 2036 2037 2038 2039

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
2040
				if (srpt_disconnect_ch(ch) < 0)
2041
					continue;
2042 2043
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
2044 2045 2046 2047 2048
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

2049
		mutex_unlock(&sdev->mutex);
2050 2051 2052 2053 2054 2055 2056

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2057 2058
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2059
		ret = -ENOMEM;
2060
		pr_err("rejected SRP_LOGIN_REQ because it"
2061 2062 2063 2064
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2065
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2066
	if (!ch) {
2067 2068
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2069
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2070 2071 2072 2073
		ret = -ENOMEM;
		goto reject;
	}

2074
	init_rcu_head(&ch->rcu);
2075 2076
	kref_init(&ch->kref);
	ch->zw_cqe.done = srpt_zerolength_write_done;
2077 2078 2079 2080 2081
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2082
	cm_id->context = ch;
2083
	/*
2084 2085 2086
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2087
	 */
2088
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2089 2090 2091
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2092
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2093 2094 2095 2096

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2097
				      ch->max_rsp_size, DMA_TO_DEVICE);
2098 2099 2100
	if (!ch->ioctx_ring)
		goto free_ch;

2101 2102 2103 2104 2105
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2119

2120 2121
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2122 2123
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2124
		pr_err("rejected SRP_LOGIN_REQ because creating"
2125
		       " a new RDMA channel failed.\n");
2126
		goto free_recv_ring;
2127 2128 2129 2130
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2131
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2132
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2133 2134 2135
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2136

2137 2138
	srpt_format_guid(ch->ini_guid, sizeof(ch->ini_guid),
			 &param->primary_path->dgid.global.interface_id);
2139 2140 2141 2142 2143 2144
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

2145 2146 2147 2148 2149 2150
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
						ch->ini_guid, ch, NULL);
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2151 2152 2153
					TARGET_PROT_NORMAL, ch->sess_name, ch,
					NULL);
	/* Retry without leading "0x" */
2154 2155
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2156 2157
						TARGET_PROT_NORMAL,
						ch->sess_name + 2, ch, NULL);
2158
	if (IS_ERR_OR_NULL(ch->sess)) {
2159 2160
		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
			ch->sess_name);
2161 2162
		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2163 2164
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2176 2177
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2178 2179 2180 2181 2182 2183 2184
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2185
	rep_param->private_data_len = sizeof(*rsp);
2186 2187 2188 2189 2190 2191 2192 2193 2194
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2195
		pr_err("sending SRP_LOGIN_REQ response failed"
2196 2197 2198 2199
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2200
	mutex_lock(&sdev->mutex);
2201
	list_add_tail_rcu(&ch->list, &sdev->rch_list);
2202
	mutex_unlock(&sdev->mutex);
2203 2204 2205 2206

	goto out;

release_channel:
2207
	srpt_disconnect_ch(ch);
2208 2209 2210 2211 2212 2213 2214
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

2215 2216 2217 2218 2219
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2220 2221 2222
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2223
			     ch->max_rsp_size, DMA_TO_DEVICE);
2224 2225 2226 2227 2228 2229
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2230 2231
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2232 2233

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2234
			     (void *)rej, sizeof(*rej));
2235 2236 2237 2238 2239 2240 2241 2242 2243

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2244 2245 2246 2247
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2248
{
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2261 2262 2263
}

/**
2264 2265
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2266 2267 2268 2269
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2270
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2271 2272 2273
{
	int ret;

2274
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2275 2276
		ret = srpt_ch_qp_rts(ch, ch->qp);

2277 2278 2279 2280 2281
		if (ret == 0) {
			/* Trigger wait list processing. */
			ret = srpt_zerolength_write(ch);
			WARN_ONCE(ret < 0, "%d\n", ret);
		} else {
2282
			srpt_close_ch(ch);
2283
		}
2284 2285 2286 2287
	}
}

/**
2288 2289 2290
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2301
	struct srpt_rdma_ch *ch = cm_id->context;
2302 2303 2304 2305 2306 2307 2308 2309 2310
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2311 2312 2313
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2314 2315 2316
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2317
		srpt_cm_rtu_recv(ch);
2318 2319
		break;
	case IB_CM_DREQ_RECEIVED:
2320
		srpt_disconnect_ch(ch);
2321 2322
		break;
	case IB_CM_DREP_RECEIVED:
2323 2324
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2325
		srpt_close_ch(ch);
2326 2327
		break;
	case IB_CM_TIMEWAIT_EXIT:
2328 2329
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2330
		srpt_close_ch(ch);
2331 2332
		break;
	case IB_CM_REP_ERROR:
2333 2334
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2335 2336
		break;
	case IB_CM_DREQ_ERROR:
2337
		pr_info("Received CM DREQ ERROR event.\n");
2338 2339
		break;
	case IB_CM_MRA_RECEIVED:
2340
		pr_info("Received CM MRA event\n");
2341 2342
		break;
	default:
2343
		pr_err("received unrecognized CM event %d\n", event->event);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2355
	return ioctx->state == SRPT_STATE_NEED_DATA;
2356 2357 2358
}

/*
2359
 * srpt_write_pending - Start data transfer from initiator to target (write).
2360 2361 2362
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2363 2364 2365
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2366 2367
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2368
	enum srpt_command_state new_state;
2369
	int ret, i;
2370 2371 2372

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2416 2417
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2418 2419 2420 2421
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2422
static void srpt_queue_response(struct se_cmd *cmd)
2423
{
2424 2425 2426 2427
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2428
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2429
	struct ib_sge sge;
2430
	enum srpt_command_state state;
2431
	int resp_len, ret, i;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	u8 srp_tm_status;

	BUG_ON(!ch);

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}

B
Bart Van Assche 已提交
2451
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2452
		return;
2453 2454

	/* For read commands, transfer the data to the initiator. */
2455 2456
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2457
	    !ioctx->queue_status_only) {
2458 2459 2460 2461
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2462
					ch->sport->port, NULL, first_wr);
2463 2464 2465 2466
		}
	}

	if (state != SRPT_STATE_MGMT)
2467
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2468 2469 2470 2471 2472
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2473
						 ioctx->cmd.tag);
2474
	}
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2491
	sge.lkey = sdev->lkey;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2506
	}
2507 2508 2509 2510 2511 2512 2513 2514

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2515
}
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2526 2527
}

2528 2529 2530 2531
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2542 2543
	srpt_queue_response(cmd);
	return 0;
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
2554 2555
 * srpt_release_sdev - disable login and wait for associated channels
 * @sdev: SRPT HCA pointer.
2556 2557 2558
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2559
	int i, res;
2560 2561 2562 2563 2564

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2565
	mutex_lock(&sdev->mutex);
2566
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2567
		srpt_set_enabled(&sdev->port[i], false);
2568
	mutex_unlock(&sdev->mutex);
2569 2570

	res = wait_event_interruptible(sdev->ch_releaseQ,
2571
				       list_empty_careful(&sdev->rch_list));
2572
	if (res)
2573
		pr_err("%s: interrupted.\n", __func__);
2574 2575 2576 2577

	return 0;
}

2578
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2593 2594 2595 2596
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2597 2598 2599 2600 2601 2602
		}
	}

	return NULL;
}

2603
static struct se_wwn *srpt_lookup_wwn(const char *name)
2604
{
2605
	struct se_wwn *wwn;
2606 2607

	spin_lock(&srpt_dev_lock);
2608
	wwn = __srpt_lookup_wwn(name);
2609 2610
	spin_unlock(&srpt_dev_lock);

2611
	return wwn;
2612 2613
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2682
/**
2683 2684
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2685 2686 2687 2688 2689 2690 2691
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2692
	pr_debug("device = %p\n", device);
2693

2694
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2695 2696 2697 2698 2699 2700
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2701
	mutex_init(&sdev->mutex);
2702

2703
	sdev->pd = ib_alloc_pd(device, 0);
2704 2705 2706
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2707
	sdev->lkey = sdev->pd->local_dma_lkey;
2708

2709
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2710

2711
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2712 2713 2714 2715 2716 2717

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2718
		goto err_ring;
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2731
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2732 2733 2734 2735
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2736
	ib_register_event_handler(&sdev->event_handler);
2737

2738
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2739 2740 2741 2742 2743 2744 2745 2746

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2747
		sport->port_attrib.use_srq = false;
2748 2749 2750
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2751
			pr_err("MAD registration failed for %s-%d.\n",
2752
			       sdev->device->name, i);
2753
			goto err_event;
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2770
err_ring:
2771
	srpt_free_srq(sdev);
2772 2773 2774 2775 2776
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2777
	pr_info("%s(%s) failed.\n", __func__, device->name);
2778 2779 2780 2781
	goto out;
}

/**
2782 2783 2784
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2785
 */
2786
static void srpt_remove_one(struct ib_device *device, void *client_data)
2787
{
2788
	struct srpt_device *sdev = client_data;
2789 2790 2791
	int i;

	if (!sdev) {
2792
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

2816 2817
	srpt_free_srq(sdev);

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2844 2845 2846 2847 2848
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2849 2850
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2851
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2852

2853 2854 2855 2856
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2871 2872 2873
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2874
	unsigned long flags;
2875

2876 2877
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2878

2879 2880 2881
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
2882 2883
	}

2884 2885 2886
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2887 2888 2889
}

/**
2890 2891
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
2892 2893 2894 2895 2896 2897 2898
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
2899 2900
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
2901

2902
	mutex_lock(&sdev->mutex);
2903
	srpt_disconnect_ch_sync(ch);
2904
	mutex_unlock(&sdev->mutex);
2905 2906 2907
}

/**
2908 2909
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2931
	return ioctx->state;
2932 2933
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

2947
/**
2948
 * srpt_parse_i_port_id - parse an initiator port ID
2949 2950 2951 2952 2953 2954 2955
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
2956
	int ret;
2957 2958

	p = name;
2959
	if (strncasecmp(p, "0x", 2) == 0)
2960 2961 2962 2963 2964 2965 2966 2967
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
2968 2969 2970
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2971 2972 2973 2974 2975 2976 2977 2978
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
2979
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2980
{
2981
	u64 guid;
2982
	u8 i_port_id[16];
2983
	int ret;
2984

2985 2986 2987 2988
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
2989
		pr_err("invalid initiator port ID %s\n", name);
2990
	return ret;
2991 2992
}

2993 2994
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
2995
{
2996
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2997
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2998 2999 3000 3001

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3002 3003
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3004
{
3005
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3006
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3007 3008 3009
	unsigned long val;
	int ret;

3010
	ret = kstrtoul(page, 0, &val);
3011
	if (ret < 0) {
3012
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3030 3031
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3032
{
3033
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3034
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3035 3036 3037 3038

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3039 3040
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3041
{
3042
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3043
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3044 3045 3046
	unsigned long val;
	int ret;

3047
	ret = kstrtoul(page, 0, &val);
3048
	if (ret < 0) {
3049
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3067 3068
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3069
{
3070
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3071
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3072 3073 3074 3075

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3076 3077
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3078
{
3079
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3080
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3081 3082 3083
	unsigned long val;
	int ret;

3084
	ret = kstrtoul(page, 0, &val);
3085
	if (ret < 0) {
3086
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3118
	struct srpt_device *sdev = sport->sdev;
3119
	unsigned long val;
3120
	bool enabled;
3121 3122 3123 3124 3125 3126 3127
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3128 3129 3130 3131 3132 3133 3134

	ret = mutex_lock_interruptible(&sdev->mutex);
	if (ret < 0)
		return ret;
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3135
	sport->port_attrib.use_srq = val;
3136 3137 3138
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
	mutex_unlock(&sdev->mutex);
3139 3140 3141 3142

	return count;
}

3143 3144 3145
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3146
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3147 3148

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3149 3150 3151
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3152
	&srpt_tpg_attrib_attr_use_srq,
3153 3154 3155
	NULL,
};

3156
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3157
{
3158
	struct se_portal_group *se_tpg = to_tpg(item);
3159
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3160 3161 3162 3163

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3164 3165
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3166
{
3167
	struct se_portal_group *se_tpg = to_tpg(item);
3168
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3169
	struct srpt_device *sdev = sport->sdev;
3170 3171 3172
	unsigned long tmp;
        int ret;

3173
	ret = kstrtoul(page, 0, &tmp);
3174
	if (ret < 0) {
3175
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3176 3177 3178 3179
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3180
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3181 3182 3183
		return -EINVAL;
	}

3184
	mutex_lock(&sdev->mutex);
3185
	srpt_set_enabled(sport, tmp);
3186 3187
	mutex_unlock(&sdev->mutex);

3188 3189 3190
	return count;
}

3191
CONFIGFS_ATTR(srpt_tpg_, enable);
3192 3193

static struct configfs_attribute *srpt_tpg_attrs[] = {
3194
	&srpt_tpg_attr_enable,
3195 3196 3197 3198
	NULL,
};

/**
3199 3200 3201 3202
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3203 3204 3205 3206 3207
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3208 3209
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3210 3211
	int res;

3212 3213 3214 3215 3216
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3217 3218 3219
	if (res)
		return ERR_PTR(res);

3220
	return tpg;
3221 3222 3223
}

/**
3224 3225
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3226 3227 3228
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3229
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3230 3231

	sport->enabled = false;
3232
	core_tpg_deregister(tpg);
3233 3234 3235
}

/**
3236 3237 3238 3239
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3240 3241 3242 3243 3244
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3245
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3246 3247 3248
}

/**
3249 3250
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3251 3252 3253 3254 3255
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3256
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3257 3258 3259 3260
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3261
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3262 3263

static struct configfs_attribute *srpt_wwn_attrs[] = {
3264
	&srpt_wwn_attr_version,
3265 3266 3267
	NULL,
};

3268 3269 3270
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3288
	.queue_data_in			= srpt_queue_data_in,
3289
	.queue_status			= srpt_queue_status,
3290
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3291
	.aborted_task			= srpt_aborted_task,
3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3300
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3301 3302 3303 3304

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3305 3306 3307
};

/**
3308
 * srpt_init_module - kernel module initialization
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3321
		pr_err("invalid value %d for kernel module parameter"
3322 3323 3324 3325 3326 3327 3328
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3329
		pr_err("invalid value %d for kernel module parameter"
3330 3331 3332 3333 3334
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3335 3336
	ret = target_register_template(&srpt_template);
	if (ret)
3337 3338 3339 3340
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3341
		pr_err("couldn't register IB client\n");
3342 3343 3344 3345 3346 3347
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3348
	target_unregister_template(&srpt_template);
3349 3350 3351 3352 3353 3354 3355
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3356
	target_unregister_template(&srpt_template);
3357 3358 3359 3360
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);