ib_srpt.c 89.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
44
#include <scsi/scsi_proto.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
70 71
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 73 74 75 76 77 78 79 80 81 82

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

83
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 85 86 87 88 89 90 91 92 93
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
94
static void srpt_release_cmd(struct se_cmd *se_cmd);
95
static void srpt_free_ch(struct kref *kref);
96
static int srpt_queue_status(struct se_cmd *cmd);
97 98
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100

101 102 103
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
104
 */
105
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 107 108
{
	unsigned long flags;
	enum rdma_ch_state prev;
109
	bool changed = false;
110 111 112

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
113
	if (new > prev) {
114
		ch->state = new;
115 116
		changed = true;
	}
117
	spin_unlock_irqrestore(&ch->spinlock, flags);
118 119

	return changed;
120 121 122
}

/**
123 124 125
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
126 127 128 129 130 131 132 133 134 135 136
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
137
	u8 port_num;
138 139 140 141 142 143

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
144
		 sdev->device->name);
145 146 147

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
148 149 150
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
151 152
			sport->lid = 0;
			sport->sm_lid = 0;
153 154 155 156
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
157 158 159 160 161 162 163
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
164
	case IB_EVENT_GID_CHANGE:
165
		/* Refresh port data asynchronously. */
166 167 168
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
169 170
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
171 172 173 174
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
175 176 177
		}
		break;
	default:
178
		pr_err("received unrecognized IB event %d\n", event->event);
179 180 181 182 183
		break;
	}
}

/**
184 185 186
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
187 188 189
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
190
	pr_debug("SRQ event %d\n", event->event);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

210
/**
211 212 213
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
214 215 216 217
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
218
		 event->event, ch->cm_id, ch->sess_name, ch->state);
219 220 221 222 223 224

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
225 226 227
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
228 229
		break;
	default:
230
		pr_err("received unrecognized IB QP event %d\n", event->event);
231 232 233 234 235
		break;
	}
}

/**
236 237
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
260 261
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
262 263 264 265 266 267 268 269 270
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
271
	memset(cif, 0, sizeof(*cif));
272 273 274
	cif->base_version = 1;
	cif->class_version = 1;

275
	ib_set_cpi_resp_time(cif, 20);
276 277 278 279
	mad->mad_hdr.status = 0;
}

/**
280 281
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
282 283 284 285 286 287 288 289 290 291 292
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
293
	ioui->change_id = cpu_to_be16(1);
294 295 296 297 298 299 300 301 302 303 304
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
305 306 307 308
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
309 310 311 312 313 314 315 316 317 318
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
319
	int send_queue_depth;
320 321 322 323 324

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
325
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
326 327 328 329 330
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
331
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
332 333 334
		return;
	}

335 336 337
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
338
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
339 340
				       sdev->device->attrs.max_qp_wr);

341
	memset(iocp, 0, sizeof(*iocp));
342 343
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
344 345 346 347
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
348
	iocp->subsys_device_id = 0x0;
349 350 351 352
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
354 355 356 357 358 359 360 361 362 363 364 365
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
366 367 368 369 370 371
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
372 373 374 375 376 377 378 379 380 381 382 383 384
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
385
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
386 387 388 389 390
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
391
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
392 393 394 395
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
396
	memset(svc_entries, 0, sizeof(*svc_entries));
397 398 399 400 401 402 403 404 405 406 407
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
408 409
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
442
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
443 444 445 446 447
		break;
	}
}

/**
448 449 450
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
451 452 453 454
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
455
	rdma_destroy_ah(mad_wc->send_buf->ah);
456 457 458 459
	ib_free_send_mad(mad_wc->send_buf);
}

/**
460 461 462 463
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
464 465
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
466
				  struct ib_mad_send_buf *send_buf,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
487 488
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
489 490 491 492 493 494
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
495
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
496 497 498 499 500 501 502 503 504
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
505
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
506 507 508
		break;
	default:
		dm_mad->mad_hdr.status =
509
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
510 511 512 513 514 515 516 517 518 519 520 521
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
522
	rdma_destroy_ah(ah);
523 524 525 526 527
err:
	ib_free_recv_mad(mad_wc);
}

/**
528 529
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
530 531 532 533 534 535 536 537 538 539 540 541
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
542
	__be16 *guid;
543 544
	int ret;

545
	memset(&port_modify, 0, sizeof(port_modify));
546 547 548 549 550 551 552 553 554 555 556 557 558 559
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

560 561
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
562 563 564
	if (ret)
		goto err_query_port;

565 566
	sport->port_guid_wwn.priv = sport;
	guid = (__be16 *)&sport->gid.global.interface_id;
567
	snprintf(sport->port_guid, sizeof(sport->port_guid),
568 569 570 571 572 573 574 575
		 "%04x:%04x:%04x:%04x",
		 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
		 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
576

577
	if (!sport->mad_agent) {
578
		memset(&reg_req, 0, sizeof(reg_req));
579 580 581 582 583 584 585 586 587 588 589
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
590
							 sport, 0);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
612 613
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
629
			pr_err("disabling MAD processing failed.\n");
630 631 632 633 634 635 636 637
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
638 639 640 641 642
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
673 674 675 676 677
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
678 679 680 681 682 683 684 685 686 687 688 689 690
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
691
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
723
	ring = NULL;
724 725 726 727 728
out:
	return ring;
}

/**
729 730 731 732 733 734
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
735 736 737 738 739 740 741
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

742 743 744
	if (!ioctx_ring)
		return;

745 746 747 748 749 750
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
751 752
 * srpt_get_cmd_state - get the state of a SCSI command
 * @ioctx: Send I/O context.
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
 */
static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return state;
}

/**
768 769 770
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	return previous;
}

/**
793 794 795 796
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return previous == old;
}

/**
820 821 822 823
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
824
 */
825
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
826 827 828 829 830 831 832 833
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
834
	list.lkey = sdev->lkey;
835

836 837
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
838 839 840 841
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

842 843 844 845
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
846 847
}

848
/**
849 850
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

872 873 874 875 876 877
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
878 879
			pr_debug("%s-%d: already disconnected.\n",
				 ch->sess_name, ch->qp->qp_num);
880
	}
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

987
/**
988
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
989 990 991 992
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
993 994
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
995 996 997 998 999 1000 1001 1002 1003
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
1004 1005
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1021 1022 1023 1024 1025
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1026 1027 1028

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1029
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1030 1031

		*data_len = be32_to_cpu(db->len);
1032
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1033 1034
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1035 1036 1037
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1038

1039
		if (nbufs >
1040
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1041
			pr_err("received unsupported SRP_CMD request"
1042 1043 1044 1045
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1046 1047
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1048 1049 1050
		}

		*data_len = be32_to_cpu(idb->len);
1051 1052 1053 1054 1055
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1056 1057 1058 1059
	}
}

/**
1060 1061 1062
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1063 1064 1065 1066 1067 1068 1069 1070 1071
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1072
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1073 1074 1075 1076
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1077
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1090
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1120
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1150 1151
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1162 1163
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1164 1165 1166 1167
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1168
	unsigned long flags;
1169 1170 1171

	BUG_ON(!ch);

1172 1173 1174 1175 1176 1177
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1178
	}
1179 1180 1181 1182 1183 1184
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1185 1186
	spin_lock_init(&ioctx->spinlock);
	ioctx->state = SRPT_STATE_NEW;
1187
	ioctx->n_rdma = 0;
1188
	ioctx->n_rw_ctx = 0;
1189 1190 1191 1192 1193 1194 1195
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1196 1197 1198 1199 1200

	return ioctx;
}

/**
1201
 * srpt_abort_cmd - abort a SCSI command
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1213
	 * the ib_srpt driver, change the state to the next state.
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	 */

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1227 1228
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1229 1230 1231 1232
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

1233 1234
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1235 1236 1237 1238 1239

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1240
	case SRPT_STATE_DONE:
1241 1242 1243 1244 1245 1246
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1247 1248 1249
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1250 1251 1252 1253 1254 1255
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1256
		transport_generic_free_cmd(&ioctx->cmd, 0);
1257 1258
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1259
		transport_generic_free_cmd(&ioctx->cmd, 0);
1260 1261
		break;
	default:
G
Grant Grundler 已提交
1262
		WARN(1, "Unexpected command state (%d)", state);
1263 1264 1265 1266 1267 1268 1269
		break;
	}

	return state;
}

/**
1270 1271 1272 1273
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1274 1275
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1276
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1277
 * be cleaned up.
1278
 */
1279
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1280
{
1281 1282
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1283
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1284

1285 1286
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1287
	ioctx->n_rdma = 0;
1288

1289 1290 1291 1292 1293
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1294
	}
1295 1296 1297 1298 1299 1300 1301

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
		       __LINE__, srpt_get_cmd_state(ioctx));
1302 1303 1304
}

/**
1305
 * srpt_build_cmd_rsp - build a SRP_RSP response
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1340
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1341 1342
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1343
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1344 1345 1346 1347 1348 1349 1350
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1351 1352
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1365
 * srpt_build_tskmgmt_rsp - build a task management response
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1385
	resp_data_len = 4;
1386 1387 1388 1389
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1390
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1391 1392

	srp_rsp->opcode = SRP_RSP;
1393 1394
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1395 1396
	srp_rsp->tag = tag;

1397 1398 1399
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1400 1401 1402 1403 1404 1405

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1406 1407
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1408

1409
	return target_put_sess_cmd(&ioctx->cmd);
1410 1411 1412
}

/**
1413 1414 1415 1416
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1417
 */
1418 1419 1420
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1421 1422 1423
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1424 1425
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1426 1427
	u64 data_len;
	enum dma_data_direction dir;
1428
	int rc;
1429 1430 1431 1432 1433

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1434
	cmd->tag = srp_cmd->tag;
1435 1436 1437

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1438
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1439 1440 1441
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1442
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1443 1444
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1445
		cmd->sam_task_attr = TCM_HEAD_TAG;
1446 1447
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1448
		cmd->sam_task_attr = TCM_ACA_TAG;
1449 1450 1451
		break;
	}

1452 1453 1454 1455 1456 1457 1458
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1459
		goto release_ioctx;
1460 1461
	}

1462
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1463 1464
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1465 1466
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1467
	if (rc != 0) {
1468 1469 1470
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1471
	}
1472
	return;
1473

1474 1475 1476
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1498 1499 1500 1501
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1514
	struct se_session *sess = ch->sess;
1515
	int tcm_tmr;
1516
	int rc;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1528
	send_ioctx->cmd.tag = srp_tsk->tag;
1529
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1530 1531 1532 1533
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1534 1535
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1536
		goto fail;
1537
	}
1538 1539 1540
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1541 1542 1543
}

/**
1544
 * srpt_handle_new_iu - process a newly received information unit
1545
 * @ch:    RDMA channel through which the information unit has been received.
1546 1547
 * @recv_ioctx: Receive I/O context associated with the information unit.
 * @send_ioctx: Send I/O context.
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1562 1563
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1564

1565
	if (unlikely(ch->state != CH_LIVE))
1566
		return;
1567 1568 1569

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1570 1571 1572
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1573 1574
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1575 1576
		if (unlikely(!send_ioctx))
			goto out_wait;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1587
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1588 1589 1590 1591 1592 1593 1594 1595
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1596
		pr_err("Received SRP_RSP\n");
1597 1598
		break;
	default:
1599
		pr_err("received IU with unknown opcode 0x%x\n",
1600 1601 1602 1603
		       srp_cmd->opcode);
		break;
	}

1604
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1605
	return;
1606 1607 1608

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1609 1610
}

1611
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1612
{
1613 1614 1615
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1616 1617 1618 1619 1620 1621

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1622
			pr_err("req_lim = %d < 0\n", req_lim);
1623 1624
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1625 1626
		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
				    ioctx, wc->status);
1627 1628 1629
	}
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1652
/**
1653 1654 1655 1656
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1669
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1670
{
1671 1672 1673 1674
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1675

1676 1677 1678 1679 1680
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1681
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1682

1683
	if (wc->status != IB_WC_SUCCESS)
1684 1685 1686 1687 1688
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1689
	} else {
1690 1691
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1692 1693
	}

1694
	srpt_process_wait_list(ch);
1695 1696 1697
}

/**
1698 1699
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1700 1701 1702 1703 1704 1705
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1706
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1707
	int sq_size = sport->port_attrib.srp_sq_size;
1708
	int i, ret;
1709 1710 1711 1712

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1713
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1714 1715 1716
	if (!qp_init)
		goto out;

1717
retry:
1718
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1719
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1720 1721
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1722
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1723
		       ch->rq_size + sq_size, ret);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1734 1735 1736 1737 1738 1739 1740
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1741 1742
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1743
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1744
	qp_init->port_num = ch->sport->port;
1745 1746 1747 1748 1749 1750
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1751 1752 1753 1754

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1755
		if (ret == -ENOMEM) {
1756 1757
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1758 1759 1760 1761
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1762
		pr_err("failed to create_qp ret= %d\n", ret);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1776 1777 1778 1779
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1780 1781 1782 1783 1784 1785 1786
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1787
	ib_free_cq(ch->cq);
1788 1789 1790 1791 1792 1793
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1794
	ib_free_cq(ch->cq);
1795 1796 1797
}

/**
1798 1799
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1800
 *
1801 1802
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1803
 *
1804 1805
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1806
 */
1807
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1808
{
1809
	int ret;
1810

1811 1812 1813 1814
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1815 1816
	}

1817
	kref_get(&ch->kref);
1818

1819 1820 1821 1822
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1835

1836 1837 1838
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1849
 */
1850
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1851 1852 1853
{
	int ret;

1854 1855
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1856

1857 1858 1859
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1860

1861 1862
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1863

1864 1865 1866
	return ret;
}

1867 1868 1869 1870 1871 1872
/*
 * Send DREQ and wait for DREP. Return true if and only if this function
 * changed the state of @ch.
 */
static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
	__must_hold(&sdev->mutex)
1873
{
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	DECLARE_COMPLETION_ONSTACK(release_done);
	struct srpt_device *sdev = ch->sport->sdev;
	bool wait;

	lockdep_assert_held(&sdev->mutex);

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

	WARN_ON(ch->release_done);
	ch->release_done = &release_done;
	wait = !list_empty(&ch->list);
	srpt_disconnect_ch(ch);
	mutex_unlock(&sdev->mutex);

	if (!wait)
		goto out;

	while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

out:
	mutex_lock(&sdev->mutex);
	return wait;
}

1901 1902
static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sdev->mutex)
1903
{
1904
	struct srpt_device *sdev = sport->sdev;
1905 1906 1907 1908
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

1909 1910 1911 1912 1913 1914 1915
	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (sport->enabled)
		return;

again:
1916
	list_for_each_entry(ch, &sdev->rch_list, list) {
1917 1918 1919 1920 1921 1922 1923
		if (ch->sport == sport) {
			pr_info("%s: closing channel %s-%d\n",
				sdev->device->name, ch->sess_name,
				ch->qp->qp_num);
			if (srpt_disconnect_ch_sync(ch))
				goto again;
		}
1924
	}
1925

1926 1927
}

1928 1929 1930 1931 1932
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

	kfree(ch);
1933 1934 1935 1936 1937 1938
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1939
	struct se_session *se_sess;
1940 1941

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1942 1943
	pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
		 ch->qp->qp_num, ch->release_done);
1944 1945 1946 1947

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1948 1949 1950
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1951
	target_sess_cmd_list_set_waiting(se_sess);
1952
	target_wait_for_sess_cmds(se_sess);
1953 1954 1955

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1956 1957
	ch->sess = NULL;

1958 1959
	ib_destroy_cm_id(ch->cm_id);

1960 1961 1962 1963
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
1964
			     ch->max_rsp_size, DMA_TO_DEVICE);
1965

1966 1967 1968 1969
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

1970
	mutex_lock(&sdev->mutex);
1971
	list_del_init(&ch->list);
1972 1973
	if (ch->release_done)
		complete(ch->release_done);
1974
	mutex_unlock(&sdev->mutex);
1975 1976 1977

	wake_up(&sdev->ch_releaseQ);

1978
	kref_put(&ch->kref, srpt_free_ch);
1979 1980 1981
}

/**
1982 1983 1984 1985
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
2001
	__be16 *guid;
2002
	u32 it_iu_len;
2003
	int i, ret = 0;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

2014 2015 2016
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6)\n",
		req->initiator_port_id, req->target_port_id, it_iu_len,
		param->port, &sport->gid);
2017

2018 2019 2020
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2021 2022 2023 2024 2025 2026 2027

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2028 2029
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2030
		ret = -EINVAL;
2031
		pr_err("rejected SRP_LOGIN_REQ because its"
2032 2033 2034 2035 2036 2037
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2038 2039
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2040
		ret = -EINVAL;
2041
		pr_err("rejected SRP_LOGIN_REQ because the target port"
2042 2043 2044 2045 2046 2047 2048
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

2049
		mutex_lock(&sdev->mutex);
2050 2051 2052 2053 2054 2055 2056

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
2057
				if (srpt_disconnect_ch(ch) < 0)
2058
					continue;
2059 2060
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
2061 2062 2063 2064 2065
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

2066
		mutex_unlock(&sdev->mutex);
2067 2068 2069 2070 2071 2072 2073

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2074 2075
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2076
		ret = -ENOMEM;
2077
		pr_err("rejected SRP_LOGIN_REQ because it"
2078 2079 2080 2081
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2082
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2083
	if (!ch) {
2084 2085
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2086
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2087 2088 2089 2090
		ret = -ENOMEM;
		goto reject;
	}

2091 2092
	kref_init(&ch->kref);
	ch->zw_cqe.done = srpt_zerolength_write_done;
2093 2094 2095 2096 2097
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2098
	cm_id->context = ch;
2099
	/*
2100 2101 2102
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2103
	 */
2104
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2105 2106 2107
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2108
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2109 2110 2111 2112

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2113
				      ch->max_rsp_size, DMA_TO_DEVICE);
2114 2115 2116
	if (!ch->ioctx_ring)
		goto free_ch;

2117 2118 2119 2120 2121
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2135

2136 2137
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2138 2139
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2140
		pr_err("rejected SRP_LOGIN_REQ because creating"
2141
		       " a new RDMA channel failed.\n");
2142
		goto free_recv_ring;
2143 2144 2145 2146
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2147
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2148
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2149 2150 2151
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2152

2153
	guid = (__be16 *)&param->primary_path->dgid.global.interface_id;
2154 2155 2156
	snprintf(ch->ini_guid, sizeof(ch->ini_guid), "%04x:%04x:%04x:%04x",
		 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
		 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
2157 2158 2159 2160 2161 2162
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

2163 2164 2165 2166 2167 2168
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
						ch->ini_guid, ch, NULL);
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2169 2170 2171
					TARGET_PROT_NORMAL, ch->sess_name, ch,
					NULL);
	/* Retry without leading "0x" */
2172 2173
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2174 2175
						TARGET_PROT_NORMAL,
						ch->sess_name + 2, ch, NULL);
2176
	if (IS_ERR_OR_NULL(ch->sess)) {
2177 2178
		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
			ch->sess_name);
2179 2180
		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2181 2182
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2194 2195
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2196 2197 2198 2199 2200 2201 2202
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2203
	rep_param->private_data_len = sizeof(*rsp);
2204 2205 2206 2207 2208 2209 2210 2211 2212
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2213
		pr_err("sending SRP_LOGIN_REQ response failed"
2214 2215 2216 2217
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2218
	mutex_lock(&sdev->mutex);
2219
	list_add_tail(&ch->list, &sdev->rch_list);
2220
	mutex_unlock(&sdev->mutex);
2221 2222 2223 2224

	goto out;

release_channel:
2225
	srpt_disconnect_ch(ch);
2226 2227 2228 2229 2230 2231 2232
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

2233 2234 2235 2236 2237
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2238 2239 2240
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2241
			     ch->max_rsp_size, DMA_TO_DEVICE);
2242 2243 2244 2245 2246 2247
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2248 2249
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2250 2251

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2252
			     (void *)rej, sizeof(*rej));
2253 2254 2255 2256 2257 2258 2259 2260 2261

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2262 2263 2264 2265
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2266
{
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2279 2280 2281
}

/**
2282 2283
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2284 2285 2286 2287
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2288
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2289 2290 2291
{
	int ret;

2292
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2293 2294
		ret = srpt_ch_qp_rts(ch, ch->qp);

2295 2296 2297 2298 2299
		if (ret == 0) {
			/* Trigger wait list processing. */
			ret = srpt_zerolength_write(ch);
			WARN_ONCE(ret < 0, "%d\n", ret);
		} else {
2300
			srpt_close_ch(ch);
2301
		}
2302 2303 2304 2305
	}
}

/**
2306 2307 2308
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2319
	struct srpt_rdma_ch *ch = cm_id->context;
2320 2321 2322 2323 2324 2325 2326 2327 2328
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2329 2330 2331
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2332 2333 2334
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2335
		srpt_cm_rtu_recv(ch);
2336 2337
		break;
	case IB_CM_DREQ_RECEIVED:
2338
		srpt_disconnect_ch(ch);
2339 2340
		break;
	case IB_CM_DREP_RECEIVED:
2341 2342
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2343
		srpt_close_ch(ch);
2344 2345
		break;
	case IB_CM_TIMEWAIT_EXIT:
2346 2347
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2348
		srpt_close_ch(ch);
2349 2350
		break;
	case IB_CM_REP_ERROR:
2351 2352
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2353 2354
		break;
	case IB_CM_DREQ_ERROR:
2355
		pr_info("Received CM DREQ ERROR event.\n");
2356 2357
		break;
	case IB_CM_MRA_RECEIVED:
2358
		pr_info("Received CM MRA event\n");
2359 2360
		break;
	default:
2361
		pr_err("received unrecognized CM event %d\n", event->event);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
}

/*
2377
 * srpt_write_pending - Start data transfer from initiator to target (write).
2378 2379 2380
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2381 2382 2383
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2384 2385
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2386
	enum srpt_command_state new_state;
2387
	int ret, i;
2388 2389 2390

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2434 2435
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2436 2437 2438 2439
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2440
static void srpt_queue_response(struct se_cmd *cmd)
2441
{
2442 2443 2444 2445
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2446
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2447
	struct ib_sge sge;
2448 2449
	enum srpt_command_state state;
	unsigned long flags;
2450
	int resp_len, ret, i;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	u8 srp_tm_status;

	BUG_ON(!ch);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

B
Bart Van Assche 已提交
2472
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2473
		return;
2474 2475

	/* For read commands, transfer the data to the initiator. */
2476 2477
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2478
	    !ioctx->queue_status_only) {
2479 2480 2481 2482
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2483
					ch->sport->port, NULL, first_wr);
2484 2485 2486 2487
		}
	}

	if (state != SRPT_STATE_MGMT)
2488
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2489 2490 2491 2492 2493
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2494
						 ioctx->cmd.tag);
2495
	}
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2512
	sge.lkey = sdev->lkey;
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2527
	}
2528 2529 2530 2531 2532 2533 2534 2535

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2536
}
2537

2538 2539 2540 2541 2542 2543 2544 2545 2546
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2547 2548
}

2549 2550 2551 2552
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2563 2564
	srpt_queue_response(cmd);
	return 0;
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
2575 2576
 * srpt_release_sdev - disable login and wait for associated channels
 * @sdev: SRPT HCA pointer.
2577 2578 2579
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2580
	int i, res;
2581 2582 2583 2584 2585

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2586
	mutex_lock(&sdev->mutex);
2587
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2588
		srpt_set_enabled(&sdev->port[i], false);
2589
	mutex_unlock(&sdev->mutex);
2590 2591

	res = wait_event_interruptible(sdev->ch_releaseQ,
2592
				       list_empty_careful(&sdev->rch_list));
2593
	if (res)
2594
		pr_err("%s: interrupted.\n", __func__);
2595 2596 2597 2598

	return 0;
}

2599
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2614 2615 2616 2617
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2618 2619 2620 2621 2622 2623
		}
	}

	return NULL;
}

2624
static struct se_wwn *srpt_lookup_wwn(const char *name)
2625
{
2626
	struct se_wwn *wwn;
2627 2628

	spin_lock(&srpt_dev_lock);
2629
	wwn = __srpt_lookup_wwn(name);
2630 2631
	spin_unlock(&srpt_dev_lock);

2632
	return wwn;
2633 2634
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2703
/**
2704 2705
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2706 2707 2708 2709 2710 2711 2712
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2713
	pr_debug("device = %p\n", device);
2714

2715
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2716 2717 2718 2719 2720 2721
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2722
	mutex_init(&sdev->mutex);
2723

2724
	sdev->pd = ib_alloc_pd(device, 0);
2725 2726 2727
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2728
	sdev->lkey = sdev->pd->local_dma_lkey;
2729

2730
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2731

2732
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2733 2734 2735 2736 2737 2738

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2739
		goto err_ring;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2752
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2753 2754 2755 2756
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2757
	ib_register_event_handler(&sdev->event_handler);
2758

2759
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2760 2761 2762 2763 2764 2765 2766 2767

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2768
		sport->port_attrib.use_srq = false;
2769 2770 2771
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2772
			pr_err("MAD registration failed for %s-%d.\n",
2773
			       sdev->device->name, i);
2774
			goto err_event;
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2791
err_ring:
2792
	srpt_free_srq(sdev);
2793 2794 2795 2796 2797
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2798
	pr_info("%s(%s) failed.\n", __func__, device->name);
2799 2800 2801 2802
	goto out;
}

/**
2803 2804 2805
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2806
 */
2807
static void srpt_remove_one(struct ib_device *device, void *client_data)
2808
{
2809
	struct srpt_device *sdev = client_data;
2810 2811 2812
	int i;

	if (!sdev) {
2813
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

2837 2838
	srpt_free_srq(sdev);

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2865 2866 2867 2868 2869
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2870 2871
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2872
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2873

2874 2875 2876 2877
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2892 2893 2894
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2895
	unsigned long flags;
2896

2897 2898
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2899

2900 2901 2902
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
2903 2904
	}

2905 2906 2907
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2908 2909 2910
}

/**
2911 2912
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
2913 2914 2915 2916 2917 2918 2919
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
2920 2921
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
2922

2923
	mutex_lock(&sdev->mutex);
2924
	srpt_disconnect_ch_sync(ch);
2925
	mutex_unlock(&sdev->mutex);
2926 2927 2928
}

/**
2929 2930
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx);
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

2968
/**
2969
 * srpt_parse_i_port_id - parse an initiator port ID
2970 2971 2972 2973 2974 2975 2976
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
2977
	int ret;
2978 2979

	p = name;
2980
	if (strncasecmp(p, "0x", 2) == 0)
2981 2982 2983 2984 2985 2986 2987 2988
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
2989 2990 2991
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2992 2993 2994 2995 2996 2997 2998 2999
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
3000
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3001
{
3002
	u64 guid;
3003
	u8 i_port_id[16];
3004
	int ret;
3005

3006 3007 3008 3009
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
3010
		pr_err("invalid initiator port ID %s\n", name);
3011
	return ret;
3012 3013
}

3014 3015
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3016
{
3017
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3018
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3019 3020 3021 3022

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3023 3024
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3025
{
3026
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3027
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3028 3029 3030
	unsigned long val;
	int ret;

3031
	ret = kstrtoul(page, 0, &val);
3032
	if (ret < 0) {
3033
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3051 3052
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3053
{
3054
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3055
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3056 3057 3058 3059

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3060 3061
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3062
{
3063
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3064
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3065 3066 3067
	unsigned long val;
	int ret;

3068
	ret = kstrtoul(page, 0, &val);
3069
	if (ret < 0) {
3070
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3088 3089
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3090
{
3091
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3092
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3093 3094 3095 3096

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3097 3098
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3099
{
3100
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3101
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3102 3103 3104
	unsigned long val;
	int ret;

3105
	ret = kstrtoul(page, 0, &val);
3106
	if (ret < 0) {
3107
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3139
	struct srpt_device *sdev = sport->sdev;
3140
	unsigned long val;
3141
	bool enabled;
3142 3143 3144 3145 3146 3147 3148
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3149 3150 3151 3152 3153 3154 3155

	ret = mutex_lock_interruptible(&sdev->mutex);
	if (ret < 0)
		return ret;
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3156
	sport->port_attrib.use_srq = val;
3157 3158 3159
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
	mutex_unlock(&sdev->mutex);
3160 3161 3162 3163

	return count;
}

3164 3165 3166
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3167
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3168 3169

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3170 3171 3172
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3173
	&srpt_tpg_attrib_attr_use_srq,
3174 3175 3176
	NULL,
};

3177
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3178
{
3179
	struct se_portal_group *se_tpg = to_tpg(item);
3180
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3181 3182 3183 3184

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3185 3186
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3187
{
3188
	struct se_portal_group *se_tpg = to_tpg(item);
3189
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3190
	struct srpt_device *sdev = sport->sdev;
3191 3192 3193
	unsigned long tmp;
        int ret;

3194
	ret = kstrtoul(page, 0, &tmp);
3195
	if (ret < 0) {
3196
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3197 3198 3199 3200
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3201
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3202 3203 3204
		return -EINVAL;
	}

3205
	mutex_lock(&sdev->mutex);
3206
	srpt_set_enabled(sport, tmp);
3207 3208
	mutex_unlock(&sdev->mutex);

3209 3210 3211
	return count;
}

3212
CONFIGFS_ATTR(srpt_tpg_, enable);
3213 3214

static struct configfs_attribute *srpt_tpg_attrs[] = {
3215
	&srpt_tpg_attr_enable,
3216 3217 3218 3219
	NULL,
};

/**
3220 3221 3222 3223
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3224 3225 3226 3227 3228
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3229 3230
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3231 3232
	int res;

3233 3234 3235 3236 3237
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3238 3239 3240
	if (res)
		return ERR_PTR(res);

3241
	return tpg;
3242 3243 3244
}

/**
3245 3246
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3247 3248 3249
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3250
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3251 3252

	sport->enabled = false;
3253
	core_tpg_deregister(tpg);
3254 3255 3256
}

/**
3257 3258 3259 3260
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3261 3262 3263 3264 3265
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3266
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3267 3268 3269
}

/**
3270 3271
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3272 3273 3274 3275 3276
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3277
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3278 3279 3280 3281
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3282
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3283 3284

static struct configfs_attribute *srpt_wwn_attrs[] = {
3285
	&srpt_wwn_attr_version,
3286 3287 3288
	NULL,
};

3289 3290 3291
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3309
	.queue_data_in			= srpt_queue_data_in,
3310
	.queue_status			= srpt_queue_status,
3311
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3312
	.aborted_task			= srpt_aborted_task,
3313 3314 3315 3316 3317 3318 3319 3320
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3321
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3322 3323 3324 3325

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3326 3327 3328
};

/**
3329
 * srpt_init_module - kernel module initialization
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3342
		pr_err("invalid value %d for kernel module parameter"
3343 3344 3345 3346 3347 3348 3349
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3350
		pr_err("invalid value %d for kernel module parameter"
3351 3352 3353 3354 3355
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3356 3357
	ret = target_register_template(&srpt_template);
	if (ret)
3358 3359 3360 3361
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3362
		pr_err("couldn't register IB client\n");
3363 3364 3365 3366 3367 3368
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3369
	target_unregister_template(&srpt_template);
3370 3371 3372 3373 3374 3375 3376
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3377
	target_unregister_template(&srpt_template);
3378 3379 3380 3381
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);