ib_srpt.c 92.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
B
Bart Van Assche 已提交
44
#include <rdma/ib_cache.h>
45
#include <scsi/scsi_proto.h>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
71 72
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
73 74 75 76 77 78 79 80 81 82 83

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

84
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
85 86 87 88 89 90 91 92 93 94
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
95
static void srpt_release_cmd(struct se_cmd *se_cmd);
96
static void srpt_free_ch(struct kref *kref);
97
static int srpt_queue_status(struct se_cmd *cmd);
98 99
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
100
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
101

102 103 104
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
105
 */
106
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
107 108 109
{
	unsigned long flags;
	enum rdma_ch_state prev;
110
	bool changed = false;
111 112 113

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
114
	if (new > prev) {
115
		ch->state = new;
116 117
		changed = true;
	}
118
	spin_unlock_irqrestore(&ch->spinlock, flags);
119 120

	return changed;
121 122 123
}

/**
124 125 126
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
127 128 129 130 131 132 133 134 135 136 137
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
138
	u8 port_num;
139 140 141 142 143 144

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
145
		 sdev->device->name);
146 147 148

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
149 150 151
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
152 153
			sport->lid = 0;
			sport->sm_lid = 0;
154 155 156 157
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
158 159 160 161 162 163 164
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
165
	case IB_EVENT_GID_CHANGE:
166
		/* Refresh port data asynchronously. */
167 168 169
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
170 171
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
172 173 174 175
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
176 177 178
		}
		break;
	default:
179
		pr_err("received unrecognized IB event %d\n", event->event);
180 181 182 183 184
		break;
	}
}

/**
185 186 187
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
188 189 190
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
191
	pr_debug("SRQ event %d\n", event->event);
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

211
/**
212 213 214
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
215 216 217 218
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
219
		 event->event, ch->cm_id, ch->sess_name, ch->state);
220 221 222 223 224 225

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
226 227 228
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
229 230
		break;
	default:
231
		pr_err("received unrecognized IB QP event %d\n", event->event);
232 233 234 235 236
		break;
	}
}

/**
237 238
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
261 262
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
263 264 265 266 267 268 269 270 271
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
272
	memset(cif, 0, sizeof(*cif));
273 274 275
	cif->base_version = 1;
	cif->class_version = 1;

276
	ib_set_cpi_resp_time(cif, 20);
277 278 279 280
	mad->mad_hdr.status = 0;
}

/**
281 282
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
283 284 285 286 287 288 289 290 291 292 293
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
294
	ioui->change_id = cpu_to_be16(1);
295 296 297 298 299 300 301 302 303 304 305
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
306 307 308 309
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
310 311 312 313 314 315 316 317 318 319
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
320
	int send_queue_depth;
321 322 323 324 325

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
326
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
327 328 329 330 331
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
332
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
333 334 335
		return;
	}

336 337 338
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
339
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
340 341
				       sdev->device->attrs.max_qp_wr);

342
	memset(iocp, 0, sizeof(*iocp));
343 344
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
345 346 347 348
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349
	iocp->subsys_device_id = 0x0;
350 351 352 353
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
354
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
355 356 357 358 359 360 361 362 363 364 365 366
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
367 368 369 370 371 372
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
373 374 375 376 377 378 379 380 381 382 383 384 385
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
386
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
387 388 389 390 391
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
392
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
393 394 395 396
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
397
	memset(svc_entries, 0, sizeof(*svc_entries));
398 399 400 401 402 403 404 405 406 407 408
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
409 410
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
443
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
444 445 446 447 448
		break;
	}
}

/**
449 450 451
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
452 453 454 455
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
456
	rdma_destroy_ah(mad_wc->send_buf->ah);
457 458 459 460
	ib_free_send_mad(mad_wc->send_buf);
}

/**
461 462 463 464
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
465 466
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
467
				  struct ib_mad_send_buf *send_buf,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
488 489
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
490 491 492 493 494 495
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
496
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
497 498 499 500 501 502 503 504 505
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
506
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
507 508 509
		break;
	default:
		dm_mad->mad_hdr.status =
510
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
511 512 513 514 515 516 517 518 519 520 521 522
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
523
	rdma_destroy_ah(ah);
524 525 526 527
err:
	ib_free_recv_mad(mad_wc);
}

528 529 530 531 532 533 534 535 536
static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
{
	const __be16 *g = (const __be16 *)guid;

	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
}

537
/**
538 539
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
540 541 542 543 544 545 546 547 548 549 550 551 552 553
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

554
	memset(&port_modify, 0, sizeof(port_modify));
555 556 557 558 559 560 561 562 563 564 565 566 567 568
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

569 570
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
571 572 573
	if (ret)
		goto err_query_port;

574
	sport->port_guid_wwn.priv = sport;
575 576
	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
			 &sport->gid.global.interface_id);
577 578 579 580 581
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
582

583
	if (!sport->mad_agent) {
584
		memset(&reg_req, 0, sizeof(reg_req));
585 586 587 588 589 590 591 592 593 594 595
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
596
							 sport, 0);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
618 619
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
635
			pr_err("disabling MAD processing failed.\n");
636 637 638 639 640 641 642 643
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
644 645 646 647 648
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
679 680 681 682 683
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
684 685 686 687 688 689 690 691 692 693 694 695 696
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
697
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
729
	ring = NULL;
730 731 732 733 734
out:
	return ring;
}

/**
735 736 737 738 739 740
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
741 742 743 744 745 746 747
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

748 749 750
	if (!ioctx_ring)
		return;

751 752 753 754 755 756
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
757 758 759
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;

	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;

	return previous;
}

/**
777 778 779 780
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
797

798 799 800 801
	return previous == old;
}

/**
802 803 804 805
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
806
 */
807
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
808 809 810 811 812 813 814 815
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
816
	list.lkey = sdev->lkey;
817

818 819
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
820 821 822 823
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

824 825 826 827
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
828 829
}

830
/**
831 832
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
833 834 835 836 837 838 839 840 841 842
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

843 844 845
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);

846 847 848 849 850 851 852 853 854 855 856
	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

857 858 859
	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
		 wc->status);

860 861 862 863 864 865
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
866 867
			pr_debug("%s-%d: already disconnected.\n",
				 ch->sess_name, ch->qp->qp_num);
868
	}
869 870
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

975
/**
976
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
977 978 979 980
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
981 982
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
983 984 985 986 987 988 989 990 991
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
992 993
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1009 1010 1011 1012 1013
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1014 1015 1016

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1017
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1018 1019

		*data_len = be32_to_cpu(db->len);
1020
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1021 1022
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1023 1024 1025
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1026

1027
		if (nbufs >
1028
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1029
			pr_err("received unsupported SRP_CMD request"
1030 1031 1032 1033
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1034 1035
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1036 1037 1038
		}

		*data_len = be32_to_cpu(idb->len);
1039 1040 1041 1042 1043
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1044 1045 1046 1047
	}
}

/**
1048 1049 1050
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1051 1052 1053 1054 1055 1056 1057 1058 1059
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1060
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1061 1062 1063 1064
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1065
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1066
	attr->port_num = ch->sport->port;
B
Bart Van Assche 已提交
1067 1068 1069 1070 1071 1072

	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
				  ch->pkey, &attr->pkey_index);
	if (ret < 0)
		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
		       ch->pkey, ret);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1083
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1113
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1143 1144
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1155 1156
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1157 1158 1159 1160
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1161
	unsigned long flags;
1162 1163 1164

	BUG_ON(!ch);

1165 1166 1167 1168 1169 1170
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1171
	}
1172 1173 1174 1175 1176 1177
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1178
	ioctx->state = SRPT_STATE_NEW;
1179
	ioctx->n_rdma = 0;
1180
	ioctx->n_rw_ctx = 0;
1181 1182 1183 1184 1185 1186 1187
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1188 1189 1190 1191 1192

	return ioctx;
}

/**
1193
 * srpt_abort_cmd - abort a SCSI command
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1204
	 * the ib_srpt driver, change the state to the next state.
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	 */

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1217 1218
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1219 1220 1221
		break;
	}

1222 1223
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1224 1225 1226 1227 1228

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1229
	case SRPT_STATE_DONE:
1230 1231 1232 1233 1234 1235
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1236 1237 1238
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1239 1240 1241 1242 1243 1244
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1245
		transport_generic_free_cmd(&ioctx->cmd, 0);
1246 1247
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1248
		transport_generic_free_cmd(&ioctx->cmd, 0);
1249 1250
		break;
	default:
G
Grant Grundler 已提交
1251
		WARN(1, "Unexpected command state (%d)", state);
1252 1253 1254 1255 1256 1257 1258
		break;
	}

	return state;
}

/**
1259 1260 1261 1262
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1263 1264
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1265
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1266
 * be cleaned up.
1267
 */
1268
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1269
{
1270 1271
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1272
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1273

1274 1275
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1276
	ioctx->n_rdma = 0;
1277

1278 1279 1280 1281 1282
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1283
	}
1284 1285 1286 1287 1288 1289

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
1290
		       __LINE__, ioctx->state);
1291 1292 1293
}

/**
1294
 * srpt_build_cmd_rsp - build a SRP_RSP response
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1329
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1330 1331
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1332
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1333 1334 1335 1336 1337 1338 1339
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1340 1341
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1354
 * srpt_build_tskmgmt_rsp - build a task management response
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1374
	resp_data_len = 4;
1375 1376 1377 1378
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1379
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1380 1381

	srp_rsp->opcode = SRP_RSP;
1382 1383
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1384 1385
	srp_rsp->tag = tag;

1386 1387 1388
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1389 1390 1391 1392 1393 1394

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1395 1396
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1397

1398
	return target_put_sess_cmd(&ioctx->cmd);
1399 1400 1401
}

/**
1402 1403 1404 1405
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1406
 */
1407 1408 1409
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1410 1411 1412
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1413 1414
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1415 1416
	u64 data_len;
	enum dma_data_direction dir;
1417
	int rc;
1418 1419 1420 1421 1422

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1423
	cmd->tag = srp_cmd->tag;
1424 1425 1426

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1427
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1428 1429 1430
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1431
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1432 1433
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1434
		cmd->sam_task_attr = TCM_HEAD_TAG;
1435 1436
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1437
		cmd->sam_task_attr = TCM_ACA_TAG;
1438 1439 1440
		break;
	}

1441 1442 1443 1444 1445 1446 1447
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1448
		goto release_ioctx;
1449 1450
	}

1451
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1452 1453
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1454 1455
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1456
	if (rc != 0) {
1457 1458 1459
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1460
	}
1461
	return;
1462

1463 1464 1465
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1487 1488 1489 1490
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1503
	struct se_session *sess = ch->sess;
1504
	int tcm_tmr;
1505
	int rc;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1517
	send_ioctx->cmd.tag = srp_tsk->tag;
1518
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1519 1520 1521 1522
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1523 1524
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1525
		goto fail;
1526
	}
1527 1528 1529
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1530 1531 1532
}

/**
1533
 * srpt_handle_new_iu - process a newly received information unit
1534
 * @ch:    RDMA channel through which the information unit has been received.
1535 1536
 * @recv_ioctx: Receive I/O context associated with the information unit.
 * @send_ioctx: Send I/O context.
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1551 1552
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1553

1554
	if (unlikely(ch->state != CH_LIVE))
1555
		return;
1556 1557 1558

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1559 1560 1561
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1562 1563
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1564 1565
		if (unlikely(!send_ioctx))
			goto out_wait;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1576
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1577 1578 1579 1580 1581 1582 1583 1584
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1585
		pr_err("Received SRP_RSP\n");
1586 1587
		break;
	default:
1588
		pr_err("received IU with unknown opcode 0x%x\n",
1589 1590 1591 1592
		       srp_cmd->opcode);
		break;
	}

1593
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1594
	return;
1595 1596 1597

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1598 1599
}

1600
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1601
{
1602 1603 1604
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1605 1606 1607 1608 1609 1610

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1611
			pr_err("req_lim = %d < 0\n", req_lim);
1612 1613
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1614 1615
		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
				    ioctx, wc->status);
1616 1617 1618
	}
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1641
/**
1642 1643 1644 1645
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1658
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1659
{
1660 1661 1662 1663
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1664

1665 1666 1667 1668 1669
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1670
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1671

1672
	if (wc->status != IB_WC_SUCCESS)
1673 1674 1675 1676 1677
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1678
	} else {
1679 1680
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1681 1682
	}

1683
	srpt_process_wait_list(ch);
1684 1685 1686
}

/**
1687 1688
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1689 1690 1691 1692 1693 1694
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1695
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1696
	int sq_size = sport->port_attrib.srp_sq_size;
1697
	int i, ret;
1698 1699 1700 1701

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1702
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1703 1704 1705
	if (!qp_init)
		goto out;

1706
retry:
1707
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1708
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1709 1710
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1711
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1712
		       ch->rq_size + sq_size, ret);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1723 1724 1725 1726 1727 1728 1729
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1730 1731
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1732
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1733
	qp_init->port_num = ch->sport->port;
1734 1735 1736 1737 1738 1739
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1740 1741 1742 1743

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1744
		if (ret == -ENOMEM) {
1745 1746
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1747 1748 1749 1750
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1751
		pr_err("failed to create_qp ret= %d\n", ret);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1765 1766 1767 1768
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1769 1770 1771 1772 1773 1774 1775
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1776
	ib_free_cq(ch->cq);
1777 1778 1779 1780 1781 1782
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1783
	ib_free_cq(ch->cq);
1784 1785 1786
}

/**
1787 1788
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1789
 *
1790 1791
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1792
 *
1793 1794
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1795
 */
1796
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1797
{
1798
	int ret;
1799

1800 1801 1802 1803
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1804 1805
	}

1806
	kref_get(&ch->kref);
1807

1808 1809 1810 1811
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1822

1823 1824 1825
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1826 1827
}

1828 1829 1830 1831 1832 1833 1834 1835
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1836
 */
1837
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1838 1839 1840
{
	int ret;

1841 1842
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1843

1844 1845 1846
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1847

1848 1849
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1850

1851 1852 1853
	return ret;
}

B
Bart Van Assche 已提交
1854
static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1855
{
1856
	struct srpt_nexus *nexus;
1857 1858 1859 1860
	struct srpt_rdma_ch *ch2;
	bool res = true;

	rcu_read_lock();
1861 1862 1863 1864 1865 1866
	list_for_each_entry(nexus, &sport->nexus_list, entry) {
		list_for_each_entry(ch2, &nexus->ch_list, list) {
			if (ch2 == ch) {
				res = false;
				goto done;
			}
1867 1868
		}
	}
1869
done:
1870 1871 1872 1873 1874
	rcu_read_unlock();

	return res;
}

1875 1876
/* Send DREQ and wait for DREP. */
static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1877
{
B
Bart Van Assche 已提交
1878
	struct srpt_port *sport = ch->sport;
1879 1880 1881 1882

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

1883 1884
	mutex_lock(&sport->mutex);
	srpt_disconnect_ch(ch);
B
Bart Van Assche 已提交
1885
	mutex_unlock(&sport->mutex);
1886

B
Bart Van Assche 已提交
1887
	while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1888
				  5 * HZ) == 0)
1889 1890 1891 1892 1893
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

}

1894
static void __srpt_close_all_ch(struct srpt_port *sport)
1895
{
1896
	struct srpt_nexus *nexus;
1897 1898
	struct srpt_rdma_ch *ch;

B
Bart Van Assche 已提交
1899
	lockdep_assert_held(&sport->mutex);
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	list_for_each_entry(nexus, &sport->nexus_list, entry) {
		list_for_each_entry(ch, &nexus->ch_list, list) {
			if (srpt_disconnect_ch(ch) >= 0)
				pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
					ch->sess_name, ch->qp->qp_num,
					sport->sdev->device->name, sport->port);
			srpt_close_ch(ch);
		}
	}
}

/*
 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
 * it does not yet exist.
 */
static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
					 const u8 i_port_id[16],
					 const u8 t_port_id[16])
{
	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	for (;;) {
		mutex_lock(&sport->mutex);
		list_for_each_entry(n, &sport->nexus_list, entry) {
			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
				nexus = n;
				break;
			}
		}
		if (!nexus && tmp_nexus) {
			list_add_tail_rcu(&tmp_nexus->entry,
					  &sport->nexus_list);
			swap(nexus, tmp_nexus);
		}
		mutex_unlock(&sport->mutex);

		if (nexus)
			break;
		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
		if (!tmp_nexus) {
			nexus = ERR_PTR(-ENOMEM);
			break;
1944
		}
1945 1946 1947 1948
		init_rcu_head(&tmp_nexus->rcu);
		INIT_LIST_HEAD(&tmp_nexus->ch_list);
		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
1949
	}
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	kfree(tmp_nexus);

	return nexus;
}

static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sport->mutex)
{
	lockdep_assert_held(&sport->mutex);

	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (!enabled)
		__srpt_close_all_ch(sport);
1966 1967
}

1968 1969 1970 1971
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

1972
	kfree_rcu(ch, rcu);
1973 1974 1975 1976 1977 1978
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
B
Bart Van Assche 已提交
1979
	struct srpt_port *sport;
1980
	struct se_session *se_sess;
1981 1982

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1983
	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
1984 1985 1986 1987

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1988 1989 1990
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1991
	target_sess_cmd_list_set_waiting(se_sess);
1992
	target_wait_for_sess_cmds(se_sess);
1993 1994 1995

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1996 1997
	ch->sess = NULL;

1998 1999
	ib_destroy_cm_id(ch->cm_id);

2000 2001 2002 2003
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2004
			     ch->max_rsp_size, DMA_TO_DEVICE);
2005

2006 2007 2008 2009
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

B
Bart Van Assche 已提交
2010 2011
	sport = ch->sport;
	mutex_lock(&sport->mutex);
2012
	list_del_rcu(&ch->list);
B
Bart Van Assche 已提交
2013
	mutex_unlock(&sport->mutex);
2014

B
Bart Van Assche 已提交
2015
	wake_up(&sport->ch_releaseQ);
2016

2017
	kref_put(&ch->kref, srpt_free_ch);
2018 2019 2020
}

/**
2021 2022 2023 2024
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
2035
	struct srpt_nexus *nexus;
2036
	struct srp_login_req *req;
2037 2038 2039 2040
	struct srp_login_rsp *rsp = NULL;
	struct srp_login_rej *rej = NULL;
	struct ib_cm_rep_param *rep_param = NULL;
	struct srpt_rdma_ch *ch;
2041
	char i_port_id[36];
2042
	u32 it_iu_len;
2043
	int i, ret;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

B
Bart Van Assche 已提交
2054
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2055
		req->initiator_port_id, req->target_port_id, it_iu_len,
B
Bart Van Assche 已提交
2056 2057
		param->port, &sport->gid,
		be16_to_cpu(param->primary_path->pkey));
2058

2059 2060 2061 2062 2063 2064 2065
	nexus = srpt_get_nexus(sport, req->initiator_port_id,
			       req->target_port_id);
	if (IS_ERR(nexus)) {
		ret = PTR_ERR(nexus);
		goto out;
	}

2066
	ret = -ENOMEM;
2067 2068 2069
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2070
	if (!rsp || !rej || !rep_param)
2071 2072
		goto out;

2073
	ret = -EINVAL;
2074
	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2075
		rej->reason = cpu_to_be32(
2076 2077
				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2078 2079 2080 2081 2082
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2083 2084 2085
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
			sport->sdev->device->name, param->port);
2086 2087 2088 2089 2090 2091
		goto reject;
	}

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2092
		rej->reason = cpu_to_be32(
2093 2094
				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2095 2096 2097
		goto reject;
	}

2098
	ret = -ENOMEM;
2099
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2100
	if (!ch) {
2101 2102
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2103 2104 2105
		goto reject;
	}

2106
	init_rcu_head(&ch->rcu);
2107
	kref_init(&ch->kref);
B
Bart Van Assche 已提交
2108
	ch->pkey = be16_to_cpu(param->primary_path->pkey);
2109
	ch->nexus = nexus;
2110
	ch->zw_cqe.done = srpt_zerolength_write_done;
2111 2112 2113
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2114
	cm_id->context = ch;
2115
	/*
2116 2117 2118
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2119
	 */
2120
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2121 2122 2123
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2124
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2125 2126 2127 2128

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2129
				      ch->max_rsp_size, DMA_TO_DEVICE);
2130 2131 2132
	if (!ch->ioctx_ring) {
		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2133
		goto free_ch;
2134
	}
2135

2136 2137 2138 2139 2140
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2154

2155 2156
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2157
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2158 2159
		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
		goto free_recv_ring;
2160
	}
2161

2162
	srpt_format_guid(ch->sess_name, sizeof(ch->sess_name),
2163
			 &param->primary_path->dgid.global.interface_id);
2164
	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2165 2166
			be64_to_cpu(*(__be64 *)nexus->i_port_id),
			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2167 2168 2169

	pr_debug("registering session %s\n", ch->sess_name);

2170 2171 2172
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
2173
						ch->sess_name, ch, NULL);
2174 2175
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2176
					TARGET_PROT_NORMAL, i_port_id, ch,
2177 2178
					NULL);
	/* Retry without leading "0x" */
2179 2180
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2181
						TARGET_PROT_NORMAL,
2182
						i_port_id + 2, ch, NULL);
2183
	if (IS_ERR_OR_NULL(ch->sess)) {
2184 2185 2186 2187
		ret = PTR_ERR(ch->sess);
		pr_info("Rejected login for initiator %s: ret = %d.\n",
			ch->sess_name, ret);
		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2188
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2189
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		goto reject;
	}

	mutex_lock(&sport->mutex);

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		struct srpt_rdma_ch *ch2;

		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

		list_for_each_entry(ch2, &nexus->ch_list, list) {
			if (srpt_disconnect_ch(ch2) < 0)
				continue;
			pr_info("Relogin - closed existing channel %s\n",
				ch2->sess_name);
			rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
		}
	} else {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
	}

	list_add_tail_rcu(&ch->list, &nexus->ch_list);

	if (!sport->enabled) {
		rej->reason = cpu_to_be32(
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
			sdev->device->name, param->port);
		mutex_unlock(&sport->mutex);
		goto reject;
	}

	mutex_unlock(&sport->mutex);

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
		       ret);
2229
		goto destroy_ib;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2241 2242
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
				   SRP_BUF_FORMAT_INDIRECT);
2243 2244 2245 2246 2247 2248 2249
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2250
	rep_param->private_data_len = sizeof(*rsp);
2251 2252 2253 2254 2255 2256 2257
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

2258 2259 2260 2261
	/*
	 * Hold the sport mutex while accepting a connection to avoid that
	 * srpt_disconnect_ch() is invoked concurrently with this code.
	 */
B
Bart Van Assche 已提交
2262
	mutex_lock(&sport->mutex);
2263 2264 2265 2266
	if (sport->enabled && ch->state == CH_CONNECTING)
		ret = ib_send_cm_rep(cm_id, rep_param);
	else
		ret = -EINVAL;
B
Bart Van Assche 已提交
2267
	mutex_unlock(&sport->mutex);
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	switch (ret) {
	case 0:
		break;
	case -EINVAL:
		goto reject;
	default:
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
		       ret);
		goto reject;
	}
2280

2281
	goto out;
2282 2283 2284 2285

destroy_ib:
	srpt_destroy_ch_ib(ch);

2286 2287 2288 2289 2290
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2291 2292 2293
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2294
			     ch->max_rsp_size, DMA_TO_DEVICE);
2295
free_ch:
2296
	cm_id->context = NULL;
2297
	kfree(ch);
2298 2299 2300
	ch = NULL;

	WARN_ON_ONCE(ret == 0);
2301 2302

reject:
2303
	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2304 2305
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2306 2307
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
				   SRP_BUF_FORMAT_INDIRECT);
2308 2309

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2310
			     (void *)rej, sizeof(*rej));
2311 2312 2313 2314 2315 2316 2317 2318 2319

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2320 2321 2322 2323
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2324
{
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2337 2338 2339
}

/**
2340 2341
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2342 2343 2344 2345
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2346
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2347 2348 2349
{
	int ret;

2350 2351 2352 2353 2354 2355
	ret = srpt_ch_qp_rts(ch, ch->qp);
	if (ret < 0) {
		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
		       ch->qp->qp_num);
		srpt_close_ch(ch);
		return;
2356
	}
2357 2358 2359 2360 2361 2362

	/*
	 * Note: calling srpt_close_ch() if the transition to the LIVE state
	 * fails is not necessary since that means that that function has
	 * already been invoked from another thread.
	 */
2363
	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2364 2365
		pr_err("%s-%d: channel transition to LIVE state failed\n",
		       ch->sess_name, ch->qp->qp_num);
2366 2367 2368 2369 2370 2371
		return;
	}

	/* Trigger wait list processing. */
	ret = srpt_zerolength_write(ch);
	WARN_ONCE(ret < 0, "%d\n", ret);
2372 2373 2374
}

/**
2375 2376 2377
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2388
	struct srpt_rdma_ch *ch = cm_id->context;
2389 2390 2391 2392 2393 2394 2395 2396 2397
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2398 2399 2400
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2401 2402 2403
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2404
		srpt_cm_rtu_recv(ch);
2405 2406
		break;
	case IB_CM_DREQ_RECEIVED:
2407
		srpt_disconnect_ch(ch);
2408 2409
		break;
	case IB_CM_DREP_RECEIVED:
2410 2411
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2412
		srpt_close_ch(ch);
2413 2414
		break;
	case IB_CM_TIMEWAIT_EXIT:
2415 2416
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2417
		srpt_close_ch(ch);
2418 2419
		break;
	case IB_CM_REP_ERROR:
2420 2421
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2422 2423
		break;
	case IB_CM_DREQ_ERROR:
2424
		pr_info("Received CM DREQ ERROR event.\n");
2425 2426
		break;
	case IB_CM_MRA_RECEIVED:
2427
		pr_info("Received CM MRA event\n");
2428 2429
		break;
	default:
2430
		pr_err("received unrecognized CM event %d\n", event->event);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2442
	return ioctx->state == SRPT_STATE_NEED_DATA;
2443 2444 2445
}

/*
2446
 * srpt_write_pending - Start data transfer from initiator to target (write).
2447 2448 2449
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2450 2451 2452
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2453 2454
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2455
	enum srpt_command_state new_state;
2456
	int ret, i;
2457 2458 2459

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2503 2504
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2505 2506 2507 2508
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2509
static void srpt_queue_response(struct se_cmd *cmd)
2510
{
2511 2512 2513 2514
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2515
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2516
	struct ib_sge sge;
2517
	enum srpt_command_state state;
2518
	int resp_len, ret, i;
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	u8 srp_tm_status;

	BUG_ON(!ch);

	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}

B
Bart Van Assche 已提交
2538
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2539
		return;
2540 2541

	/* For read commands, transfer the data to the initiator. */
2542 2543
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2544
	    !ioctx->queue_status_only) {
2545 2546 2547 2548
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2549
					ch->sport->port, NULL, first_wr);
2550 2551 2552 2553
		}
	}

	if (state != SRPT_STATE_MGMT)
2554
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2555 2556 2557 2558 2559
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2560
						 ioctx->cmd.tag);
2561
	}
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2578
	sge.lkey = sdev->lkey;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2593
	}
2594 2595 2596 2597 2598 2599 2600 2601

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2602
}
2603

2604 2605 2606 2607 2608 2609 2610 2611 2612
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2613 2614
}

2615 2616 2617 2618
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2629 2630
	srpt_queue_response(cmd);
	return 0;
2631 2632 2633 2634 2635 2636 2637 2638 2639
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
static bool srpt_ch_list_empty(struct srpt_port *sport)
{
	struct srpt_nexus *nexus;
	bool res = true;

	rcu_read_lock();
	list_for_each_entry(nexus, &sport->nexus_list, entry)
		if (!list_empty(&nexus->ch_list))
			res = false;
	rcu_read_unlock();

	return res;
}

2654
/**
B
Bart Van Assche 已提交
2655 2656
 * srpt_release_sport - disable login and wait for associated channels
 * @sport: SRPT HCA port.
2657
 */
B
Bart Van Assche 已提交
2658
static int srpt_release_sport(struct srpt_port *sport)
2659
{
2660 2661
	struct srpt_nexus *nexus, *next_n;
	struct srpt_rdma_ch *ch;
2662 2663 2664

	WARN_ON_ONCE(irqs_disabled());

B
Bart Van Assche 已提交
2665 2666 2667
	mutex_lock(&sport->mutex);
	srpt_set_enabled(sport, false);
	mutex_unlock(&sport->mutex);
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	while (wait_event_timeout(sport->ch_releaseQ,
				  srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
		pr_info("%s_%d: waiting for session unregistration ...\n",
			sport->sdev->device->name, sport->port);
		rcu_read_lock();
		list_for_each_entry(nexus, &sport->nexus_list, entry) {
			list_for_each_entry(ch, &nexus->ch_list, list) {
				pr_info("%s-%d: state %s\n",
					ch->sess_name, ch->qp->qp_num,
					get_ch_state_name(ch->state));
			}
		}
		rcu_read_unlock();
	}

	mutex_lock(&sport->mutex);
	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
		list_del(&nexus->entry);
		kfree_rcu(nexus, rcu);
	}
	mutex_unlock(&sport->mutex);
2690 2691 2692 2693

	return 0;
}

2694
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2709 2710 2711 2712
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2713 2714 2715 2716 2717 2718
		}
	}

	return NULL;
}

2719
static struct se_wwn *srpt_lookup_wwn(const char *name)
2720
{
2721
	struct se_wwn *wwn;
2722 2723

	spin_lock(&srpt_dev_lock);
2724
	wwn = __srpt_lookup_wwn(name);
2725 2726
	spin_unlock(&srpt_dev_lock);

2727
	return wwn;
2728 2729
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2798
/**
2799 2800
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2801 2802 2803 2804 2805 2806 2807
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2808
	pr_debug("device = %p\n", device);
2809

2810
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2811 2812 2813 2814
	if (!sdev)
		goto err;

	sdev->device = device;
B
Bart Van Assche 已提交
2815
	mutex_init(&sdev->sdev_mutex);
2816

2817
	sdev->pd = ib_alloc_pd(device, 0);
2818 2819 2820
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2821
	sdev->lkey = sdev->pd->local_dma_lkey;
2822

2823
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2824

2825
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2826 2827 2828 2829 2830 2831

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2832
		goto err_ring;
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2845
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2846 2847 2848 2849
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2850
	ib_register_event_handler(&sdev->event_handler);
2851

2852
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2853 2854 2855

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
2856
		INIT_LIST_HEAD(&sport->nexus_list);
B
Bart Van Assche 已提交
2857 2858
		init_waitqueue_head(&sport->ch_releaseQ);
		mutex_init(&sport->mutex);
2859 2860 2861 2862 2863
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2864
		sport->port_attrib.use_srq = false;
2865 2866 2867
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2868
			pr_err("MAD registration failed for %s-%d.\n",
2869
			       sdev->device->name, i);
2870
			goto err_event;
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2887
err_ring:
2888
	srpt_free_srq(sdev);
2889 2890 2891 2892 2893
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2894
	pr_info("%s(%s) failed.\n", __func__, device->name);
2895 2896 2897 2898
	goto out;
}

/**
2899 2900 2901
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2902
 */
2903
static void srpt_remove_one(struct ib_device *device, void *client_data)
2904
{
2905
	struct srpt_device *sdev = client_data;
2906 2907 2908
	int i;

	if (!sdev) {
2909
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
B
Bart Van Assche 已提交
2931 2932 2933

	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		srpt_release_sport(&sdev->port[i]);
2934

2935 2936
	srpt_free_srq(sdev);

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2963 2964 2965 2966 2967
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2968 2969
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2970
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2971

2972 2973 2974 2975
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2990 2991 2992
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2993
	unsigned long flags;
2994

2995 2996
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2997

2998 2999 3000
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
3001 3002
	}

3003 3004 3005
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
3006 3007 3008
}

/**
3009 3010
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
3011 3012 3013 3014 3015 3016 3017
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
3018
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3019

3020
	srpt_disconnect_ch_sync(ch);
3021 3022 3023
}

/**
3024 3025
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3047
	return ioctx->state;
3048 3049
}

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

3063
/**
3064
 * srpt_parse_i_port_id - parse an initiator port ID
3065 3066 3067 3068 3069 3070 3071
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
3072
	int ret;
3073 3074

	p = name;
3075
	if (strncasecmp(p, "0x", 2) == 0)
3076 3077 3078 3079 3080 3081 3082 3083
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
3084 3085 3086
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
3087 3088 3089 3090 3091 3092 3093 3094
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
3095
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3096
{
3097
	u64 guid;
3098
	u8 i_port_id[16];
3099
	int ret;
3100

3101 3102 3103 3104
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
3105
		pr_err("invalid initiator port ID %s\n", name);
3106
	return ret;
3107 3108
}

3109 3110
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3111
{
3112
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3113
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3114 3115 3116 3117

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3118 3119
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3120
{
3121
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3122
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3123 3124 3125
	unsigned long val;
	int ret;

3126
	ret = kstrtoul(page, 0, &val);
3127
	if (ret < 0) {
3128
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3146 3147
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3148
{
3149
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3150
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3151 3152 3153 3154

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3155 3156
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3157
{
3158
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3159
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3160 3161 3162
	unsigned long val;
	int ret;

3163
	ret = kstrtoul(page, 0, &val);
3164
	if (ret < 0) {
3165
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3183 3184
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3185
{
3186
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3187
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3188 3189 3190 3191

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3192 3193
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3194
{
3195
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3196
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3197 3198 3199
	unsigned long val;
	int ret;

3200
	ret = kstrtoul(page, 0, &val);
3201
	if (ret < 0) {
3202
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3234
	struct srpt_device *sdev = sport->sdev;
3235
	unsigned long val;
3236
	bool enabled;
3237 3238 3239 3240 3241 3242 3243
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3244

B
Bart Van Assche 已提交
3245
	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3246 3247
	if (ret < 0)
		return ret;
B
Bart Van Assche 已提交
3248 3249 3250
	ret = mutex_lock_interruptible(&sport->mutex);
	if (ret < 0)
		goto unlock_sdev;
3251 3252 3253
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3254
	sport->port_attrib.use_srq = val;
3255 3256
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
B
Bart Van Assche 已提交
3257 3258 3259 3260
	ret = count;
	mutex_unlock(&sport->mutex);
unlock_sdev:
	mutex_unlock(&sdev->sdev_mutex);
3261

B
Bart Van Assche 已提交
3262
	return ret;
3263 3264
}

3265 3266 3267
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3268
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3269 3270

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3271 3272 3273
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3274
	&srpt_tpg_attrib_attr_use_srq,
3275 3276 3277
	NULL,
};

3278
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3279
{
3280
	struct se_portal_group *se_tpg = to_tpg(item);
3281
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3282 3283 3284 3285

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3286 3287
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3288
{
3289
	struct se_portal_group *se_tpg = to_tpg(item);
3290
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3291 3292 3293
	unsigned long tmp;
        int ret;

3294
	ret = kstrtoul(page, 0, &tmp);
3295
	if (ret < 0) {
3296
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3297 3298 3299 3300
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3301
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3302 3303 3304
		return -EINVAL;
	}

B
Bart Van Assche 已提交
3305
	mutex_lock(&sport->mutex);
3306
	srpt_set_enabled(sport, tmp);
B
Bart Van Assche 已提交
3307
	mutex_unlock(&sport->mutex);
3308

3309 3310 3311
	return count;
}

3312
CONFIGFS_ATTR(srpt_tpg_, enable);
3313 3314

static struct configfs_attribute *srpt_tpg_attrs[] = {
3315
	&srpt_tpg_attr_enable,
3316 3317 3318 3319
	NULL,
};

/**
3320 3321 3322 3323
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3324 3325 3326 3327 3328
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3329 3330
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3331 3332
	int res;

3333 3334 3335 3336 3337
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3338 3339 3340
	if (res)
		return ERR_PTR(res);

3341
	return tpg;
3342 3343 3344
}

/**
3345 3346
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3347 3348 3349
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3350
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3351 3352

	sport->enabled = false;
3353
	core_tpg_deregister(tpg);
3354 3355 3356
}

/**
3357 3358 3359 3360
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3361 3362 3363 3364 3365
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3366
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3367 3368 3369
}

/**
3370 3371
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3372 3373 3374 3375 3376
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3377
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3378 3379 3380 3381
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3382
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3383 3384

static struct configfs_attribute *srpt_wwn_attrs[] = {
3385
	&srpt_wwn_attr_version,
3386 3387 3388
	NULL,
};

3389 3390 3391
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3409
	.queue_data_in			= srpt_queue_data_in,
3410
	.queue_status			= srpt_queue_status,
3411
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3412
	.aborted_task			= srpt_aborted_task,
3413 3414 3415 3416 3417 3418 3419 3420
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3421
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3422 3423 3424 3425

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3426 3427 3428
};

/**
3429
 * srpt_init_module - kernel module initialization
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3442
		pr_err("invalid value %d for kernel module parameter"
3443 3444 3445 3446 3447 3448 3449
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3450
		pr_err("invalid value %d for kernel module parameter"
3451 3452 3453 3454 3455
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3456 3457
	ret = target_register_template(&srpt_template);
	if (ret)
3458 3459 3460 3461
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3462
		pr_err("couldn't register IB client\n");
3463 3464 3465 3466 3467 3468
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3469
	target_unregister_template(&srpt_template);
3470 3471 3472 3473 3474 3475 3476
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3477
	target_unregister_template(&srpt_template);
3478 3479 3480 3481
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);