ib_srpt.c 89.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
44
#include <scsi/scsi_proto.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
70 71
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 73 74 75 76 77 78 79 80 81 82

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

83
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 85 86 87 88 89 90 91 92 93
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
94
static void srpt_release_cmd(struct se_cmd *se_cmd);
95
static void srpt_free_ch(struct kref *kref);
96
static int srpt_queue_status(struct se_cmd *cmd);
97 98
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100

101 102 103
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
104
 */
105
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 107 108
{
	unsigned long flags;
	enum rdma_ch_state prev;
109
	bool changed = false;
110 111 112

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
113
	if (new > prev) {
114
		ch->state = new;
115 116
		changed = true;
	}
117
	spin_unlock_irqrestore(&ch->spinlock, flags);
118 119

	return changed;
120 121 122
}

/**
123 124 125
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
126 127 128 129 130 131 132 133 134 135 136
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
137
	u8 port_num;
138 139 140 141 142 143

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
144
		 sdev->device->name);
145 146 147

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
148 149 150
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
151 152
			sport->lid = 0;
			sport->sm_lid = 0;
153 154 155 156
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
157 158 159 160 161 162 163
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
164
	case IB_EVENT_GID_CHANGE:
165
		/* Refresh port data asynchronously. */
166 167 168
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
169 170
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
171 172 173 174
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
175 176 177
		}
		break;
	default:
178
		pr_err("received unrecognized IB event %d\n", event->event);
179 180 181 182 183
		break;
	}
}

/**
184 185 186
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
187 188 189
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
190
	pr_debug("SRQ event %d\n", event->event);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

210
/**
211 212 213
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
214 215 216 217
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
218
		 event->event, ch->cm_id, ch->sess_name, ch->state);
219 220 221 222 223 224

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
225 226 227
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
228 229
		break;
	default:
230
		pr_err("received unrecognized IB QP event %d\n", event->event);
231 232 233 234 235
		break;
	}
}

/**
236 237
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
260 261
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
262 263 264 265 266 267 268 269 270
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
271
	memset(cif, 0, sizeof(*cif));
272 273 274
	cif->base_version = 1;
	cif->class_version = 1;

275
	ib_set_cpi_resp_time(cif, 20);
276 277 278 279
	mad->mad_hdr.status = 0;
}

/**
280 281
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
282 283 284 285 286 287 288 289 290 291 292
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
293
	ioui->change_id = cpu_to_be16(1);
294 295 296 297 298 299 300 301 302 303 304
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
305 306 307 308
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
309 310 311 312 313 314 315 316 317 318
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
319
	int send_queue_depth;
320 321 322 323 324

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
325
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
326 327 328 329 330
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
331
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
332 333 334
		return;
	}

335 336 337
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
338
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
339 340
				       sdev->device->attrs.max_qp_wr);

341
	memset(iocp, 0, sizeof(*iocp));
342 343
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
344 345 346 347
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
348
	iocp->subsys_device_id = 0x0;
349 350 351 352
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
354 355 356 357 358 359 360 361 362 363 364 365
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
366 367 368 369 370 371
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
372 373 374 375 376 377 378 379 380 381 382 383 384
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
385
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
386 387 388 389 390
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
391
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
392 393 394 395
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
396
	memset(svc_entries, 0, sizeof(*svc_entries));
397 398 399 400 401 402 403 404 405 406 407
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
408 409
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
442
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
443 444 445 446 447
		break;
	}
}

/**
448 449 450
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
451 452 453 454
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
455
	rdma_destroy_ah(mad_wc->send_buf->ah);
456 457 458 459
	ib_free_send_mad(mad_wc->send_buf);
}

/**
460 461 462 463
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
464 465
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
466
				  struct ib_mad_send_buf *send_buf,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
487 488
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
489 490 491 492 493 494
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
495
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
496 497 498 499 500 501 502 503 504
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
505
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
506 507 508
		break;
	default:
		dm_mad->mad_hdr.status =
509
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
510 511 512 513 514 515 516 517 518 519 520 521
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
522
	rdma_destroy_ah(ah);
523 524 525 526 527
err:
	ib_free_recv_mad(mad_wc);
}

/**
528 529
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
530 531 532 533 534 535 536 537 538 539 540 541
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
542
	__be16 *guid;
543 544
	int ret;

545
	memset(&port_modify, 0, sizeof(port_modify));
546 547 548 549 550 551 552 553 554 555 556 557 558 559
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

560 561
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
562 563 564
	if (ret)
		goto err_query_port;

565 566
	sport->port_guid_wwn.priv = sport;
	guid = (__be16 *)&sport->gid.global.interface_id;
567
	snprintf(sport->port_guid, sizeof(sport->port_guid),
568 569 570 571 572 573 574 575
		 "%04x:%04x:%04x:%04x",
		 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
		 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
576

577
	if (!sport->mad_agent) {
578
		memset(&reg_req, 0, sizeof(reg_req));
579 580 581 582 583 584 585 586 587 588 589
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
590
							 sport, 0);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
612 613
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
629
			pr_err("disabling MAD processing failed.\n");
630 631 632 633 634 635 636 637
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
638 639 640 641 642
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
673 674 675 676 677
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
678 679 680 681 682 683 684 685 686 687 688 689 690
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
691
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
723
	ring = NULL;
724 725 726 727 728
out:
	return ring;
}

/**
729 730 731 732 733 734
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
735 736 737 738 739 740 741
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

742 743 744
	if (!ioctx_ring)
		return;

745 746 747 748 749 750
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
751 752
 * srpt_get_cmd_state - get the state of a SCSI command
 * @ioctx: Send I/O context.
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
 */
static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return state;
}

/**
768 769 770
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	return previous;
}

/**
793 794 795 796
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return previous == old;
}

/**
820 821 822 823
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
824
 */
825
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
826 827 828 829 830 831 832 833
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
834
	list.lkey = sdev->lkey;
835

836 837
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
838 839 840 841
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

842 843 844 845
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
846 847
}

848
/**
849 850
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

872 873 874 875 876 877
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
D
Dan Carpenter 已提交
878
			WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
879
	}
880 881
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

986
/**
987
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
988 989 990 991
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
992 993
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
994 995 996 997 998 999 1000 1001 1002
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
1003 1004
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1020 1021 1022 1023 1024
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1025 1026 1027

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1028
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1029 1030

		*data_len = be32_to_cpu(db->len);
1031
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1032 1033
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1034 1035 1036
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1037

1038
		if (nbufs >
1039
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1040
			pr_err("received unsupported SRP_CMD request"
1041 1042 1043 1044
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1045 1046
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1047 1048 1049
		}

		*data_len = be32_to_cpu(idb->len);
1050 1051 1052 1053 1054
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1055 1056 1057 1058
	}
}

/**
1059 1060 1061
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1062 1063 1064 1065 1066 1067 1068 1069 1070
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1071
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1072 1073 1074 1075
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1076
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1089
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1119
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1149 1150
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1161 1162
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1163 1164 1165 1166
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1167
	unsigned long flags;
1168 1169 1170

	BUG_ON(!ch);

1171 1172 1173 1174 1175 1176
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1177
	}
1178 1179 1180 1181 1182 1183
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1184 1185
	spin_lock_init(&ioctx->spinlock);
	ioctx->state = SRPT_STATE_NEW;
1186
	ioctx->n_rdma = 0;
1187
	ioctx->n_rw_ctx = 0;
1188 1189 1190 1191 1192 1193 1194
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1195 1196 1197 1198 1199

	return ioctx;
}

/**
1200
 * srpt_abort_cmd - abort a SCSI command
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1212
	 * the ib_srpt driver, change the state to the next state.
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	 */

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1226 1227
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1228 1229 1230 1231
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

1232 1233
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1234 1235 1236 1237 1238

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1239
	case SRPT_STATE_DONE:
1240 1241 1242 1243 1244 1245
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1246 1247 1248
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1249 1250 1251 1252 1253 1254
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1255
		transport_generic_free_cmd(&ioctx->cmd, 0);
1256 1257
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1258
		transport_generic_free_cmd(&ioctx->cmd, 0);
1259 1260
		break;
	default:
G
Grant Grundler 已提交
1261
		WARN(1, "Unexpected command state (%d)", state);
1262 1263 1264 1265 1266 1267 1268
		break;
	}

	return state;
}

/**
1269 1270 1271 1272
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1273 1274
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1275
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1276
 * be cleaned up.
1277
 */
1278
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1279
{
1280 1281
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1282
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1283

1284 1285
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1286
	ioctx->n_rdma = 0;
1287

1288 1289 1290 1291 1292
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1293
	}
1294 1295 1296 1297 1298 1299 1300

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
		       __LINE__, srpt_get_cmd_state(ioctx));
1301 1302 1303
}

/**
1304
 * srpt_build_cmd_rsp - build a SRP_RSP response
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1339
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1340 1341
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1342
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1343 1344 1345 1346 1347 1348 1349
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1350 1351
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1364
 * srpt_build_tskmgmt_rsp - build a task management response
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1384
	resp_data_len = 4;
1385 1386 1387 1388
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1389
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1390 1391

	srp_rsp->opcode = SRP_RSP;
1392 1393
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1394 1395
	srp_rsp->tag = tag;

1396 1397 1398
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1399 1400 1401 1402 1403 1404

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1405 1406
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1407

1408
	return target_put_sess_cmd(&ioctx->cmd);
1409 1410 1411
}

/**
1412 1413 1414 1415
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1416
 */
1417 1418 1419
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1420 1421 1422
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1423 1424
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1425 1426
	u64 data_len;
	enum dma_data_direction dir;
1427
	int rc;
1428 1429 1430 1431 1432

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1433
	cmd->tag = srp_cmd->tag;
1434 1435 1436

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1437
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1438 1439 1440
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1441
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1442 1443
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1444
		cmd->sam_task_attr = TCM_HEAD_TAG;
1445 1446
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1447
		cmd->sam_task_attr = TCM_ACA_TAG;
1448 1449 1450
		break;
	}

1451 1452 1453 1454 1455 1456 1457
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1458
		goto release_ioctx;
1459 1460
	}

1461
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1462 1463
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1464 1465
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1466
	if (rc != 0) {
1467 1468 1469
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1470
	}
1471
	return;
1472

1473 1474 1475
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1497 1498 1499 1500
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1513
	struct se_session *sess = ch->sess;
1514
	int tcm_tmr;
1515
	int rc;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1527
	send_ioctx->cmd.tag = srp_tsk->tag;
1528
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1529 1530 1531 1532
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1533 1534
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1535
		goto fail;
1536
	}
1537 1538 1539
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1540 1541 1542
}

/**
1543
 * srpt_handle_new_iu - process a newly received information unit
1544
 * @ch:    RDMA channel through which the information unit has been received.
1545 1546
 * @recv_ioctx: Receive I/O context associated with the information unit.
 * @send_ioctx: Send I/O context.
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1561 1562
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1563

1564
	if (unlikely(ch->state != CH_LIVE))
1565
		return;
1566 1567 1568

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1569 1570 1571
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1572 1573
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1574 1575
		if (unlikely(!send_ioctx))
			goto out_wait;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1586
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1587 1588 1589 1590 1591 1592 1593 1594
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1595
		pr_err("Received SRP_RSP\n");
1596 1597
		break;
	default:
1598
		pr_err("received IU with unknown opcode 0x%x\n",
1599 1600 1601 1602
		       srp_cmd->opcode);
		break;
	}

1603
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1604
	return;
1605 1606 1607

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1608 1609
}

1610
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1611
{
1612 1613 1614
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1615 1616 1617 1618 1619 1620

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1621
			pr_err("req_lim = %d < 0\n", req_lim);
1622 1623
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1624 1625
		pr_info("receiving failed for ioctx %p with status %d\n",
			ioctx, wc->status);
1626 1627 1628
	}
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1651
/**
1652 1653 1654 1655
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1668
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1669
{
1670 1671 1672 1673
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1674

1675 1676 1677 1678 1679
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1680
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1681

1682
	if (wc->status != IB_WC_SUCCESS)
1683 1684 1685 1686 1687
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1688
	} else {
1689 1690
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1691 1692
	}

1693
	srpt_process_wait_list(ch);
1694 1695 1696
}

/**
1697 1698
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1699 1700 1701 1702 1703 1704
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1705
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1706
	int sq_size = sport->port_attrib.srp_sq_size;
1707
	int i, ret;
1708 1709 1710 1711

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1712
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1713 1714 1715
	if (!qp_init)
		goto out;

1716
retry:
1717
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1718
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1719 1720
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1721
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1722
		       ch->rq_size + sq_size, ret);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1733 1734 1735 1736 1737 1738 1739
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1740 1741
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1742
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1743
	qp_init->port_num = ch->sport->port;
1744 1745 1746 1747 1748 1749
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1750 1751 1752 1753

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1754
		if (ret == -ENOMEM) {
1755 1756
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1757 1758 1759 1760
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1761
		pr_err("failed to create_qp ret= %d\n", ret);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1775 1776 1777 1778
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1779 1780 1781 1782 1783 1784 1785
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1786
	ib_free_cq(ch->cq);
1787 1788 1789 1790 1791 1792
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1793
	ib_free_cq(ch->cq);
1794 1795 1796
}

/**
1797 1798
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1799
 *
1800 1801
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1802
 *
1803 1804
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1805
 */
1806
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1807
{
1808
	int ret;
1809

1810 1811 1812 1813
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1814 1815
	}

1816
	kref_get(&ch->kref);
1817

1818 1819 1820 1821
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1834

1835 1836 1837
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1838 1839
}

1840 1841 1842 1843 1844 1845 1846 1847
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1848
 */
1849
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1850 1851 1852
{
	int ret;

1853 1854
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1855

1856 1857 1858
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1859

1860 1861
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1862

1863 1864 1865
	return ret;
}

1866 1867 1868 1869 1870 1871
/*
 * Send DREQ and wait for DREP. Return true if and only if this function
 * changed the state of @ch.
 */
static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
	__must_hold(&sdev->mutex)
1872
{
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	DECLARE_COMPLETION_ONSTACK(release_done);
	struct srpt_device *sdev = ch->sport->sdev;
	bool wait;

	lockdep_assert_held(&sdev->mutex);

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

	WARN_ON(ch->release_done);
	ch->release_done = &release_done;
	wait = !list_empty(&ch->list);
	srpt_disconnect_ch(ch);
	mutex_unlock(&sdev->mutex);

	if (!wait)
		goto out;

	while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

out:
	mutex_lock(&sdev->mutex);
	return wait;
}

1900 1901
static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sdev->mutex)
1902
{
1903
	struct srpt_device *sdev = sport->sdev;
1904 1905 1906 1907
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

1908 1909 1910 1911 1912 1913 1914
	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (sport->enabled)
		return;

again:
1915
	list_for_each_entry(ch, &sdev->rch_list, list) {
1916 1917 1918 1919 1920 1921 1922
		if (ch->sport == sport) {
			pr_info("%s: closing channel %s-%d\n",
				sdev->device->name, ch->sess_name,
				ch->qp->qp_num);
			if (srpt_disconnect_ch_sync(ch))
				goto again;
		}
1923
	}
1924

1925 1926
}

1927 1928 1929 1930 1931
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

	kfree(ch);
1932 1933 1934 1935 1936 1937
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1938
	struct se_session *se_sess;
1939 1940

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1941 1942
	pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
		 ch->qp->qp_num, ch->release_done);
1943 1944 1945 1946

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1947 1948 1949
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1950
	target_sess_cmd_list_set_waiting(se_sess);
1951
	target_wait_for_sess_cmds(se_sess);
1952 1953 1954

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1955 1956
	ch->sess = NULL;

1957 1958
	ib_destroy_cm_id(ch->cm_id);

1959 1960 1961 1962
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
1963
			     ch->max_rsp_size, DMA_TO_DEVICE);
1964

1965 1966 1967 1968
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

1969
	mutex_lock(&sdev->mutex);
1970
	list_del_init(&ch->list);
1971 1972
	if (ch->release_done)
		complete(ch->release_done);
1973
	mutex_unlock(&sdev->mutex);
1974 1975 1976

	wake_up(&sdev->ch_releaseQ);

1977
	kref_put(&ch->kref, srpt_free_ch);
1978 1979 1980
}

/**
1981 1982 1983 1984
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
2000
	__be16 *guid;
2001
	u32 it_iu_len;
2002
	int i, ret = 0;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

2013 2014 2015
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6)\n",
		req->initiator_port_id, req->target_port_id, it_iu_len,
		param->port, &sport->gid);
2016

2017 2018 2019
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2020 2021 2022 2023 2024 2025 2026

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2027 2028
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2029
		ret = -EINVAL;
2030
		pr_err("rejected SRP_LOGIN_REQ because its"
2031 2032 2033 2034 2035 2036
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2037 2038
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2039
		ret = -EINVAL;
2040
		pr_err("rejected SRP_LOGIN_REQ because the target port"
2041 2042 2043 2044 2045 2046 2047
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

2048
		mutex_lock(&sdev->mutex);
2049 2050 2051 2052 2053 2054 2055

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
2056
				if (srpt_disconnect_ch(ch) < 0)
2057
					continue;
2058 2059
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
2060 2061 2062 2063 2064
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

2065
		mutex_unlock(&sdev->mutex);
2066 2067 2068 2069 2070 2071 2072

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2073 2074
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2075
		ret = -ENOMEM;
2076
		pr_err("rejected SRP_LOGIN_REQ because it"
2077 2078 2079 2080
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2081
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2082
	if (!ch) {
2083 2084
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2085
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2086 2087 2088 2089
		ret = -ENOMEM;
		goto reject;
	}

2090 2091
	kref_init(&ch->kref);
	ch->zw_cqe.done = srpt_zerolength_write_done;
2092 2093 2094 2095 2096
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2097
	cm_id->context = ch;
2098
	/*
2099 2100 2101
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2102
	 */
2103
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2104 2105 2106
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2107
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2108 2109 2110 2111

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2112
				      ch->max_rsp_size, DMA_TO_DEVICE);
2113 2114 2115
	if (!ch->ioctx_ring)
		goto free_ch;

2116 2117 2118 2119 2120
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2134

2135 2136
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2137 2138
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2139
		pr_err("rejected SRP_LOGIN_REQ because creating"
2140
		       " a new RDMA channel failed.\n");
2141
		goto free_recv_ring;
2142 2143 2144 2145
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2146
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2147
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2148 2149 2150
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2151

2152
	guid = (__be16 *)&param->primary_path->dgid.global.interface_id;
2153 2154 2155
	snprintf(ch->ini_guid, sizeof(ch->ini_guid), "%04x:%04x:%04x:%04x",
		 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
		 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
2156 2157 2158 2159 2160 2161
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

2162 2163 2164 2165 2166 2167
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
						ch->ini_guid, ch, NULL);
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2168 2169 2170
					TARGET_PROT_NORMAL, ch->sess_name, ch,
					NULL);
	/* Retry without leading "0x" */
2171 2172
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2173 2174
						TARGET_PROT_NORMAL,
						ch->sess_name + 2, ch, NULL);
2175
	if (IS_ERR_OR_NULL(ch->sess)) {
2176 2177
		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
			ch->sess_name);
2178 2179
		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2180 2181
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2193 2194
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2195 2196 2197 2198 2199 2200 2201
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2202
	rep_param->private_data_len = sizeof(*rsp);
2203 2204 2205 2206 2207 2208 2209 2210 2211
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2212
		pr_err("sending SRP_LOGIN_REQ response failed"
2213 2214 2215 2216
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2217
	mutex_lock(&sdev->mutex);
2218
	list_add_tail(&ch->list, &sdev->rch_list);
2219
	mutex_unlock(&sdev->mutex);
2220 2221 2222 2223

	goto out;

release_channel:
2224
	srpt_disconnect_ch(ch);
2225 2226 2227 2228 2229 2230 2231
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

2232 2233 2234 2235 2236
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2237 2238 2239
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2240
			     ch->max_rsp_size, DMA_TO_DEVICE);
2241 2242 2243 2244 2245 2246
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2247 2248
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2249 2250

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2251
			     (void *)rej, sizeof(*rej));
2252 2253 2254 2255 2256 2257 2258 2259 2260

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2261 2262 2263 2264
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2265
{
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2278 2279 2280
}

/**
2281 2282
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2283 2284 2285 2286
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2287
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2288 2289 2290
{
	int ret;

2291
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2292 2293
		ret = srpt_ch_qp_rts(ch, ch->qp);

2294 2295 2296 2297 2298
		if (ret == 0) {
			/* Trigger wait list processing. */
			ret = srpt_zerolength_write(ch);
			WARN_ONCE(ret < 0, "%d\n", ret);
		} else {
2299
			srpt_close_ch(ch);
2300
		}
2301 2302 2303 2304
	}
}

/**
2305 2306 2307
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2318
	struct srpt_rdma_ch *ch = cm_id->context;
2319 2320 2321 2322 2323 2324 2325 2326 2327
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2328 2329 2330
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2331 2332 2333
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2334
		srpt_cm_rtu_recv(ch);
2335 2336
		break;
	case IB_CM_DREQ_RECEIVED:
2337
		srpt_disconnect_ch(ch);
2338 2339
		break;
	case IB_CM_DREP_RECEIVED:
2340 2341
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2342
		srpt_close_ch(ch);
2343 2344
		break;
	case IB_CM_TIMEWAIT_EXIT:
2345 2346
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2347
		srpt_close_ch(ch);
2348 2349
		break;
	case IB_CM_REP_ERROR:
2350 2351
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2352 2353
		break;
	case IB_CM_DREQ_ERROR:
2354
		pr_info("Received CM DREQ ERROR event.\n");
2355 2356
		break;
	case IB_CM_MRA_RECEIVED:
2357
		pr_info("Received CM MRA event\n");
2358 2359
		break;
	default:
2360
		pr_err("received unrecognized CM event %d\n", event->event);
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
}

/*
2376
 * srpt_write_pending - Start data transfer from initiator to target (write).
2377 2378 2379
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2380 2381 2382
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2383 2384
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2385
	enum srpt_command_state new_state;
2386
	int ret, i;
2387 2388 2389

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2433 2434
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2435 2436 2437 2438
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2439
static void srpt_queue_response(struct se_cmd *cmd)
2440
{
2441 2442 2443 2444
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2445
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2446
	struct ib_sge sge;
2447 2448
	enum srpt_command_state state;
	unsigned long flags;
2449
	int resp_len, ret, i;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	u8 srp_tm_status;

	BUG_ON(!ch);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

B
Bart Van Assche 已提交
2471
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2472
		return;
2473 2474

	/* For read commands, transfer the data to the initiator. */
2475 2476
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2477
	    !ioctx->queue_status_only) {
2478 2479 2480 2481
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2482
					ch->sport->port, NULL, first_wr);
2483 2484 2485 2486
		}
	}

	if (state != SRPT_STATE_MGMT)
2487
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2488 2489 2490 2491 2492
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2493
						 ioctx->cmd.tag);
2494
	}
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2511
	sge.lkey = sdev->lkey;
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2526
	}
2527 2528 2529 2530 2531 2532 2533 2534

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2535
}
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2546 2547
}

2548 2549 2550 2551
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2562 2563
	srpt_queue_response(cmd);
	return 0;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
2574 2575
 * srpt_release_sdev - disable login and wait for associated channels
 * @sdev: SRPT HCA pointer.
2576 2577 2578
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2579
	int i, res;
2580 2581 2582 2583 2584

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2585
	mutex_lock(&sdev->mutex);
2586
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2587
		srpt_set_enabled(&sdev->port[i], false);
2588
	mutex_unlock(&sdev->mutex);
2589 2590

	res = wait_event_interruptible(sdev->ch_releaseQ,
2591
				       list_empty_careful(&sdev->rch_list));
2592
	if (res)
2593
		pr_err("%s: interrupted.\n", __func__);
2594 2595 2596 2597

	return 0;
}

2598
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2613 2614 2615 2616
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2617 2618 2619 2620 2621 2622
		}
	}

	return NULL;
}

2623
static struct se_wwn *srpt_lookup_wwn(const char *name)
2624
{
2625
	struct se_wwn *wwn;
2626 2627

	spin_lock(&srpt_dev_lock);
2628
	wwn = __srpt_lookup_wwn(name);
2629 2630
	spin_unlock(&srpt_dev_lock);

2631
	return wwn;
2632 2633
}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2702
/**
2703 2704
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2705 2706 2707 2708 2709 2710 2711
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2712
	pr_debug("device = %p\n", device);
2713

2714
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2715 2716 2717 2718 2719 2720
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2721
	mutex_init(&sdev->mutex);
2722

2723
	sdev->pd = ib_alloc_pd(device, 0);
2724 2725 2726
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2727
	sdev->lkey = sdev->pd->local_dma_lkey;
2728

2729
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2730

2731
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2732 2733 2734 2735 2736 2737

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2738
		goto err_ring;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2751
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2752 2753 2754 2755
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2756
	ib_register_event_handler(&sdev->event_handler);
2757

2758
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2759 2760 2761 2762 2763 2764 2765 2766

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2767
		sport->port_attrib.use_srq = false;
2768 2769 2770
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2771
			pr_err("MAD registration failed for %s-%d.\n",
2772
			       sdev->device->name, i);
2773
			goto err_event;
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2790
err_ring:
2791
	srpt_free_srq(sdev);
2792 2793 2794 2795 2796
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2797
	pr_info("%s(%s) failed.\n", __func__, device->name);
2798 2799 2800 2801
	goto out;
}

/**
2802 2803 2804
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2805
 */
2806
static void srpt_remove_one(struct ib_device *device, void *client_data)
2807
{
2808
	struct srpt_device *sdev = client_data;
2809 2810 2811
	int i;

	if (!sdev) {
2812
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

2836 2837
	srpt_free_srq(sdev);

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2864 2865 2866 2867 2868
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2869 2870
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2871
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2872

2873 2874 2875 2876
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2891 2892 2893
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2894
	unsigned long flags;
2895

2896 2897
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2898

2899 2900 2901
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
2902 2903
	}

2904 2905 2906
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2907 2908 2909
}

/**
2910 2911
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
2912 2913 2914 2915 2916 2917 2918
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
2919 2920
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
2921

2922
	mutex_lock(&sdev->mutex);
2923
	srpt_disconnect_ch_sync(ch);
2924
	mutex_unlock(&sdev->mutex);
2925 2926 2927
}

/**
2928 2929
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx);
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

2967
/**
2968
 * srpt_parse_i_port_id - parse an initiator port ID
2969 2970 2971 2972 2973 2974 2975
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
2976
	int ret;
2977 2978

	p = name;
2979
	if (strncasecmp(p, "0x", 2) == 0)
2980 2981 2982 2983 2984 2985 2986 2987
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
2988 2989 2990
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2991 2992 2993 2994 2995 2996 2997 2998
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
2999
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3000
{
3001
	u64 guid;
3002
	u8 i_port_id[16];
3003
	int ret;
3004

3005 3006 3007 3008
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
3009
		pr_err("invalid initiator port ID %s\n", name);
3010
	return ret;
3011 3012
}

3013 3014
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3015
{
3016
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3017
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3018 3019 3020 3021

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3022 3023
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3024
{
3025
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3026
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3027 3028 3029
	unsigned long val;
	int ret;

3030
	ret = kstrtoul(page, 0, &val);
3031
	if (ret < 0) {
3032
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3050 3051
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3052
{
3053
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3054
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3055 3056 3057 3058

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3059 3060
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3061
{
3062
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3063
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3064 3065 3066
	unsigned long val;
	int ret;

3067
	ret = kstrtoul(page, 0, &val);
3068
	if (ret < 0) {
3069
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3087 3088
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3089
{
3090
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3091
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3092 3093 3094 3095

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3096 3097
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3098
{
3099
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3100
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3101 3102 3103
	unsigned long val;
	int ret;

3104
	ret = kstrtoul(page, 0, &val);
3105
	if (ret < 0) {
3106
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3138
	struct srpt_device *sdev = sport->sdev;
3139
	unsigned long val;
3140
	bool enabled;
3141 3142 3143 3144 3145 3146 3147
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3148 3149 3150 3151 3152 3153 3154

	ret = mutex_lock_interruptible(&sdev->mutex);
	if (ret < 0)
		return ret;
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3155
	sport->port_attrib.use_srq = val;
3156 3157 3158
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
	mutex_unlock(&sdev->mutex);
3159 3160 3161 3162

	return count;
}

3163 3164 3165
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3166
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3167 3168

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3169 3170 3171
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3172
	&srpt_tpg_attrib_attr_use_srq,
3173 3174 3175
	NULL,
};

3176
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3177
{
3178
	struct se_portal_group *se_tpg = to_tpg(item);
3179
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3180 3181 3182 3183

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3184 3185
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3186
{
3187
	struct se_portal_group *se_tpg = to_tpg(item);
3188
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3189
	struct srpt_device *sdev = sport->sdev;
3190 3191 3192
	unsigned long tmp;
        int ret;

3193
	ret = kstrtoul(page, 0, &tmp);
3194
	if (ret < 0) {
3195
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3196 3197 3198 3199
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3200
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3201 3202 3203
		return -EINVAL;
	}

3204
	mutex_lock(&sdev->mutex);
3205
	srpt_set_enabled(sport, tmp);
3206 3207
	mutex_unlock(&sdev->mutex);

3208 3209 3210
	return count;
}

3211
CONFIGFS_ATTR(srpt_tpg_, enable);
3212 3213

static struct configfs_attribute *srpt_tpg_attrs[] = {
3214
	&srpt_tpg_attr_enable,
3215 3216 3217 3218
	NULL,
};

/**
3219 3220 3221 3222
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3223 3224 3225 3226 3227
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3228 3229
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3230 3231
	int res;

3232 3233 3234 3235 3236
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3237 3238 3239
	if (res)
		return ERR_PTR(res);

3240
	return tpg;
3241 3242 3243
}

/**
3244 3245
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3246 3247 3248
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3249
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3250 3251

	sport->enabled = false;
3252
	core_tpg_deregister(tpg);
3253 3254 3255
}

/**
3256 3257 3258 3259
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3260 3261 3262 3263 3264
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3265
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3266 3267 3268
}

/**
3269 3270
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3271 3272 3273 3274 3275
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3276
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3277 3278 3279 3280
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3281
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3282 3283

static struct configfs_attribute *srpt_wwn_attrs[] = {
3284
	&srpt_wwn_attr_version,
3285 3286 3287
	NULL,
};

3288 3289 3290
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3308
	.queue_data_in			= srpt_queue_data_in,
3309
	.queue_status			= srpt_queue_status,
3310
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3311
	.aborted_task			= srpt_aborted_task,
3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3320
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3321 3322 3323 3324

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3325 3326 3327
};

/**
3328
 * srpt_init_module - kernel module initialization
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3341
		pr_err("invalid value %d for kernel module parameter"
3342 3343 3344 3345 3346 3347 3348
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3349
		pr_err("invalid value %d for kernel module parameter"
3350 3351 3352 3353 3354
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3355 3356
	ret = target_register_template(&srpt_template);
	if (ret)
3357 3358 3359 3360
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3361
		pr_err("couldn't register IB client\n");
3362 3363 3364 3365 3366 3367
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3368
	target_unregister_template(&srpt_template);
3369 3370 3371 3372 3373 3374 3375
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3376
	target_unregister_template(&srpt_template);
3377 3378 3379 3380
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);