ib_srpt.c 89.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
44
#include <scsi/scsi_proto.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
70 71
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 73 74 75 76 77 78 79 80 81 82

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

83
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 85 86 87 88 89 90 91 92 93
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
94
static void srpt_release_cmd(struct se_cmd *se_cmd);
95
static void srpt_free_ch(struct kref *kref);
96
static int srpt_queue_status(struct se_cmd *cmd);
97 98
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99
static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100

101 102 103
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
104
 */
105
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 107 108
{
	unsigned long flags;
	enum rdma_ch_state prev;
109
	bool changed = false;
110 111 112

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
113
	if (new > prev) {
114
		ch->state = new;
115 116
		changed = true;
	}
117
	spin_unlock_irqrestore(&ch->spinlock, flags);
118 119

	return changed;
120 121 122
}

/**
123 124 125
 * srpt_event_handler - asynchronous IB event callback function
 * @handler: IB event handler registered by ib_register_event_handler().
 * @event: Description of the event that occurred.
126 127 128 129 130 131 132 133 134 135 136
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
137
	u8 port_num;
138 139 140 141 142 143

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
144
		 sdev->device->name);
145 146 147

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
148 149 150
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
151 152
			sport->lid = 0;
			sport->sm_lid = 0;
153 154 155 156
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
157 158 159 160 161 162 163
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
164
	case IB_EVENT_GID_CHANGE:
165
		/* Refresh port data asynchronously. */
166 167 168
		port_num = event->element.port_num - 1;
		if (port_num < sdev->device->phys_port_cnt) {
			sport = &sdev->port[port_num];
169 170
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
171 172 173 174
		} else {
			WARN(true, "event %d: port_num %d out of range 1..%d\n",
			     event->event, port_num + 1,
			     sdev->device->phys_port_cnt);
175 176 177
		}
		break;
	default:
178
		pr_err("received unrecognized IB event %d\n", event->event);
179 180 181 182 183
		break;
	}
}

/**
184 185 186
 * srpt_srq_event - SRQ event callback function
 * @event: Description of the event that occurred.
 * @ctx: Context pointer specified at SRQ creation time.
187 188 189
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
190
	pr_debug("SRQ event %d\n", event->event);
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

210
/**
211 212 213
 * srpt_qp_event - QP event callback function
 * @event: Description of the event that occurred.
 * @ch: SRPT RDMA channel.
214 215 216 217
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
218
		 event->event, ch->cm_id, ch->sess_name, ch->state);
219 220 221 222 223 224

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
225 226 227
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
228 229
		break;
	default:
230
		pr_err("received unrecognized IB QP event %d\n", event->event);
231 232 233 234 235
		break;
	}
}

/**
236 237
 * srpt_set_ioc - initialize a IOUnitInfo structure
 * @c_list: controller list.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
260 261
 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
262 263 264 265 266 267 268 269 270
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
271
	memset(cif, 0, sizeof(*cif));
272 273 274
	cif->base_version = 1;
	cif->class_version = 1;

275
	ib_set_cpi_resp_time(cif, 20);
276 277 278 279
	mad->mad_hdr.status = 0;
}

/**
280 281
 * srpt_get_iou - write IOUnitInfo to a management datagram
 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
282 283 284 285 286 287 288 289 290 291 292
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
293
	ioui->change_id = cpu_to_be16(1);
294 295 296 297 298 299 300 301 302 303 304
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
305 306 307 308
 * srpt_get_ioc - write IOControllerprofile to a management datagram
 * @sport: HCA port through which the MAD has been received.
 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
309 310 311 312 313 314 315 316 317 318
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;
319
	int send_queue_depth;
320 321 322 323 324

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
325
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
326 327 328 329 330
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
331
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
332 333 334
		return;
	}

335 336 337
	if (sdev->use_srq)
		send_queue_depth = sdev->srq_size;
	else
338
		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
339 340
				       sdev->device->attrs.max_qp_wr);

341
	memset(iocp, 0, sizeof(*iocp));
342 343
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
344 345 346 347
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
348
	iocp->subsys_device_id = 0x0;
349 350 351 352
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353
	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
354 355 356 357 358 359 360 361 362 363 364 365
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
366 367 368 369 370 371
 * srpt_get_svc_entries - write ServiceEntries to a management datagram
 * @ioc_guid: I/O controller GUID to use in reply.
 * @slot: I/O controller number.
 * @hi: End of the range of service entries to be specified in the reply.
 * @lo: Start of the range of service entries to be specified in the reply..
 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
372 373 374 375 376 377 378 379 380 381 382 383 384
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
385
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
386 387 388 389 390
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
391
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
392 393 394 395
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
396
	memset(svc_entries, 0, sizeof(*svc_entries));
397 398 399 400 401 402 403 404 405 406 407
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
408 409
 * srpt_mgmt_method_get - process a received management datagram
 * @sp:      HCA port through which the MAD has been received.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
442
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
443 444 445 446 447
		break;
	}
}

/**
448 449 450
 * srpt_mad_send_handler - MAD send completion callback
 * @mad_agent: Return value of ib_register_mad_agent().
 * @mad_wc: Work completion reporting that the MAD has been sent.
451 452 453 454
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
455
	rdma_destroy_ah(mad_wc->send_buf->ah);
456 457 458 459
	ib_free_send_mad(mad_wc->send_buf);
}

/**
460 461 462 463
 * srpt_mad_recv_handler - MAD reception callback function
 * @mad_agent: Return value of ib_register_mad_agent().
 * @send_buf: Not used.
 * @mad_wc: Work completion reporting that a MAD has been received.
464 465
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
466
				  struct ib_mad_send_buf *send_buf,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
487 488
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
489 490 491 492 493 494
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
495
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
496 497 498 499 500 501 502 503 504
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
505
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
506 507 508
		break;
	default:
		dm_mad->mad_hdr.status =
509
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
510 511 512 513 514 515 516 517 518 519 520 521
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
522
	rdma_destroy_ah(ah);
523 524 525 526
err:
	ib_free_recv_mad(mad_wc);
}

527 528 529 530 531 532 533 534 535
static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
{
	const __be16 *g = (const __be16 *)guid;

	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
}

536
/**
537 538
 * srpt_refresh_port - configure a HCA port
 * @sport: SRPT HCA port.
539 540 541 542 543 544 545 546 547 548 549 550 551 552
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

553
	memset(&port_modify, 0, sizeof(port_modify));
554 555 556 557 558 559 560 561 562 563 564 565 566 567
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

568 569
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
570 571 572
	if (ret)
		goto err_query_port;

573
	sport->port_guid_wwn.priv = sport;
574 575
	srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
			 &sport->gid.global.interface_id);
576 577 578 579 580
	sport->port_gid_wwn.priv = sport;
	snprintf(sport->port_gid, sizeof(sport->port_gid),
		 "0x%016llx%016llx",
		 be64_to_cpu(sport->gid.global.subnet_prefix),
		 be64_to_cpu(sport->gid.global.interface_id));
581

582
	if (!sport->mad_agent) {
583
		memset(&reg_req, 0, sizeof(reg_req));
584 585 586 587 588 589 590 591 592 593 594
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
595
							 sport, 0);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
617 618
 * srpt_unregister_mad_agent - unregister MAD callback functions
 * @sdev: SRPT HCA pointer.
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
634
			pr_err("disabling MAD processing failed.\n");
635 636 637 638 639 640 641 642
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
643 644 645 646 647
 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx_size: I/O context size.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
678 679 680 681 682
 * srpt_free_ioctx - free a SRPT I/O context structure
 * @sdev: SRPT HCA pointer.
 * @ioctx: I/O context pointer.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
683 684 685 686 687 688 689 690 691 692 693 694 695
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
696
 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
728
	ring = NULL;
729 730 731 732 733
out:
	return ring;
}

/**
734 735 736 737 738 739
 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
 * @ioctx_ring: I/O context ring to be freed.
 * @sdev: SRPT HCA pointer.
 * @ring_size: Number of ring elements.
 * @dma_size: Size of I/O context DMA buffer.
 * @dir: DMA data direction.
740 741 742 743 744 745 746
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

747 748 749
	if (!ioctx_ring)
		return;

750 751 752 753 754 755
	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
756 757 758
 * srpt_set_cmd_state - set the state of a SCSI command
 * @ioctx: Send I/O context.
 * @new: New I/O context state.
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	return previous;
}

/**
781 782 783 784
 * srpt_test_and_set_cmd_state - test and set the state of a command
 * @ioctx: Send I/O context.
 * @old: Current I/O context state.
 * @new: New I/O context state.
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return previous == old;
}

/**
808 809 810 811
 * srpt_post_recv - post an IB receive request
 * @sdev: SRPT HCA pointer.
 * @ch: SRPT RDMA channel.
 * @ioctx: Receive I/O context pointer.
812
 */
813
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
814 815 816 817 818 819 820 821
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
B
Bart Van Assche 已提交
822
	list.lkey = sdev->lkey;
823

824 825
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
826 827 828 829
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

830 831 832 833
	if (sdev->use_srq)
		return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
	else
		return ib_post_recv(ch->qp, &wr, &bad_wr);
834 835
}

836
/**
837 838
 * srpt_zerolength_write - perform a zero-length RDMA write
 * @ch: SRPT RDMA channel.
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

860 861 862 863 864 865
	if (wc->status == IB_WC_SUCCESS) {
		srpt_process_wait_list(ch);
	} else {
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
866 867
			pr_debug("%s-%d: already disconnected.\n",
				 ch->sess_name, ch->qp->qp_num);
868
	}
869 870
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
		unsigned *sg_cnt)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct scatterlist *prev = NULL;
	unsigned prev_nents;
	int ret, i;

	if (nbufs == 1) {
		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
	} else {
		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
			GFP_KERNEL);
		if (!ioctx->rw_ctxs)
			return -ENOMEM;
	}

	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
		u64 remote_addr = be64_to_cpu(db->va);
		u32 size = be32_to_cpu(db->len);
		u32 rkey = be32_to_cpu(db->key);

		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
				i < nbufs - 1);
		if (ret)
			goto unwind;

		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
		if (ret < 0) {
			target_free_sgl(ctx->sg, ctx->nents);
			goto unwind;
		}

		ioctx->n_rdma += ret;
		ioctx->n_rw_ctx++;

		if (prev) {
			sg_unmark_end(&prev[prev_nents - 1]);
			sg_chain(prev, prev_nents + 1, ctx->sg);
		} else {
			*sg = ctx->sg;
		}

		prev = ctx->sg;
		prev_nents = ctx->nents;

		*sg_cnt += ctx->nents;
	}

	return 0;

unwind:
	while (--i >= 0) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}
	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
	return ret;
}

static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
	int i;

	for (i = 0; i < ioctx->n_rw_ctx; i++) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
				ctx->sg, ctx->nents, dir);
		target_free_sgl(ctx->sg, ctx->nents);
	}

	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
		kfree(ioctx->rw_ctxs);
}

static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
		     !__same_type(srp_cmd->add_data[0], (u8)0));

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}

975
/**
976
 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
977 978 979 980
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
981 982
 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
 * @sg_cnt: [out] length of @sg.
983 984 985 986 987 988 989 990 991
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
992 993
		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	BUG_ON(!dir);
	BUG_ON(!data_len);

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;
1009 1010 1011 1012 1013
	else
		*dir = DMA_NONE;

	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
	ioctx->cmd.data_direction = *dir;
1014 1015 1016

	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1017
	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1018 1019

		*data_len = be32_to_cpu(db->len);
1020
		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1021 1022
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1023 1024 1025
		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
		int nbufs = be32_to_cpu(idb->table_desc.len) /
				sizeof(struct srp_direct_buf);
1026

1027
		if (nbufs >
1028
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1029
			pr_err("received unsupported SRP_CMD request"
1030 1031 1032 1033
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
1034 1035
			       sizeof(struct srp_direct_buf));
			return -EINVAL;
1036 1037 1038
		}

		*data_len = be32_to_cpu(idb->len);
1039 1040 1041 1042 1043
		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
				sg, sg_cnt);
	} else {
		*data_len = 0;
		return 0;
1044 1045 1046 1047
	}
}

/**
1048 1049 1050
 * srpt_init_ch_qp - initialize queue pair attributes
 * @ch: SRPT RDMA channel.
 * @qp: Queue pair pointer.
1051 1052 1053 1054 1055 1056 1057 1058 1059
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

1060
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1061 1062 1063 1064
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
1065
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
1078
 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1108
 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
1138 1139
 * srpt_ch_qp_err - set the channel queue pair state to 'error'
 * @ch: SRPT RDMA channel.
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
1150 1151
 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
 * @ch: SRPT RDMA channel.
1152 1153 1154 1155
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
1156
	unsigned long flags;
1157 1158 1159

	BUG_ON(!ch);

1160 1161 1162 1163 1164 1165
	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
1166
	}
1167 1168 1169 1170 1171 1172
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
1173 1174
	spin_lock_init(&ioctx->spinlock);
	ioctx->state = SRPT_STATE_NEW;
1175
	ioctx->n_rdma = 0;
1176
	ioctx->n_rw_ctx = 0;
1177 1178 1179 1180 1181 1182 1183
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1184 1185 1186 1187 1188

	return ioctx;
}

/**
1189
 * srpt_abort_cmd - abort a SCSI command
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
 * @ioctx:   I/O context associated with the SCSI command.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1201
	 * the ib_srpt driver, change the state to the next state.
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	 */

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1215 1216
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1217 1218 1219 1220
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

1221 1222
	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
		 ioctx->state, ioctx->cmd.tag);
1223 1224 1225 1226 1227

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1228
	case SRPT_STATE_DONE:
1229 1230 1231 1232 1233 1234
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1235 1236 1237
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1238 1239 1240 1241 1242 1243
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
1244
		transport_generic_free_cmd(&ioctx->cmd, 0);
1245 1246
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1247
		transport_generic_free_cmd(&ioctx->cmd, 0);
1248 1249
		break;
	default:
G
Grant Grundler 已提交
1250
		WARN(1, "Unexpected command state (%d)", state);
1251 1252 1253 1254 1255 1256 1257
		break;
	}

	return state;
}

/**
1258 1259 1260 1261
 * srpt_rdma_read_done - RDMA read completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1262 1263
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1264
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1265
 * be cleaned up.
1266
 */
1267
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1268
{
1269 1270
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1271
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1272

1273 1274
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1275
	ioctx->n_rdma = 0;
1276

1277 1278 1279 1280 1281
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1282
	}
1283 1284 1285 1286 1287 1288

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
1289
		       __LINE__, ioctx->state);
1290 1291 1292
}

/**
1293
 * srpt_build_cmd_rsp - build a SRP_RSP response
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1328
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1329 1330
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1331
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1332 1333 1334 1335 1336 1337 1338
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1339 1340
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
1353
 * srpt_build_tskmgmt_rsp - build a task management response
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1373
	resp_data_len = 4;
1374 1375 1376 1377
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1378
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1379 1380

	srp_rsp->opcode = SRP_RSP;
1381 1382
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1383 1384
	srp_rsp->tag = tag;

1385 1386 1387
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1388 1389 1390 1391 1392 1393

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1394 1395
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1396

1397
	return target_put_sess_cmd(&ioctx->cmd);
1398 1399 1400
}

/**
1401 1402 1403 1404
 * srpt_handle_cmd - process a SRP_CMD information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1405
 */
1406 1407 1408
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1409 1410 1411
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
1412 1413
	struct scatterlist *sg = NULL;
	unsigned sg_cnt = 0;
1414 1415
	u64 data_len;
	enum dma_data_direction dir;
1416
	int rc;
1417 1418 1419 1420 1421

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1422
	cmd->tag = srp_cmd->tag;
1423 1424 1425

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1426
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1427 1428 1429
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1430
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1431 1432
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1433
		cmd->sam_task_attr = TCM_HEAD_TAG;
1434 1435
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1436
		cmd->sam_task_attr = TCM_ACA_TAG;
1437 1438 1439
		break;
	}

1440 1441 1442 1443 1444 1445 1446
	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
			&data_len);
	if (rc) {
		if (rc != -EAGAIN) {
			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
			       srp_cmd->tag);
		}
1447
		goto release_ioctx;
1448 1449
	}

1450
	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1451 1452
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
1453 1454
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
			       sg, sg_cnt, NULL, 0, NULL, 0);
1455
	if (rc != 0) {
1456 1457 1458
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1459
	}
1460
	return;
1461

1462 1463 1464
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
1486 1487 1488 1489
 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
 * @ch: SRPT RDMA channel.
 * @recv_ioctx: Receive I/O context.
 * @send_ioctx: Send I/O context.
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1502
	struct se_session *sess = ch->sess;
1503
	int tcm_tmr;
1504
	int rc;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1516
	send_ioctx->cmd.tag = srp_tsk->tag;
1517
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1518 1519 1520 1521
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1522 1523
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1524
		goto fail;
1525
	}
1526 1527 1528
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1529 1530 1531
}

/**
1532
 * srpt_handle_new_iu - process a newly received information unit
1533
 * @ch:    RDMA channel through which the information unit has been received.
1534 1535
 * @recv_ioctx: Receive I/O context associated with the information unit.
 * @send_ioctx: Send I/O context.
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1550 1551
	if (unlikely(ch->state == CH_CONNECTING))
		goto out_wait;
1552

1553
	if (unlikely(ch->state != CH_LIVE))
1554
		return;
1555 1556 1557

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1558 1559 1560
		if (!send_ioctx) {
			if (!list_empty(&ch->cmd_wait_list))
				goto out_wait;
1561 1562
			send_ioctx = srpt_get_send_ioctx(ch);
		}
1563 1564
		if (unlikely(!send_ioctx))
			goto out_wait;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1575
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1576 1577 1578 1579 1580 1581 1582 1583
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1584
		pr_err("Received SRP_RSP\n");
1585 1586
		break;
	default:
1587
		pr_err("received IU with unknown opcode 0x%x\n",
1588 1589 1590 1591
		       srp_cmd->opcode);
		break;
	}

1592
	srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1593
	return;
1594 1595 1596

out_wait:
	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1597 1598
}

1599
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1600
{
1601 1602 1603
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1604 1605 1606 1607 1608 1609

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1610
			pr_err("req_lim = %d < 0\n", req_lim);
1611 1612
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1613 1614
		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
				    ioctx, wc->status);
1615 1616 1617
	}
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/*
 * This function must be called from the context in which RDMA completions are
 * processed because it accesses the wait list without protection against
 * access from other threads.
 */
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;

	while (!list_empty(&ch->cmd_wait_list) &&
	       ch->state >= CH_LIVE &&
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
	}
}

1640
/**
1641 1642 1643 1644
 * srpt_send_done - send completion callback
 * @cq: Completion queue.
 * @wc: Work completion.
 *
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1657
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1658
{
1659 1660 1661 1662
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1663

1664 1665 1666 1667 1668
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

1669
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1670

1671
	if (wc->status != IB_WC_SUCCESS)
1672 1673 1674 1675 1676
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		transport_generic_free_cmd(&ioctx->cmd, 0);
1677
	} else {
1678 1679
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1680 1681
	}

1682
	srpt_process_wait_list(ch);
1683 1684 1685
}

/**
1686 1687
 * srpt_create_ch_ib - create receive and send completion queues
 * @ch: SRPT RDMA channel.
1688 1689 1690 1691 1692 1693
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
1694
	const struct ib_device_attr *attrs = &sdev->device->attrs;
1695
	int sq_size = sport->port_attrib.srp_sq_size;
1696
	int i, ret;
1697 1698 1699 1700

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1701
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1702 1703 1704
	if (!qp_init)
		goto out;

1705
retry:
1706
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1707
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1708 1709
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1710
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1711
		       ch->rq_size + sq_size, ret);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
1722 1723 1724 1725 1726 1727 1728
	/*
	 * We divide up our send queue size into half SEND WRs to send the
	 * completions, and half R/W contexts to actually do the RDMA
	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
	 * both both, as RDMA contexts will also post completions for the
	 * RDMA READ case.
	 */
1729 1730
	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1731
	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1732
	qp_init->port_num = ch->sport->port;
1733 1734 1735 1736 1737 1738
	if (sdev->use_srq) {
		qp_init->srq = sdev->srq;
	} else {
		qp_init->cap.max_recv_wr = ch->rq_size;
		qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
	}
1739 1740 1741 1742

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1743
		if (ret == -ENOMEM) {
1744 1745
			sq_size /= 2;
			if (sq_size >= MIN_SRPT_SQ_SIZE) {
1746 1747 1748 1749
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1750
		pr_err("failed to create_qp ret= %d\n", ret);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

1764 1765 1766 1767
	if (!sdev->use_srq)
		for (i = 0; i < ch->rq_size; i++)
			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);

1768 1769 1770 1771 1772 1773 1774
out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1775
	ib_free_cq(ch->cq);
1776 1777 1778 1779 1780 1781
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1782
	ib_free_cq(ch->cq);
1783 1784 1785
}

/**
1786 1787
 * srpt_close_ch - close a RDMA channel
 * @ch: SRPT RDMA channel.
1788
 *
1789 1790
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1791
 *
1792 1793
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1794
 */
1795
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1796
{
1797
	int ret;
1798

1799 1800 1801 1802
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1803 1804
	}

1805
	kref_get(&ch->kref);
1806

1807 1808 1809 1810
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1823

1824 1825 1826
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1827 1828
}

1829 1830 1831 1832 1833 1834 1835 1836
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1837
 */
1838
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1839 1840 1841
{
	int ret;

1842 1843
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1844

1845 1846 1847
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1848

1849 1850
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1851

1852 1853 1854
	return ret;
}

1855 1856 1857 1858 1859 1860
/*
 * Send DREQ and wait for DREP. Return true if and only if this function
 * changed the state of @ch.
 */
static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
	__must_hold(&sdev->mutex)
1861
{
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	DECLARE_COMPLETION_ONSTACK(release_done);
	struct srpt_device *sdev = ch->sport->sdev;
	bool wait;

	lockdep_assert_held(&sdev->mutex);

	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);

	WARN_ON(ch->release_done);
	ch->release_done = &release_done;
	wait = !list_empty(&ch->list);
	srpt_disconnect_ch(ch);
	mutex_unlock(&sdev->mutex);

	if (!wait)
		goto out;

	while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);

out:
	mutex_lock(&sdev->mutex);
	return wait;
}

1889 1890
static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
	__must_hold(&sdev->mutex)
1891
{
1892
	struct srpt_device *sdev = sport->sdev;
1893 1894 1895 1896
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

1897 1898 1899 1900 1901 1902 1903
	if (sport->enabled == enabled)
		return;
	sport->enabled = enabled;
	if (sport->enabled)
		return;

again:
1904
	list_for_each_entry(ch, &sdev->rch_list, list) {
1905 1906 1907 1908 1909 1910 1911
		if (ch->sport == sport) {
			pr_info("%s: closing channel %s-%d\n",
				sdev->device->name, ch->sess_name,
				ch->qp->qp_num);
			if (srpt_disconnect_ch_sync(ch))
				goto again;
		}
1912
	}
1913

1914 1915
}

1916 1917 1918 1919 1920
static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

	kfree(ch);
1921 1922 1923 1924 1925 1926
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1927
	struct se_session *se_sess;
1928 1929

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1930 1931
	pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
		 ch->qp->qp_num, ch->release_done);
1932 1933 1934 1935

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1936 1937 1938
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1939
	target_sess_cmd_list_set_waiting(se_sess);
1940
	target_wait_for_sess_cmds(se_sess);
1941 1942 1943

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1944 1945
	ch->sess = NULL;

1946 1947
	ib_destroy_cm_id(ch->cm_id);

1948 1949 1950 1951
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
1952
			     ch->max_rsp_size, DMA_TO_DEVICE);
1953

1954 1955 1956 1957
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

1958
	mutex_lock(&sdev->mutex);
1959
	list_del_init(&ch->list);
1960 1961
	if (ch->release_done)
		complete(ch->release_done);
1962
	mutex_unlock(&sdev->mutex);
1963 1964 1965

	wake_up(&sdev->ch_releaseQ);

1966
	kref_put(&ch->kref, srpt_free_ch);
1967 1968 1969
}

/**
1970 1971 1972 1973
 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
 * @cm_id: IB/CM connection identifier.
 * @param: IB/CM REQ parameters.
 * @private_data: IB/CM REQ private data.
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
	u32 it_iu_len;
1990
	int i, ret = 0;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

2001 2002 2003
	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6)\n",
		req->initiator_port_id, req->target_port_id, it_iu_len,
		param->port, &sport->gid);
2004

2005 2006 2007
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2008 2009 2010 2011 2012 2013 2014

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2015 2016
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2017
		ret = -EINVAL;
2018
		pr_err("rejected SRP_LOGIN_REQ because its"
2019 2020 2021 2022 2023 2024
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2025 2026
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2027
		ret = -EINVAL;
2028
		pr_err("rejected SRP_LOGIN_REQ because the target port"
2029 2030 2031 2032 2033 2034 2035
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

2036
		mutex_lock(&sdev->mutex);
2037 2038 2039 2040 2041 2042 2043

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
2044
				if (srpt_disconnect_ch(ch) < 0)
2045
					continue;
2046 2047
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
2048 2049 2050 2051 2052
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

2053
		mutex_unlock(&sdev->mutex);
2054 2055 2056 2057 2058 2059 2060

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2061 2062
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2063
		ret = -ENOMEM;
2064
		pr_err("rejected SRP_LOGIN_REQ because it"
2065 2066 2067 2068
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2069
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2070
	if (!ch) {
2071 2072
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2073
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2074 2075 2076 2077
		ret = -ENOMEM;
		goto reject;
	}

2078 2079
	kref_init(&ch->kref);
	ch->zw_cqe.done = srpt_zerolength_write_done;
2080 2081 2082 2083 2084
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2085
	cm_id->context = ch;
2086
	/*
2087 2088 2089
	 * ch->rq_size should be at least as large as the initiator queue
	 * depth to avoid that the initiator driver has to report QUEUE_FULL
	 * to the SCSI mid-layer.
2090
	 */
2091
	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2092 2093 2094
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
2095
	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2096 2097 2098 2099

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
2100
				      ch->max_rsp_size, DMA_TO_DEVICE);
2101 2102 2103
	if (!ch->ioctx_ring)
		goto free_ch;

2104 2105 2106 2107 2108
	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	if (!sdev->use_srq) {
		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
					      sizeof(*ch->ioctx_recv_ring[0]),
					      srp_max_req_size,
					      DMA_FROM_DEVICE);
		if (!ch->ioctx_recv_ring) {
			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
			rej->reason =
			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
			goto free_ring;
		}
	}
2122

2123 2124
	ret = srpt_create_ch_ib(ch);
	if (ret) {
2125 2126
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2127
		pr_err("rejected SRP_LOGIN_REQ because creating"
2128
		       " a new RDMA channel failed.\n");
2129
		goto free_recv_ring;
2130 2131 2132 2133
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2134
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2135
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2136 2137 2138
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2139

2140 2141
	srpt_format_guid(ch->ini_guid, sizeof(ch->ini_guid),
			 &param->primary_path->dgid.global.interface_id);
2142 2143 2144 2145 2146 2147
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

2148 2149 2150 2151 2152 2153
	if (sport->port_guid_tpg.se_tpg_wwn)
		ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
						TARGET_PROT_NORMAL,
						ch->ini_guid, ch, NULL);
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2154 2155 2156
					TARGET_PROT_NORMAL, ch->sess_name, ch,
					NULL);
	/* Retry without leading "0x" */
2157 2158
	if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
		ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2159 2160
						TARGET_PROT_NORMAL,
						ch->sess_name + 2, ch, NULL);
2161
	if (IS_ERR_OR_NULL(ch->sess)) {
2162 2163
		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
			ch->sess_name);
2164 2165
		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2166 2167
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	}

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2179 2180
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2181 2182 2183 2184 2185 2186 2187
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2188
	rep_param->private_data_len = sizeof(*rsp);
2189 2190 2191 2192 2193 2194 2195 2196 2197
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2198
		pr_err("sending SRP_LOGIN_REQ response failed"
2199 2200 2201 2202
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2203
	mutex_lock(&sdev->mutex);
2204
	list_add_tail(&ch->list, &sdev->rch_list);
2205
	mutex_unlock(&sdev->mutex);
2206 2207 2208 2209

	goto out;

release_channel:
2210
	srpt_disconnect_ch(ch);
2211 2212 2213 2214 2215 2216 2217
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

2218 2219 2220 2221 2222
free_recv_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
			     ch->sport->sdev, ch->rq_size,
			     srp_max_req_size, DMA_FROM_DEVICE);

2223 2224 2225
free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
2226
			     ch->max_rsp_size, DMA_TO_DEVICE);
2227 2228 2229 2230 2231 2232
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2233 2234
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2235 2236

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2237
			     (void *)rej, sizeof(*rej));
2238 2239 2240 2241 2242 2243 2244 2245 2246

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2247 2248 2249 2250
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2251
{
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2264 2265 2266
}

/**
2267 2268
 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
 * @ch: SRPT RDMA channel.
2269 2270 2271 2272
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2273
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2274 2275 2276
{
	int ret;

2277
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2278 2279
		ret = srpt_ch_qp_rts(ch, ch->qp);

2280 2281 2282 2283 2284
		if (ret == 0) {
			/* Trigger wait list processing. */
			ret = srpt_zerolength_write(ch);
			WARN_ONCE(ret < 0, "%d\n", ret);
		} else {
2285
			srpt_close_ch(ch);
2286
		}
2287 2288 2289 2290
	}
}

/**
2291 2292 2293
 * srpt_cm_handler - IB connection manager callback function
 * @cm_id: IB/CM connection identifier.
 * @event: IB/CM event.
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2304
	struct srpt_rdma_ch *ch = cm_id->context;
2305 2306 2307 2308 2309 2310 2311 2312 2313
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2314 2315 2316
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2317 2318 2319
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2320
		srpt_cm_rtu_recv(ch);
2321 2322
		break;
	case IB_CM_DREQ_RECEIVED:
2323
		srpt_disconnect_ch(ch);
2324 2325
		break;
	case IB_CM_DREP_RECEIVED:
2326 2327
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2328
		srpt_close_ch(ch);
2329 2330
		break;
	case IB_CM_TIMEWAIT_EXIT:
2331 2332
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2333
		srpt_close_ch(ch);
2334 2335
		break;
	case IB_CM_REP_ERROR:
2336 2337
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2338 2339
		break;
	case IB_CM_DREQ_ERROR:
2340
		pr_info("Received CM DREQ ERROR event.\n");
2341 2342
		break;
	case IB_CM_MRA_RECEIVED:
2343
		pr_info("Received CM MRA event\n");
2344 2345
		break;
	default:
2346
		pr_err("received unrecognized CM event %d\n", event->event);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		break;
	}

	return ret;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2358
	return ioctx->state == SRPT_STATE_NEED_DATA;
2359 2360 2361
}

/*
2362
 * srpt_write_pending - Start data transfer from initiator to target (write).
2363 2364 2365
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2366 2367 2368
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2369 2370
	struct ib_send_wr *first_wr = NULL, *bad_wr;
	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2371
	enum srpt_command_state new_state;
2372
	int ret, i;
2373 2374 2375

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out_undo;
	}

	cqe->done = srpt_rdma_read_done;
	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
				cqe, first_wr);
		cqe = NULL;
	}
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret) {
		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
			 __func__, ret, ioctx->n_rdma,
			 atomic_read(&ch->sq_wr_avail));
		goto out_undo;
	}

	return 0;
out_undo:
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
	return ret;
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
2419 2420
 * srpt_queue_response - transmit the response to a SCSI command
 * @cmd: SCSI target command.
2421 2422 2423 2424
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2425
static void srpt_queue_response(struct se_cmd *cmd)
2426
{
2427 2428 2429 2430
	struct srpt_send_ioctx *ioctx =
		container_of(cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	struct srpt_device *sdev = ch->sport->sdev;
2431
	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2432
	struct ib_sge sge;
2433 2434
	enum srpt_command_state state;
	unsigned long flags;
2435
	int resp_len, ret, i;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	u8 srp_tm_status;

	BUG_ON(!ch);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

B
Bart Van Assche 已提交
2457
	if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2458
		return;
2459 2460

	/* For read commands, transfer the data to the initiator. */
2461 2462
	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
	    ioctx->cmd.data_length &&
2463
	    !ioctx->queue_status_only) {
2464 2465 2466 2467
		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];

			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2468
					ch->sport->port, NULL, first_wr);
2469 2470 2471 2472
		}
	}

	if (state != SRPT_STATE_MGMT)
2473
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2474 2475 2476 2477 2478
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2479
						 ioctx->cmd.tag);
2480
	}
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

	atomic_inc(&ch->req_lim);

	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
			&ch->sq_wr_avail) < 0)) {
		pr_warn("%s: IB send queue full (needed %d)\n",
				__func__, ioctx->n_rdma);
		ret = -ENOMEM;
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
				      DMA_TO_DEVICE);

	sge.addr = ioctx->ioctx.dma;
	sge.length = resp_len;
B
Bart Van Assche 已提交
2497
	sge.lkey = sdev->lkey;
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

	ioctx->ioctx.cqe.done = srpt_send_done;
	send_wr.next = NULL;
	send_wr.wr_cqe = &ioctx->ioctx.cqe;
	send_wr.sg_list = &sge;
	send_wr.num_sge = 1;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
	if (ret < 0) {
		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
			__func__, ioctx->cmd.tag, ret);
		goto out;
2512
	}
2513 2514 2515 2516 2517 2518 2519 2520

	return;

out:
	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
	atomic_dec(&ch->req_lim);
	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
	target_put_sess_cmd(&ioctx->cmd);
2521
}
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2532 2533
}

2534 2535 2536 2537
static void srpt_aborted_task(struct se_cmd *cmd)
{
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2548 2549
	srpt_queue_response(cmd);
	return 0;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
2560 2561
 * srpt_release_sdev - disable login and wait for associated channels
 * @sdev: SRPT HCA pointer.
2562 2563 2564
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2565
	int i, res;
2566 2567 2568 2569 2570

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2571
	mutex_lock(&sdev->mutex);
2572
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2573
		srpt_set_enabled(&sdev->port[i], false);
2574
	mutex_unlock(&sdev->mutex);
2575 2576

	res = wait_event_interruptible(sdev->ch_releaseQ,
2577
				       list_empty_careful(&sdev->rch_list));
2578
	if (res)
2579
		pr_err("%s: interrupted.\n", __func__);
2580 2581 2582 2583

	return 0;
}

2584
static struct se_wwn *__srpt_lookup_wwn(const char *name)
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

2599 2600 2601 2602
			if (strcmp(sport->port_guid, name) == 0)
				return &sport->port_guid_wwn;
			if (strcmp(sport->port_gid, name) == 0)
				return &sport->port_gid_wwn;
2603 2604 2605 2606 2607 2608
		}
	}

	return NULL;
}

2609
static struct se_wwn *srpt_lookup_wwn(const char *name)
2610
{
2611
	struct se_wwn *wwn;
2612 2613

	spin_lock(&srpt_dev_lock);
2614
	wwn = __srpt_lookup_wwn(name);
2615 2616
	spin_unlock(&srpt_dev_lock);

2617
	return wwn;
2618 2619
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
static void srpt_free_srq(struct srpt_device *sdev)
{
	if (!sdev->srq)
		return;

	ib_destroy_srq(sdev->srq);
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->srq = NULL;
}

static int srpt_alloc_srq(struct srpt_device *sdev)
{
	struct ib_srq_init_attr srq_attr = {
		.event_handler = srpt_srq_event,
		.srq_context = (void *)sdev,
		.attr.max_wr = sdev->srq_size,
		.attr.max_sge = 1,
		.srq_type = IB_SRQT_BASIC,
	};
	struct ib_device *device = sdev->device;
	struct ib_srq *srq;
	int i;

	WARN_ON_ONCE(sdev->srq);
	srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
		return PTR_ERR(srq);
	}

	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
		 sdev->device->attrs.max_srq_wr, device->name);

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring) {
		ib_destroy_srq(srq);
		return -ENOMEM;
	}

	sdev->use_srq = true;
	sdev->srq = srq;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);

	return 0;
}

static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
{
	struct ib_device *device = sdev->device;
	int ret = 0;

	if (!use_srq) {
		srpt_free_srq(sdev);
		sdev->use_srq = false;
	} else if (use_srq && !sdev->srq) {
		ret = srpt_alloc_srq(sdev);
	}
	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
		 sdev->use_srq, ret);
	return ret;
}

2688
/**
2689 2690
 * srpt_add_one - InfiniBand device addition callback function
 * @device: Describes a HCA.
2691 2692 2693 2694 2695 2696 2697
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

2698
	pr_debug("device = %p\n", device);
2699

2700
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2701 2702 2703 2704 2705 2706
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2707
	mutex_init(&sdev->mutex);
2708

2709
	sdev->pd = ib_alloc_pd(device, 0);
2710 2711 2712
	if (IS_ERR(sdev->pd))
		goto free_dev;

B
Bart Van Assche 已提交
2713
	sdev->lkey = sdev->pd->local_dma_lkey;
2714

2715
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2716

2717
	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2718 2719 2720 2721 2722 2723

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
2724
		goto err_ring;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2737
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2738 2739 2740 2741
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
2742
	ib_register_event_handler(&sdev->event_handler);
2743

2744
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2745 2746 2747 2748 2749 2750 2751 2752

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2753
		sport->port_attrib.use_srq = false;
2754 2755 2756
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2757
			pr_err("MAD registration failed for %s-%d.\n",
2758
			       sdev->device->name, i);
2759
			goto err_event;
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		}
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
2776
err_ring:
2777
	srpt_free_srq(sdev);
2778 2779 2780 2781 2782
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2783
	pr_info("%s(%s) failed.\n", __func__, device->name);
2784 2785 2786 2787
	goto out;
}

/**
2788 2789 2790
 * srpt_remove_one - InfiniBand device removal callback function
 * @device: Describes a HCA.
 * @client_data: The value passed as the third argument to ib_set_client_data().
2791
 */
2792
static void srpt_remove_one(struct ib_device *device, void *client_data)
2793
{
2794
	struct srpt_device *sdev = client_data;
2795 2796 2797
	int i;

	if (!sdev) {
2798
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

2822 2823
	srpt_free_srq(sdev);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	ib_dealloc_pd(sdev->pd);

	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

2850 2851 2852 2853 2854
static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
{
	return tpg->se_tpg_wwn->priv;
}

2855 2856
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
2857
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2858

2859 2860 2861 2862
	WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
		     tpg != &sport->port_gid_tpg);
	return tpg == &sport->port_guid_tpg ? sport->port_guid :
		sport->port_gid;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2877 2878 2879
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2880
	unsigned long flags;
2881

2882 2883
	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2884

2885 2886 2887
	if (ioctx->n_rw_ctx) {
		srpt_free_rw_ctxs(ch, ioctx);
		ioctx->n_rw_ctx = 0;
2888 2889
	}

2890 2891 2892
	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2893 2894 2895
}

/**
2896 2897
 * srpt_close_session - forcibly close a session
 * @se_sess: SCSI target session.
2898 2899 2900 2901 2902 2903 2904
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
2905 2906
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
2907

2908
	mutex_lock(&sdev->mutex);
2909
	srpt_disconnect_ch_sync(ch);
2910
	mutex_unlock(&sdev->mutex);
2911 2912 2913
}

/**
2914 2915
 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
 * @se_sess: SCSI target session.
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2937
	return ioctx->state;
2938 2939
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static int srpt_parse_guid(u64 *guid, const char *name)
{
	u16 w[4];
	int ret = -EINVAL;

	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
		goto out;
	*guid = get_unaligned_be64(w);
	ret = 0;
out:
	return ret;
}

2953
/**
2954
 * srpt_parse_i_port_id - parse an initiator port ID
2955 2956 2957 2958 2959 2960 2961
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
2962
	int ret;
2963 2964

	p = name;
2965
	if (strncasecmp(p, "0x", 2) == 0)
2966 2967 2968 2969 2970 2971 2972 2973
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
2974 2975 2976
	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (ret < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2977 2978 2979 2980 2981 2982 2983 2984
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
2985
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2986
{
2987
	u64 guid;
2988
	u8 i_port_id[16];
2989
	int ret;
2990

2991 2992 2993 2994
	ret = srpt_parse_guid(&guid, name);
	if (ret < 0)
		ret = srpt_parse_i_port_id(i_port_id, name);
	if (ret < 0)
2995
		pr_err("invalid initiator port ID %s\n", name);
2996
	return ret;
2997 2998
}

2999 3000
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3001
{
3002
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3003
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3004 3005 3006 3007

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3008 3009
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3010
{
3011
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3012
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3013 3014 3015
	unsigned long val;
	int ret;

3016
	ret = kstrtoul(page, 0, &val);
3017
	if (ret < 0) {
3018
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3036 3037
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3038
{
3039
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3040
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3041 3042 3043 3044

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3045 3046
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3047
{
3048
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3049
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3050 3051 3052
	unsigned long val;
	int ret;

3053
	ret = kstrtoul(page, 0, &val);
3054
	if (ret < 0) {
3055
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3073 3074
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3075
{
3076
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3077
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3078 3079 3080 3081

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3082 3083
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3084
{
3085
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3086
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3087 3088 3089
	unsigned long val;
	int ret;

3090
	ret = kstrtoul(page, 0, &val);
3091
	if (ret < 0) {
3092
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
					    char *page)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);

	return sprintf(page, "%d\n", sport->port_attrib.use_srq);
}

static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
					     const char *page, size_t count)
{
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3124
	struct srpt_device *sdev = sport->sdev;
3125
	unsigned long val;
3126
	bool enabled;
3127 3128 3129 3130 3131 3132 3133
	int ret;

	ret = kstrtoul(page, 0, &val);
	if (ret < 0)
		return ret;
	if (val != !!val)
		return -EINVAL;
3134 3135 3136 3137 3138 3139 3140

	ret = mutex_lock_interruptible(&sdev->mutex);
	if (ret < 0)
		return ret;
	enabled = sport->enabled;
	/* Log out all initiator systems before changing 'use_srq'. */
	srpt_set_enabled(sport, false);
3141
	sport->port_attrib.use_srq = val;
3142 3143 3144
	srpt_use_srq(sdev, sport->port_attrib.use_srq);
	srpt_set_enabled(sport, enabled);
	mutex_unlock(&sdev->mutex);
3145 3146 3147 3148

	return count;
}

3149 3150 3151
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3152
CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3153 3154

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3155 3156 3157
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3158
	&srpt_tpg_attrib_attr_use_srq,
3159 3160 3161
	NULL,
};

3162
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3163
{
3164
	struct se_portal_group *se_tpg = to_tpg(item);
3165
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3166 3167 3168 3169

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3170 3171
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3172
{
3173
	struct se_portal_group *se_tpg = to_tpg(item);
3174
	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3175
	struct srpt_device *sdev = sport->sdev;
3176 3177 3178
	unsigned long tmp;
        int ret;

3179
	ret = kstrtoul(page, 0, &tmp);
3180
	if (ret < 0) {
3181
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3182 3183 3184 3185
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3186
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3187 3188 3189
		return -EINVAL;
	}

3190
	mutex_lock(&sdev->mutex);
3191
	srpt_set_enabled(sport, tmp);
3192 3193
	mutex_unlock(&sdev->mutex);

3194 3195 3196
	return count;
}

3197
CONFIGFS_ATTR(srpt_tpg_, enable);
3198 3199

static struct configfs_attribute *srpt_tpg_attrs[] = {
3200
	&srpt_tpg_attr_enable,
3201 3202 3203 3204
	NULL,
};

/**
3205 3206 3207 3208
 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
 * @wwn: Corresponds to $driver/$port.
 * @group: Not used.
 * @name: $tpg.
3209 3210 3211 3212 3213
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
3214 3215
	struct srpt_port *sport = wwn->priv;
	static struct se_portal_group *tpg;
3216 3217
	int res;

3218 3219 3220 3221 3222
	WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
		     wwn != &sport->port_gid_wwn);
	tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
		&sport->port_gid_tpg;
	res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3223 3224 3225
	if (res)
		return ERR_PTR(res);

3226
	return tpg;
3227 3228 3229
}

/**
3230 3231
 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
 * @tpg: Target portal group to deregister.
3232 3233 3234
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
3235
	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3236 3237

	sport->enabled = false;
3238
	core_tpg_deregister(tpg);
3239 3240 3241
}

/**
3242 3243 3244 3245
 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
 * @tf: Not used.
 * @group: Not used.
 * @name: $port.
3246 3247 3248 3249 3250
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
3251
	return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3252 3253 3254
}

/**
3255 3256
 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
 * @wwn: $port.
3257 3258 3259 3260 3261
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
}

3262
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3263 3264 3265 3266
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3267
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3268 3269

static struct configfs_attribute *srpt_wwn_attrs[] = {
3270
	&srpt_wwn_attr_version,
3271 3272 3273
	NULL,
};

3274 3275 3276
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3294
	.queue_data_in			= srpt_queue_data_in,
3295
	.queue_status			= srpt_queue_status,
3296
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3297
	.aborted_task			= srpt_aborted_task,
3298 3299 3300 3301 3302 3303 3304 3305
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3306
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3307 3308 3309 3310

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3311 3312 3313
};

/**
3314
 * srpt_init_module - kernel module initialization
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3327
		pr_err("invalid value %d for kernel module parameter"
3328 3329 3330 3331 3332 3333 3334
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3335
		pr_err("invalid value %d for kernel module parameter"
3336 3337 3338 3339 3340
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3341 3342
	ret = target_register_template(&srpt_template);
	if (ret)
3343 3344 3345 3346
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3347
		pr_err("couldn't register IB client\n");
3348 3349 3350 3351 3352 3353
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3354
	target_unregister_template(&srpt_template);
3355 3356 3357 3358 3359 3360 3361
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3362
	target_unregister_template(&srpt_template);
3363 3364 3365 3366
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);