m25p80.c 38.1 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
44 45
#define	OPCODE_DUAL_READ        0x3b    /* Read data bytes (Dual SPI) */
#define	OPCODE_QUAD_READ        0x6b    /* Read data bytes (Quad SPI) */
46
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
47
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
48
#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
49
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
50
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
51
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
52
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
53
#define	OPCODE_RDCR             0x35    /* Read configuration register */
54

55 56 57
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
58 59
#define	OPCODE_DUAL_READ_4B	0x3c    /* Read data bytes (Dual SPI) */
#define	OPCODE_QUAD_READ_4B	0x6c    /* Read data bytes (Quad SPI) */
60 61 62
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

63 64 65 66 67
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

68
/* Used for Macronix and Winbond flashes. */
69 70 71
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

72 73 74
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

75 76 77
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
78
/* meaning of other SR_* bits may differ between vendors */
79 80 81 82 83
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

84 85 86 87 88
#define SR_QUAD_EN_MX           0x40    /* Macronix Quad I/O */

/* Configuration Register bits. */
#define CR_QUAD_EN_SPAN		0x2     /* Spansion Quad I/O */

89
/* Define max times to check status register before we give up. */
90
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
B
Brian Norris 已提交
91
#define	MAX_CMD_SIZE		6
92

93 94
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

95 96
/****************************************************************************/

97 98 99
enum read_type {
	M25P80_NORMAL = 0,
	M25P80_FAST,
100
	M25P80_DUAL,
101
	M25P80_QUAD,
102 103
};

104 105
struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
106
	struct mutex		lock;
107
	struct mtd_info		mtd;
108 109
	u16			page_size;
	u16			addr_width;
110
	u8			erase_opcode;
111 112
	u8			read_opcode;
	u8			program_opcode;
113
	u8			*command;
114
	enum read_type		flash_read;
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct m25p *flash)
{
	u8 code = OPCODE_RDCR;
	int ret;
	u8 val;

	ret = spi_write_then_read(flash->spi, &code, 1, &val, 1);
	if (ret < 0) {
		dev_err(&flash->spi->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

170 171 172 173 174 175 176 177 178 179 180
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
181 182 183 184 185 186 187 188 189

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

190
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
191 192
}

193 194 195 196 197 198 199 200 201
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
202

203 204 205
/*
 * Enable/disable 4-byte addressing mode.
 */
206
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
207
{
208 209 210
	int status;
	bool need_wren = false;

211
	switch (JEDEC_MFR(jedec_id)) {
212
	case CFI_MFR_ST: /* Micron, actually */
213 214 215
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
216
	case 0xEF /* winbond */:
217 218 219
		if (need_wren)
			write_enable(flash);

220
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
221 222 223 224 225 226
		status = spi_write(flash->spi, flash->command, 1);

		if (need_wren)
			write_disable(flash);

		return status;
227 228 229 230 231 232
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
233 234
}

235 236 237 238 239 240
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
241
	unsigned long deadline;
242 243
	int sr;

P
Peter Horton 已提交
244 245 246
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
247 248 249 250 251
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
252 253 254
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
255 256 257 258

	return 1;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct m25p *flash, u16 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val & 0xff;
	flash->command[2] = (val >> 8);

	return spi_write(flash->spi, flash->command, 3);
}

static int macronix_quad_enable(struct m25p *flash)
{
	int ret, val;
	u8 cmd[2];
	cmd[0] = OPCODE_WRSR;

	val = read_sr(flash);
	cmd[1] = val | SR_QUAD_EN_MX;
	write_enable(flash);

	spi_write(flash->spi, &cmd, 2);

	if (wait_till_ready(flash))
		return 1;

	ret = read_sr(flash);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(&flash->spi->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int spansion_quad_enable(struct m25p *flash)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(flash);

	ret = write_sr_cr(flash, quad_en);
	if (ret < 0) {
		dev_err(&flash->spi->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(flash);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(&flash->spi->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int set_quad_mode(struct m25p *flash, u32 jedec_id)
{
	int status;

	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(flash);
		if (status) {
			dev_err(&flash->spi->dev,
				"Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	default:
		status = spansion_quad_enable(flash);
		if (status) {
			dev_err(&flash->spi->dev,
				"Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

C
Chen Gong 已提交
346 347 348 349 350
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
351
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
352
{
353 354
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
355 356 357 358 359 360 361 362 363

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
364
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
365 366 367 368 369

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
370

371 372 373 374 375 376
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
377
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
378 379 380 381 382 383 384
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

385 386 387 388 389 390 391 392
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
393 394
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
395 396 397 398 399 400 401 402 403

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
404
	flash->command[0] = flash->erase_opcode;
405
	m25p_addr2cmd(flash, offset, flash->command);
406

407
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
426
	uint32_t rem;
427

428 429 430
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
431

432 433
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
434 435 436 437 438
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
439
	mutex_lock(&flash->lock);
440

441
	/* whole-chip erase? */
442 443 444 445 446 447
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
448 449 450 451 452 453 454

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
455 456 457 458 459 460 461 462 463 464
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
465 466 467
		}
	}

D
David Brownell 已提交
468
	mutex_unlock(&flash->lock);
469 470 471 472 473 474 475

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

476 477 478 479 480 481 482 483 484
/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int m25p80_dummy_cycles_read(struct m25p *flash)
{
	switch (flash->flash_read) {
	case M25P80_FAST:
485
	case M25P80_DUAL:
486
	case M25P80_QUAD:
487 488 489 490 491 492 493 494 495
		return 1;
	case M25P80_NORMAL:
		return 0;
	default:
		dev_err(&flash->spi->dev, "No valid read type supported\n");
		return -1;
	}
}

496 497 498
static inline unsigned int m25p80_rx_nbits(const struct m25p *flash)
{
	switch (flash->flash_read) {
499 500
	case M25P80_DUAL:
		return 2;
501 502 503 504 505 506 507
	case M25P80_QUAD:
		return 4;
	default:
		return 0;
	}
}

508 509 510 511 512 513 514 515 516 517
/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
518
	uint8_t opcode;
519
	int dummy;
520

521 522
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
523

524 525 526
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

527 528 529 530 531 532
	dummy =  m25p80_dummy_cycles_read(flash);
	if (dummy < 0) {
		dev_err(&flash->spi->dev, "No valid read command supported\n");
		return -EINVAL;
	}

533
	t[0].tx_buf = flash->command;
534
	t[0].len = m25p_cmdsz(flash) + dummy;
535 536 537
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
538
	t[1].rx_nbits = m25p80_rx_nbits(flash);
539 540 541
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
542
	mutex_lock(&flash->lock);
543 544 545 546

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
547
		mutex_unlock(&flash->lock);
548 549 550 551
		return 1;
	}

	/* Set up the write data buffer. */
552
	opcode = flash->read_opcode;
553
	flash->command[0] = opcode;
554
	m25p_addr2cmd(flash, from, flash->command);
555 556 557

	spi_sync(flash->spi, &m);

558
	*retlen = m.actual_length - m25p_cmdsz(flash) - dummy;
559

D
David Brownell 已提交
560
	mutex_unlock(&flash->lock);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

578 579
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
580

581 582 583 584
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
585
	t[0].len = m25p_cmdsz(flash);
586 587 588 589 590
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
591
	mutex_lock(&flash->lock);
592 593

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
594 595
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
596
		return 1;
C
Chen Gong 已提交
597
	}
598 599 600 601

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
602
	flash->command[0] = flash->program_opcode;
603
	m25p_addr2cmd(flash, to, flash->command);
604

605
	page_offset = to & (flash->page_size - 1);
606 607

	/* do all the bytes fit onto one page? */
608
	if (page_offset + len <= flash->page_size) {
609 610 611 612
		t[1].len = len;

		spi_sync(flash->spi, &m);

613
		*retlen = m.actual_length - m25p_cmdsz(flash);
614 615 616 617
	} else {
		u32 i;

		/* the size of data remaining on the first page */
618
		page_size = flash->page_size - page_offset;
619 620 621 622

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

623
		*retlen = m.actual_length - m25p_cmdsz(flash);
624

625
		/* write everything in flash->page_size chunks */
626 627
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
628 629
			if (page_size > flash->page_size)
				page_size = flash->page_size;
630 631

			/* write the next page to flash */
632
			m25p_addr2cmd(flash, to + i, flash->command);
633 634 635 636 637 638 639 640 641 642

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
643
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
644 645
		}
	}
646

D
David Brownell 已提交
647
	mutex_unlock(&flash->lock);
648 649 650 651

	return 0;
}

652 653 654 655 656 657 658 659 660
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

661 662
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
663

664 665 666 667
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
668
	t[0].len = m25p_cmdsz(flash);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
687
		m25p_addr2cmd(flash, to, flash->command);
688 689 690 691 692 693 694

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
695
		*retlen += m.actual_length - m25p_cmdsz(flash);
696 697 698 699
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
700
	m25p_addr2cmd(flash, to, flash->command);
701 702

	/* Write out most of the data here. */
703
	cmd_sz = m25p_cmdsz(flash);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
727 728
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
729 730 731 732 733 734 735
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
736
		*retlen += m.actual_length - m25p_cmdsz(flash);
737 738 739 740 741 742 743
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

835 836 837 838 839 840 841
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
842 843 844 845 846
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
847
	u16             ext_id;
848 849 850 851

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
852
	unsigned	sector_size;
853 854
	u16		n_sectors;

855 856 857
	u16		page_size;
	u16		addr_width;

858 859
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
860
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
861
#define	SST_WRITE	0x04		/* use SST byte programming */
862
#define	M25P_NO_FR	0x08		/* Can't do fastread */
863
#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
864 865
#define	M25P80_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	M25P80_QUAD_READ	0x40    /* Flash supports Quad Read */
866 867
};

868 869 870 871 872 873
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
874
		.page_size = 256,					\
875 876
		.flags = (_flags),					\
	})
877

878
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
879 880 881 882 883
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
884
		.flags = (_flags),					\
885
	})
886 887 888 889 890

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
891
static const struct spi_device_id m25p_ids[] = {
892
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
893 894
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
895

896
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
897
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
898
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
899

900 901 902
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
903
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
904

905 906
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

907
	/* EON -- en25xxx */
B
Brian Norris 已提交
908 909 910 911 912 913
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
914

915 916 917
	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

918
	/* Everspin */
B
Brian Norris 已提交
919 920
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
921

922 923 924 925
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

926 927 928 929 930
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

931
	/* Macronix */
J
John Crispin 已提交
932
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
933
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
934
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
935
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
936
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
937
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
938 939 940
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
941
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
942
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
943
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) },
944

945
	/* Micron */
B
Brian Norris 已提交
946 947 948 949 950
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, 0) },
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, 0) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
951

952
	/* PMC */
B
Brian Norris 已提交
953 954 955
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
956

957 958 959
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
960 961
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
962
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
963 964
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, M25P80_DUAL_READ | M25P80_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_DUAL_READ | M25P80_QUAD_READ) },
965
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
966 967 968 969
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
970 971 972 973 974
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
975 976
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
977 978

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
979 980 981 982
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
983
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
984 985 986 987
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
988 989

	/* ST Microelectronics -- newer production may have feature updates */
990 991 992 993 994 995 996 997 998
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
999
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

1011 1012 1013 1014
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

1015
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
1016 1017
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
1018

1019
	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
1020 1021 1022 1023
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1024

1025
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1026 1027 1028 1029 1030 1031
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1032
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1033
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
1034
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1035
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1036
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1037
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
1038
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
1039
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1040
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1041 1042

	/* Catalyst / On Semiconductor -- non-JEDEC */
1043 1044 1045 1046 1047
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
1048
	{ },
1049
};
1050
MODULE_DEVICE_TABLE(spi, m25p_ids);
1051

B
Bill Pemberton 已提交
1052
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
1053 1054 1055
{
	int			tmp;
	u8			code = OPCODE_RDID;
1056
	u8			id[5];
1057
	u32			jedec;
1058
	u16                     ext_jedec;
1059 1060 1061 1062 1063 1064
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
1065
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
1066
	if (tmp < 0) {
1067
		pr_debug("%s: error %d reading JEDEC ID\n",
1068
				dev_name(&spi->dev), tmp);
1069
		return ERR_PTR(tmp);
1070 1071 1072 1073 1074 1075 1076
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

1077 1078
	ext_jedec = id[3] << 8 | id[4];

1079 1080
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
1081
		if (info->jedec_id == jedec) {
1082
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
1083
				continue;
1084
			return &m25p_ids[tmp];
1085
		}
1086
	}
1087
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
1088
	return ERR_PTR(-ENODEV);
1089 1090 1091
}


1092 1093 1094 1095 1096
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
1097
static int m25p_probe(struct spi_device *spi)
1098
{
1099
	const struct spi_device_id	*id = spi_get_device_id(spi);
1100 1101 1102 1103
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
1104
	struct mtd_part_parser_data	ppdata;
1105
	struct device_node *np = spi->dev.of_node;
1106
	int ret;
1107

1108
	/* Platform data helps sort out which chip type we have, as
1109 1110 1111
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
1112
	 */
1113
	data = dev_get_platdata(&spi->dev);
1114
	if (data && data->type) {
1115
		const struct spi_device_id *plat_id;
1116

1117
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
1118 1119
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
1120 1121
				continue;
			break;
1122 1123
		}

1124
		if (i < ARRAY_SIZE(m25p_ids) - 1)
1125 1126 1127
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
1128
	}
1129

1130 1131 1132 1133 1134 1135
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
1136 1137
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
1152

B
Brian Norris 已提交
1153
	flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
1154 1155
	if (!flash)
		return -ENOMEM;
B
Brian Norris 已提交
1156 1157 1158

	flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
	if (!flash->command)
1159
		return -ENOMEM;
1160 1161

	flash->spi = spi;
D
David Brownell 已提交
1162
	mutex_init(&flash->lock);
1163
	spi_set_drvdata(spi, flash);
1164

1165
	/*
1166
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
1167
	 * up with the software protection bits set
1168 1169
	 */

1170 1171 1172
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1173 1174 1175 1176
		write_enable(flash);
		write_sr(flash, 0);
	}

1177
	if (data && data->name)
1178 1179
		flash->mtd.name = data->name;
	else
1180
		flash->mtd.name = dev_name(&spi->dev);
1181 1182

	flash->mtd.type = MTD_NORFLASH;
1183
	flash->mtd.writesize = 1;
1184 1185
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1186 1187
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1188

1189 1190 1191 1192 1193 1194
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1195
	/* sst flash chips use AAI word program */
1196
	if (info->flags & SST_WRITE)
1197
		flash->mtd._write = sst_write;
1198
	else
1199
		flash->mtd._write = m25p80_write;
1200

1201 1202 1203 1204
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
1205 1206 1207
	} else if (info->flags & SECT_4K_PMC) {
		flash->erase_opcode = OPCODE_BE_4K_PMC;
		flash->mtd.erasesize = 4096;
1208 1209 1210 1211 1212
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1213 1214 1215
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1216
	ppdata.of_node = spi->dev.of_node;
1217
	flash->mtd.dev.parent = &spi->dev;
1218
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1219
	flash->mtd.writebufsize = flash->page_size;
1220

1221
	if (np) {
1222
		/* If we were instantiated by DT, use it */
1223 1224
		if (of_property_read_bool(np, "m25p,fast-read"))
			flash->flash_read = M25P80_FAST;
1225 1226
		else
			flash->flash_read = M25P80_NORMAL;
1227
	} else {
1228
		/* If we weren't instantiated by DT, default to fast-read */
1229 1230
		flash->flash_read = M25P80_FAST;
	}
1231

1232
	/* Some devices cannot do fast-read, no matter what DT tells us */
1233
	if (info->flags & M25P_NO_FR)
1234
		flash->flash_read = M25P80_NORMAL;
1235

1236
	/* Quad/Dual-read mode takes precedence over fast/normal */
1237 1238 1239 1240 1241 1242 1243
	if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) {
		ret = set_quad_mode(flash, info->jedec_id);
		if (ret) {
			dev_err(&flash->spi->dev, "quad mode not supported\n");
			return ret;
		}
		flash->flash_read = M25P80_QUAD;
1244 1245
	} else if (spi->mode & SPI_RX_DUAL && info->flags & M25P80_DUAL_READ) {
		flash->flash_read = M25P80_DUAL;
1246 1247
	}

1248
	/* Default commands */
1249
	switch (flash->flash_read) {
1250 1251 1252
	case M25P80_QUAD:
		flash->read_opcode = OPCODE_QUAD_READ;
		break;
1253 1254 1255
	case M25P80_DUAL:
		flash->read_opcode = OPCODE_DUAL_READ;
		break;
1256
	case M25P80_FAST:
1257
		flash->read_opcode = OPCODE_FAST_READ;
1258 1259
		break;
	case M25P80_NORMAL:
1260
		flash->read_opcode = OPCODE_NORM_READ;
1261 1262 1263 1264 1265
		break;
	default:
		dev_err(&flash->spi->dev, "No Read opcode defined\n");
		return -EINVAL;
	}
1266 1267 1268

	flash->program_opcode = OPCODE_PP;

1269 1270
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1271
	else if (flash->mtd.size > 0x1000000) {
1272
		/* enable 4-byte addressing if the device exceeds 16MiB */
1273 1274 1275
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
1276
			switch (flash->flash_read) {
1277
			case M25P80_QUAD:
1278
				flash->read_opcode = OPCODE_QUAD_READ_4B;
1279
				break;
1280 1281 1282
			case M25P80_DUAL:
				flash->read_opcode = OPCODE_DUAL_READ_4B;
				break;
1283 1284 1285 1286 1287 1288 1289
			case M25P80_FAST:
				flash->read_opcode = OPCODE_FAST_READ_4B;
				break;
			case M25P80_NORMAL:
				flash->read_opcode = OPCODE_NORM_READ_4B;
				break;
			}
1290 1291 1292 1293
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1294
		} else
1295 1296 1297
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1298
	}
1299

1300
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1301
			(long long)flash->mtd.size >> 10);
1302

1303
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1304
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1305
		flash->mtd.name,
1306
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1307 1308 1309 1310 1311
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1312
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1313
				".erasesize = 0x%.8x (%uKiB), "
1314
				".numblocks = %d }\n",
1315
				i, (long long)flash->mtd.eraseregions[i].offset,
1316 1317 1318 1319 1320 1321 1322 1323
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1324 1325 1326
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1327 1328 1329
}


B
Bill Pemberton 已提交
1330
static int m25p_remove(struct spi_device *spi)
1331
{
1332
	struct m25p	*flash = spi_get_drvdata(spi);
1333 1334

	/* Clean up MTD stuff. */
1335
	return mtd_device_unregister(&flash->mtd);
1336 1337 1338 1339 1340 1341 1342 1343
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1344
	.id_table	= m25p_ids,
1345
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1346
	.remove	= m25p_remove,
1347 1348 1349 1350 1351

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1352 1353
};

1354
module_spi_driver(m25p80_driver);
1355 1356 1357 1358

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");