m25p80.c 37.5 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
44
#define	OPCODE_QUAD_READ        0x6b    /* Read data bytes */
45
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
46
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
47
#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
48
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
49
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
50
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
51
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
52
#define	OPCODE_RDCR             0x35    /* Read configuration register */
53

54 55 56
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
57
#define	OPCODE_QUAD_READ_4B	0x6c    /* Read data bytes */
58 59 60
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

61 62 63 64 65
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

66
/* Used for Macronix and Winbond flashes. */
67 68 69
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

70 71 72
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

73 74 75
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
76
/* meaning of other SR_* bits may differ between vendors */
77 78 79 80 81
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

82 83 84 85 86
#define SR_QUAD_EN_MX           0x40    /* Macronix Quad I/O */

/* Configuration Register bits. */
#define CR_QUAD_EN_SPAN		0x2     /* Spansion Quad I/O */

87
/* Define max times to check status register before we give up. */
88
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
B
Brian Norris 已提交
89
#define	MAX_CMD_SIZE		6
90

91 92
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

93 94
/****************************************************************************/

95 96 97
enum read_type {
	M25P80_NORMAL = 0,
	M25P80_FAST,
98
	M25P80_QUAD,
99 100
};

101 102
struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
103
	struct mutex		lock;
104
	struct mtd_info		mtd;
105 106
	u16			page_size;
	u16			addr_width;
107
	u8			erase_opcode;
108 109
	u8			read_opcode;
	u8			program_opcode;
110
	u8			*command;
111
	enum read_type		flash_read;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct m25p *flash)
{
	u8 code = OPCODE_RDCR;
	int ret;
	u8 val;

	ret = spi_write_then_read(flash->spi, &code, 1, &val, 1);
	if (ret < 0) {
		dev_err(&flash->spi->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

167 168 169 170 171 172 173 174 175 176 177
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
178 179 180 181 182 183 184 185 186

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

187
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
188 189
}

190 191 192 193 194 195 196 197 198
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
199

200 201 202
/*
 * Enable/disable 4-byte addressing mode.
 */
203
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
204
{
205 206 207
	int status;
	bool need_wren = false;

208
	switch (JEDEC_MFR(jedec_id)) {
209
	case CFI_MFR_ST: /* Micron, actually */
210 211 212
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
213
	case 0xEF /* winbond */:
214 215 216
		if (need_wren)
			write_enable(flash);

217
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
218 219 220 221 222 223
		status = spi_write(flash->spi, flash->command, 1);

		if (need_wren)
			write_disable(flash);

		return status;
224 225 226 227 228 229
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
230 231
}

232 233 234 235 236 237
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
238
	unsigned long deadline;
239 240
	int sr;

P
Peter Horton 已提交
241 242 243
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
244 245 246 247 248
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
249 250 251
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
252 253 254 255

	return 1;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct m25p *flash, u16 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val & 0xff;
	flash->command[2] = (val >> 8);

	return spi_write(flash->spi, flash->command, 3);
}

static int macronix_quad_enable(struct m25p *flash)
{
	int ret, val;
	u8 cmd[2];
	cmd[0] = OPCODE_WRSR;

	val = read_sr(flash);
	cmd[1] = val | SR_QUAD_EN_MX;
	write_enable(flash);

	spi_write(flash->spi, &cmd, 2);

	if (wait_till_ready(flash))
		return 1;

	ret = read_sr(flash);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(&flash->spi->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int spansion_quad_enable(struct m25p *flash)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(flash);

	ret = write_sr_cr(flash, quad_en);
	if (ret < 0) {
		dev_err(&flash->spi->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(flash);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(&flash->spi->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int set_quad_mode(struct m25p *flash, u32 jedec_id)
{
	int status;

	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(flash);
		if (status) {
			dev_err(&flash->spi->dev,
				"Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	default:
		status = spansion_quad_enable(flash);
		if (status) {
			dev_err(&flash->spi->dev,
				"Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

C
Chen Gong 已提交
343 344 345 346 347
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
348
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
349
{
350 351
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
352 353 354 355 356 357 358 359 360

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
361
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
362 363 364 365 366

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
367

368 369 370 371 372 373
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
374
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
375 376 377 378 379 380 381
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

382 383 384 385 386 387 388 389
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
390 391
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
392 393 394 395 396 397 398 399 400

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
401
	flash->command[0] = flash->erase_opcode;
402
	m25p_addr2cmd(flash, offset, flash->command);
403

404
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
423
	uint32_t rem;
424

425 426 427
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
428

429 430
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
431 432 433 434 435
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
436
	mutex_lock(&flash->lock);
437

438
	/* whole-chip erase? */
439 440 441 442 443 444
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
445 446 447 448 449 450 451

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
452 453 454 455 456 457 458 459 460 461
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
462 463 464
		}
	}

D
David Brownell 已提交
465
	mutex_unlock(&flash->lock);
466 467 468 469 470 471 472

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

473 474 475 476 477 478 479 480 481
/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int m25p80_dummy_cycles_read(struct m25p *flash)
{
	switch (flash->flash_read) {
	case M25P80_FAST:
482
	case M25P80_QUAD:
483 484 485 486 487 488 489 490 491
		return 1;
	case M25P80_NORMAL:
		return 0;
	default:
		dev_err(&flash->spi->dev, "No valid read type supported\n");
		return -1;
	}
}

492 493 494 495 496 497 498 499 500 501
static inline unsigned int m25p80_rx_nbits(const struct m25p *flash)
{
	switch (flash->flash_read) {
	case M25P80_QUAD:
		return 4;
	default:
		return 0;
	}
}

502 503 504 505 506 507 508 509 510 511
/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
512
	uint8_t opcode;
513
	int dummy;
514

515 516
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
517

518 519 520
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

521 522 523 524 525 526
	dummy =  m25p80_dummy_cycles_read(flash);
	if (dummy < 0) {
		dev_err(&flash->spi->dev, "No valid read command supported\n");
		return -EINVAL;
	}

527
	t[0].tx_buf = flash->command;
528
	t[0].len = m25p_cmdsz(flash) + dummy;
529 530 531
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
532
	t[1].rx_nbits = m25p80_rx_nbits(flash);
533 534 535
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
536
	mutex_lock(&flash->lock);
537 538 539 540

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
541
		mutex_unlock(&flash->lock);
542 543 544 545
		return 1;
	}

	/* Set up the write data buffer. */
546
	opcode = flash->read_opcode;
547
	flash->command[0] = opcode;
548
	m25p_addr2cmd(flash, from, flash->command);
549 550 551

	spi_sync(flash->spi, &m);

552
	*retlen = m.actual_length - m25p_cmdsz(flash) - dummy;
553

D
David Brownell 已提交
554
	mutex_unlock(&flash->lock);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

572 573
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
574

575 576 577 578
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
579
	t[0].len = m25p_cmdsz(flash);
580 581 582 583 584
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
585
	mutex_lock(&flash->lock);
586 587

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
588 589
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
590
		return 1;
C
Chen Gong 已提交
591
	}
592 593 594 595

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
596
	flash->command[0] = flash->program_opcode;
597
	m25p_addr2cmd(flash, to, flash->command);
598

599
	page_offset = to & (flash->page_size - 1);
600 601

	/* do all the bytes fit onto one page? */
602
	if (page_offset + len <= flash->page_size) {
603 604 605 606
		t[1].len = len;

		spi_sync(flash->spi, &m);

607
		*retlen = m.actual_length - m25p_cmdsz(flash);
608 609 610 611
	} else {
		u32 i;

		/* the size of data remaining on the first page */
612
		page_size = flash->page_size - page_offset;
613 614 615 616

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

617
		*retlen = m.actual_length - m25p_cmdsz(flash);
618

619
		/* write everything in flash->page_size chunks */
620 621
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
622 623
			if (page_size > flash->page_size)
				page_size = flash->page_size;
624 625

			/* write the next page to flash */
626
			m25p_addr2cmd(flash, to + i, flash->command);
627 628 629 630 631 632 633 634 635 636

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
637
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
638 639
		}
	}
640

D
David Brownell 已提交
641
	mutex_unlock(&flash->lock);
642 643 644 645

	return 0;
}

646 647 648 649 650 651 652 653 654
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

655 656
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
657

658 659 660 661
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
662
	t[0].len = m25p_cmdsz(flash);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
681
		m25p_addr2cmd(flash, to, flash->command);
682 683 684 685 686 687 688

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
689
		*retlen += m.actual_length - m25p_cmdsz(flash);
690 691 692 693
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
694
	m25p_addr2cmd(flash, to, flash->command);
695 696

	/* Write out most of the data here. */
697
	cmd_sz = m25p_cmdsz(flash);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
721 722
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
723 724 725 726 727 728 729
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
730
		*retlen += m.actual_length - m25p_cmdsz(flash);
731 732 733 734 735 736 737
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

829 830 831 832 833 834 835
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
836 837 838 839 840
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
841
	u16             ext_id;
842 843 844 845

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
846
	unsigned	sector_size;
847 848
	u16		n_sectors;

849 850 851
	u16		page_size;
	u16		addr_width;

852 853
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
854
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
855
#define	SST_WRITE	0x04		/* use SST byte programming */
856
#define	M25P_NO_FR	0x08		/* Can't do fastread */
857
#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
858
#define	M25P80_QUAD_READ	0x20    /* Flash supports Quad Read */
859 860
};

861 862 863 864 865 866
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
867
		.page_size = 256,					\
868 869
		.flags = (_flags),					\
	})
870

871
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
872 873 874 875 876
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
877
		.flags = (_flags),					\
878
	})
879 880 881 882 883

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
884
static const struct spi_device_id m25p_ids[] = {
885
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
886 887
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
888

889
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
890
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
891
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
892

893 894 895
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
896
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
897

898 899
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

900
	/* EON -- en25xxx */
B
Brian Norris 已提交
901 902 903 904 905 906
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
907

908 909 910
	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

911
	/* Everspin */
B
Brian Norris 已提交
912 913
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
914

915 916 917 918
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

919 920 921 922 923
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

924
	/* Macronix */
J
John Crispin 已提交
925
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
926
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
927
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
928
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
929
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
930
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
931 932 933
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
934
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
935
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
936
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) },
937

938
	/* Micron */
B
Brian Norris 已提交
939 940 941 942 943
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, 0) },
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, 0) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
944

945
	/* PMC */
B
Brian Norris 已提交
946 947 948
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
949

950 951 952
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
953 954
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
955
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
956
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, M25P80_QUAD_READ) },
957
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_QUAD_READ) },
958
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
959 960 961 962
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
963 964 965 966 967
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
968 969
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
970 971

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
972 973 974 975
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
976
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
977 978 979 980
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
981 982

	/* ST Microelectronics -- newer production may have feature updates */
983 984 985 986 987 988 989 990 991
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
992
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
993

994 995 996 997 998 999 1000 1001 1002 1003
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

1004 1005 1006 1007
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

1008
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
1009 1010
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
1011

1012
	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
1013 1014 1015 1016
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1017

1018
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1019 1020 1021 1022 1023 1024
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1025
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1026
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
1027
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1028
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1029
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1030
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
1031
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
1032
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1033
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1034 1035

	/* Catalyst / On Semiconductor -- non-JEDEC */
1036 1037 1038 1039 1040
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
1041
	{ },
1042
};
1043
MODULE_DEVICE_TABLE(spi, m25p_ids);
1044

B
Bill Pemberton 已提交
1045
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
1046 1047 1048
{
	int			tmp;
	u8			code = OPCODE_RDID;
1049
	u8			id[5];
1050
	u32			jedec;
1051
	u16                     ext_jedec;
1052 1053 1054 1055 1056 1057
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
1058
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
1059
	if (tmp < 0) {
1060
		pr_debug("%s: error %d reading JEDEC ID\n",
1061
				dev_name(&spi->dev), tmp);
1062
		return ERR_PTR(tmp);
1063 1064 1065 1066 1067 1068 1069
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

1070 1071
	ext_jedec = id[3] << 8 | id[4];

1072 1073
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
1074
		if (info->jedec_id == jedec) {
1075
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
1076
				continue;
1077
			return &m25p_ids[tmp];
1078
		}
1079
	}
1080
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
1081
	return ERR_PTR(-ENODEV);
1082 1083 1084
}


1085 1086 1087 1088 1089
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
1090
static int m25p_probe(struct spi_device *spi)
1091
{
1092
	const struct spi_device_id	*id = spi_get_device_id(spi);
1093 1094 1095 1096
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
1097
	struct mtd_part_parser_data	ppdata;
1098
	struct device_node *np = spi->dev.of_node;
1099
	int ret;
1100

1101
	/* Platform data helps sort out which chip type we have, as
1102 1103 1104
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
1105
	 */
1106
	data = dev_get_platdata(&spi->dev);
1107
	if (data && data->type) {
1108
		const struct spi_device_id *plat_id;
1109

1110
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
1111 1112
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
1113 1114
				continue;
			break;
1115 1116
		}

1117
		if (i < ARRAY_SIZE(m25p_ids) - 1)
1118 1119 1120
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
1121
	}
1122

1123 1124 1125 1126 1127 1128
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
1129 1130
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
1145

B
Brian Norris 已提交
1146
	flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
1147 1148
	if (!flash)
		return -ENOMEM;
B
Brian Norris 已提交
1149 1150 1151

	flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
	if (!flash->command)
1152
		return -ENOMEM;
1153 1154

	flash->spi = spi;
D
David Brownell 已提交
1155
	mutex_init(&flash->lock);
1156
	spi_set_drvdata(spi, flash);
1157

1158
	/*
1159
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
1160
	 * up with the software protection bits set
1161 1162
	 */

1163 1164 1165
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1166 1167 1168 1169
		write_enable(flash);
		write_sr(flash, 0);
	}

1170
	if (data && data->name)
1171 1172
		flash->mtd.name = data->name;
	else
1173
		flash->mtd.name = dev_name(&spi->dev);
1174 1175

	flash->mtd.type = MTD_NORFLASH;
1176
	flash->mtd.writesize = 1;
1177 1178
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1179 1180
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1181

1182 1183 1184 1185 1186 1187
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1188
	/* sst flash chips use AAI word program */
1189
	if (info->flags & SST_WRITE)
1190
		flash->mtd._write = sst_write;
1191
	else
1192
		flash->mtd._write = m25p80_write;
1193

1194 1195 1196 1197
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
1198 1199 1200
	} else if (info->flags & SECT_4K_PMC) {
		flash->erase_opcode = OPCODE_BE_4K_PMC;
		flash->mtd.erasesize = 4096;
1201 1202 1203 1204 1205
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1206 1207 1208
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1209
	ppdata.of_node = spi->dev.of_node;
1210
	flash->mtd.dev.parent = &spi->dev;
1211
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1212
	flash->mtd.writebufsize = flash->page_size;
1213

1214
	if (np) {
1215
		/* If we were instantiated by DT, use it */
1216 1217
		if (of_property_read_bool(np, "m25p,fast-read"))
			flash->flash_read = M25P80_FAST;
1218 1219
		else
			flash->flash_read = M25P80_NORMAL;
1220
	} else {
1221
		/* If we weren't instantiated by DT, default to fast-read */
1222 1223
		flash->flash_read = M25P80_FAST;
	}
1224

1225
	/* Some devices cannot do fast-read, no matter what DT tells us */
1226
	if (info->flags & M25P_NO_FR)
1227
		flash->flash_read = M25P80_NORMAL;
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/* Quad-read mode takes precedence over fast/normal */
	if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) {
		ret = set_quad_mode(flash, info->jedec_id);
		if (ret) {
			dev_err(&flash->spi->dev, "quad mode not supported\n");
			return ret;
		}
		flash->flash_read = M25P80_QUAD;
	}

1239
	/* Default commands */
1240
	switch (flash->flash_read) {
1241 1242 1243
	case M25P80_QUAD:
		flash->read_opcode = OPCODE_QUAD_READ;
		break;
1244
	case M25P80_FAST:
1245
		flash->read_opcode = OPCODE_FAST_READ;
1246 1247
		break;
	case M25P80_NORMAL:
1248
		flash->read_opcode = OPCODE_NORM_READ;
1249 1250 1251 1252 1253
		break;
	default:
		dev_err(&flash->spi->dev, "No Read opcode defined\n");
		return -EINVAL;
	}
1254 1255 1256

	flash->program_opcode = OPCODE_PP;

1257 1258
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1259
	else if (flash->mtd.size > 0x1000000) {
1260
		/* enable 4-byte addressing if the device exceeds 16MiB */
1261 1262 1263
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
1264
			switch (flash->flash_read) {
1265
			case M25P80_QUAD:
1266
				flash->read_opcode = OPCODE_QUAD_READ_4B;
1267
				break;
1268 1269 1270 1271 1272 1273 1274
			case M25P80_FAST:
				flash->read_opcode = OPCODE_FAST_READ_4B;
				break;
			case M25P80_NORMAL:
				flash->read_opcode = OPCODE_NORM_READ_4B;
				break;
			}
1275 1276 1277 1278
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1279
		} else
1280 1281 1282
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1283
	}
1284

1285
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1286
			(long long)flash->mtd.size >> 10);
1287

1288
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1289
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1290
		flash->mtd.name,
1291
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1292 1293 1294 1295 1296
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1297
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1298
				".erasesize = 0x%.8x (%uKiB), "
1299
				".numblocks = %d }\n",
1300
				i, (long long)flash->mtd.eraseregions[i].offset,
1301 1302 1303 1304 1305 1306 1307 1308
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1309 1310 1311
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1312 1313 1314
}


B
Bill Pemberton 已提交
1315
static int m25p_remove(struct spi_device *spi)
1316
{
1317
	struct m25p	*flash = spi_get_drvdata(spi);
1318 1319

	/* Clean up MTD stuff. */
1320
	return mtd_device_unregister(&flash->mtd);
1321 1322 1323 1324 1325 1326 1327 1328
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1329
	.id_table	= m25p_ids,
1330
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1331
	.remove	= m25p_remove,
1332 1333 1334 1335 1336

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1337 1338
};

1339
module_spi_driver(m25p80_driver);
1340 1341 1342 1343

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");