blk-mq-sched.c 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

D
Damien Le Moal 已提交
34
void blk_mq_sched_assign_ioc(struct request *rq)
35
{
36
	struct request_queue *q = rq->q;
37
	struct io_context *ioc;
38 39
	struct io_cq *icq;

40 41 42 43 44 45 46
	/*
	 * May not have an IO context if it's a passthrough request
	 */
	ioc = current->io_context;
	if (!ioc)
		return;

47
	spin_lock_irq(&q->queue_lock);
48
	icq = ioc_lookup_icq(ioc, q);
49
	spin_unlock_irq(&q->queue_lock);
50 51 52 53 54 55

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
56
	get_io_context(icq->ioc);
57
	rq->elv.icq = icq;
58 59
}

60 61 62 63 64 65 66 67 68
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

69
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70 71
}

72
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
73 74
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
75 76
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
77

78
	blk_mq_run_hw_queue(hctx, true);
79 80
}

81 82 83 84 85 86
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
87 88 89 90 91 92
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
93
		struct request *rq;
94

95
		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
96
			break;
97

98
		if (!blk_mq_get_dispatch_budget(hctx))
99
			break;
100

101
		rq = e->type->ops.dispatch_request(hctx);
102 103 104 105 106 107 108 109 110 111
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
112
		list_add(&rq->queuelist, &rq_list);
113
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
114 115
}

116 117 118
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
119
	unsigned short idx = ctx->index_hw[hctx->type];
120 121 122 123 124 125 126

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

127 128 129 130 131 132
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
133 134 135 136 137 138 139 140 141 142 143
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

144
		if (!blk_mq_get_dispatch_budget(hctx))
145
			break;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

168
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
169
{
170 171
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
172
	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
173 174
	LIST_HEAD(rq_list);

175 176
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
177
		return;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
200 201 202 203
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
204
	 */
205
	if (!list_empty(&rq_list)) {
206
		blk_mq_sched_mark_restart_hctx(hctx);
207 208
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
209
				blk_mq_do_dispatch_sched(hctx);
210
			else
211
				blk_mq_do_dispatch_ctx(hctx);
212
		}
213
	} else if (has_sched_dispatch) {
214
		blk_mq_do_dispatch_sched(hctx);
215 216
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
217
		blk_mq_do_dispatch_ctx(hctx);
218
	} else {
219
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
220
		blk_mq_dispatch_rq_list(q, &rq_list, false);
221
	}
222 223
}

224 225
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
226 227 228
{
	struct request *rq;

229 230
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
231 232
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
233 234 235 236 237 238 239
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
240 241
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
242 243 244 245 246 247
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
248 249
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
250 251
	default:
		return false;
252 253 254 255
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

256
/*
257 258
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
259
 */
260 261
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
			   struct bio *bio)
262 263 264 265
{
	struct request *rq;
	int checked = 8;

266
	list_for_each_entry_reverse(rq, list, queuelist) {
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	lockdep_assert_held(&ctx->lock);

	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
		ctx->rq_merged++;
		return true;
	}

	return false;
}
315

316 317 318
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
319
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
320
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx->cpu);
321
	bool ret = false;
322

323
	if (e && e->type->ops.bio_merge) {
324
		blk_mq_put_ctx(ctx);
325
		return e->type->ops.bio_merge(hctx, bio);
326 327
	}

328 329
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
			!list_empty_careful(&ctx->rq_list)) {
330 331 332 333 334 335 336 337
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
338 339 340 341 342 343 344 345 346 347 348 349 350 351
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

352
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
353
				       bool has_sched,
354
				       struct request *rq)
355
{
356 357 358 359 360 361 362 363
	/* dispatch flush rq directly */
	if (rq->rq_flags & RQF_FLUSH_SEQ) {
		spin_lock(&hctx->lock);
		list_add(&rq->queuelist, &hctx->dispatch);
		spin_unlock(&hctx->lock);
		return true;
	}

364
	if (has_sched)
365 366
		rq->rq_flags |= RQF_SORTED;

367
	return false;
368 369
}

370
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
371
				 bool run_queue, bool async)
372 373 374 375
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
376
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
377

378 379
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
380 381
		blk_insert_flush(rq);
		goto run;
382 383
	}

384 385
	WARN_ON(e && (rq->tag != -1));

386
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
387 388
		goto run;

389
	if (e && e->type->ops.insert_requests) {
390 391 392
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
393
		e->type->ops.insert_requests(hctx, &list, at_head);
394 395 396 397 398 399
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

400
run:
401 402 403 404
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

405
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
406 407 408
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
409
	struct elevator_queue *e;
410

411
	e = hctx->queue->elevator;
412 413
	if (e && e->type->ops.insert_requests)
		e->type->ops.insert_requests(hctx, list, false);
414 415 416 417 418 419 420 421 422 423 424
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
			blk_mq_try_issue_list_directly(hctx, list);
			if (list_empty(list))
				return;
		}
425
		blk_mq_insert_requests(hctx, ctx, list);
426
	}
427 428 429 430

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

431 432 433 434 435 436 437 438 439 440 441
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

461
static void blk_mq_sched_tags_teardown(struct request_queue *q)
462 463 464
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
465 466 467 468 469 470 471 472 473
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
474
	struct elevator_queue *eq;
475 476 477 478 479
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
480
		q->nr_requests = q->tag_set->queue_depth;
481 482
		return 0;
	}
483 484

	/*
485 486 487
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
488
	 */
489 490
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
491 492

	queue_for_each_hw_ctx(q, hctx, i) {
493
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
494
		if (ret)
495
			goto err;
496 497
	}

498
	ret = e->ops.init_sched(q, e);
499 500
	if (ret)
		goto err;
501

502 503 504
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
505 506
		if (e->ops.init_hctx) {
			ret = e->ops.init_hctx(hctx, i);
507 508 509 510 511 512 513
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
514
		blk_mq_debugfs_register_sched_hctx(q, hctx);
515 516
	}

517 518
	return 0;

519
err:
520 521
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
522
	return ret;
523
}
524

525 526
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
527 528 529
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

530 531
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
532 533
		if (e->type->ops.exit_hctx && hctx->sched_data) {
			e->type->ops.exit_hctx(hctx, i);
534
			hctx->sched_data = NULL;
535 536
		}
	}
537
	blk_mq_debugfs_unregister_sched(q);
538 539
	if (e->type->ops.exit_sched)
		e->type->ops.exit_sched(e);
540 541 542
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}