hci_request.c 69.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33
#include "eir.h"
34 35 36 37 38 39 40 41

void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

42 43 44 45 46
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

47 48 49 50 51
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

52 53
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
54 55 56 57 58
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

59
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
60 61 62 63 64 65 66 67 68 69 70 71 72 73

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
74 75 76 77 78 79
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
80 81 82 83 84 85 86 87 88 89

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

90 91 92 93 94 95 96 97 98 99
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

100 101
void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
			   struct sk_buff *skb)
102
{
103
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
104 105 106 107 108 109 110 111 112 113 114

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

/* Execute request and wait for completion. */
115 116
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
117
		   unsigned long opt, u32 timeout, u8 *hci_status)
118 119 120 121
{
	struct hci_request req;
	int err = 0;

122
	bt_dev_dbg(hdev, "start");
123 124 125 126 127

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

128 129 130 131 132 133
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
134 135 136 137 138 139 140 141 142 143

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
144 145 146
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
147
			return 0;
148 149 150 151
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
152 153 154 155

		return err;
	}

156 157
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
158

159
	if (err == -ERESTARTSYS)
160 161 162 163 164
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
165 166
		if (hci_status)
			*hci_status = hdev->req_result;
167 168 169 170
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
171 172
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
173 174 175 176
		break;

	default:
		err = -ETIMEDOUT;
177 178
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
179 180 181
		break;
	}

182 183
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
184 185
	hdev->req_status = hdev->req_result = 0;

186
	bt_dev_dbg(hdev, "end: err %d", err);
187 188 189 190

	return err;
}

191 192
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
193
		 unsigned long opt, u32 timeout, u8 *hci_status)
194 195 196 197
{
	int ret;

	/* Serialize all requests */
198
	hci_req_sync_lock(hdev);
199 200 201 202 203 204 205 206
	/* check the state after obtaing the lock to protect the HCI_UP
	 * against any races from hci_dev_do_close when the controller
	 * gets removed.
	 */
	if (test_bit(HCI_UP, &hdev->flags))
		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
	else
		ret = -ENETDOWN;
207
	hci_req_sync_unlock(hdev);
208 209 210 211

	return ret;
}

212 213 214 215 216 217 218 219 220 221 222
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

223
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
224 225 226 227
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
228
		skb_put_data(skb, param, plen);
229

230
	bt_dev_dbg(hdev, "skb len %d", skb->len);
231

232 233
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
234 235 236 237 238 239 240 241 242 243 244

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

245
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
246 247 248 249 250 251 252 253 254

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
255 256
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
257 258 259 260 261
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
262
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
263

264
	hci_skb_event(skb) = event;
265 266 267 268 269 270 271 272 273 274

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
293 294
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
295 296
	}

297
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
298 299 300 301 302 303 304 305 306 307

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
334 335 336 337 338 339
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
340 341 342
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
343 344 345
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
346 347 348 349 350 351 352 353 354 355 356 357 358 359
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

360 361 362 363 364 365 366 367 368 369
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

389
	eir_create(hdev, cp.data);
390 391 392 393 394 395 396 397 398

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

399
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
400
{
401
	struct hci_dev *hdev = req->hdev;
402

403 404 405 406 407
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

408 409 410 411 412 413 414 415 416 417 418 419 420 421
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
422

423
	/* Disable address resolution */
424
	if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
425
		__u8 enable = 0x00;
426

427 428
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
429 430
}

431 432
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
				 u8 bdaddr_type)
433
{
434
	struct hci_cp_le_del_from_accept_list cp;
435 436 437 438

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

439
	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
440
		   cp.bdaddr_type);
441
	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
442

443
	if (use_ll_privacy(req->hdev)) {
444 445 446 447 448 449 450 451 452 453 454 455 456
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
457 458
}

459 460 461 462
/* Adds connection to accept list if needed. On error, returns -1. */
static int add_to_accept_list(struct hci_request *req,
			      struct hci_conn_params *params, u8 *num_entries,
			      bool allow_rpa)
463
{
464
	struct hci_cp_le_add_to_accept_list cp;
465 466
	struct hci_dev *hdev = req->hdev;

467 468
	/* Already in accept list */
	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
469 470
				   params->addr_type))
		return 0;
471

472
	/* Select filter policy to accept all advertising */
473
	if (*num_entries >= hdev->le_accept_list_size)
474 475
		return -1;

476
	/* Accept list can not be used with RPAs */
477 478
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
479 480 481 482
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

483
	/* During suspend, only wakeable devices can be in accept list */
484
	if (hdev->suspended &&
485
	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
486 487 488
		return 0;

	*num_entries += 1;
489 490 491
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

492
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
493
		   cp.bdaddr_type);
494
	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
495

496
	if (use_ll_privacy(hdev)) {
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

518
	return 0;
519 520
}

521
static u8 update_accept_list(struct hci_request *req)
522 523 524 525
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
526 527
	u8 num_entries = 0;
	bool pend_conn, pend_report;
528 529
	/* We allow usage of accept list even with RPAs in suspend. In the worst
	 * case, we won't be able to wake from devices that use the privacy1.2
530 531 532 533
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
534

535
	if (use_ll_privacy(hdev))
536 537
		allow_rpa = true;

538
	/* Go through the current accept list programmed into the
539 540 541 542 543
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
544
	list_for_each_entry(b, &hdev->le_accept_list, list) {
545 546 547 548 549 550 551 552
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
553
		 * remove it from the accept list.
554
		 */
555
		if (!pend_conn && !pend_report) {
556
			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
557 558 559
			continue;
		}

560
		/* Accept list can not be used with RPAs */
561 562
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
563
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
564 565
			return 0x00;
		}
566

567
		num_entries++;
568 569
	}

570
	/* Since all no longer valid accept list entries have been
571 572 573 574 575
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
576
	 * available accept list entries in the controller, then
577
	 * just abort and return filer policy value to not use the
578
	 * accept list.
579 580
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
581
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
582 583 584 585 586
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
587
	 * accept list if there is still space. Abort if space runs out.
588 589
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
590
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
591 592 593
			return 0x00;
	}

594 595
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
596
	 * - There are 1 or more ADV monitors registered and it's not offloaded
597
	 * - Interleaved scanning is not currently using the allowlist
598
	 */
599
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
600
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
601
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
602 603
		return 0x00;

604
	/* Select filter policy to use accept list */
605 606 607
	return 0x01;
}

608 609 610 611 612
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

613
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
614
			       u16 window, u8 own_addr_type, u8 filter_policy,
615
			       bool filter_dup, bool addr_resolv)
616
{
617
	struct hci_dev *hdev = req->hdev;
618

619 620 621 622 623
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

624
	if (use_ll_privacy(hdev) && addr_resolv) {
625
		u8 enable = 0x01;
626

627 628 629
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

630 631 632 633 634 635 636
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
637 638
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
639 640 641 642 643 644 645 646

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
672 673

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
674
			    plen, ext_param_cp);
675 676 677

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
678
		ext_enable_cp.filter_dup = filter_dup;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
697
		enable_cp.filter_dup = filter_dup;
698 699 700
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

724 725 726 727
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
728 729
void hci_req_add_le_passive_scan(struct hci_request *req)
{
730 731 732
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
733
	u16 window, interval;
734 735
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
736 737
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
738 739 740 741 742

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
743 744 745 746 747 748 749

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
750 751
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
752 753
		return;

754 755
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
756 757 758
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
759
	/* Adding or removing entries from the accept list must
760
	 * happen before enabling scanning. The controller does
761
	 * not allow accept list modification while scanning.
762
	 */
763
	filter_policy = update_accept_list(req);
764 765 766 767 768 769

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
770 771 772
	 * So instead of using filter polices 0x00 (no accept list)
	 * and 0x01 (accept list enabled) use the new filter policies
	 * 0x02 (no accept list) and 0x03 (accept list enabled).
773
	 */
774
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
775 776 777
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

778
	if (hdev->suspended) {
779 780
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
781 782 783
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
784 785 786
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
787 788 789 790 791 792 793 794 795 796 797 798 799 800

		/* Disable duplicates filter when scanning for advertisement
		 * monitor for the following reasons.
		 *
		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
		 * controllers ignore RSSI_Sampling_Period when the duplicates
		 * filter is enabled.
		 *
		 * For SW pattern filtering, when we're not doing interleaved
		 * scanning, it is necessary to disable duplicates filter,
		 * otherwise hosts can only receive one advertisement and it's
		 * impossible to know if a peer is still in range.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
801 802 803 804 805
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

806 807
	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
		   filter_policy);
808
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
809 810
			   own_addr_type, filter_policy, filter_dup,
			   addr_resolv);
811 812
}

813 814 815 816 817 818 819 820
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

821
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
822
{
823
	return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
824 825 826 827
}

void __hci_req_disable_advertising(struct hci_request *req)
{
828
	if (ext_adv_capable(req->hdev)) {
829
		__hci_req_disable_ext_adv_instance(req, 0x00);
830

831 832 833 834 835
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
836 837
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

861 862 863 864 865 866
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

867 868 869 870
	/* Check le_states if there is any connection in peripheral role. */
	if (hdev->conn_hash.le_num_peripheral > 0) {
		/* Peripheral connection state and non connectable mode bit 20.
		 */
871 872 873
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

874
		/* Peripheral connection state and connectable mode bit 38
875 876
		 * and scannable bit 21.
		 */
877 878
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
879 880 881
			return false;
	}

882 883 884
	/* Check le_states if there is any connection in central role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
		/* Central connection state and non connectable mode bit 18. */
885 886 887
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

888
		/* Central connection state and connectable mode bit 35 and
889 890
		 * scannable 19.
		 */
891
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
892 893 894 895 896 897 898
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

899 900 901
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
902
	struct adv_info *adv;
903 904 905
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
906
	u16 adv_min_interval, adv_max_interval;
907 908
	u32 flags;

909 910
	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
	adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
911 912 913 914 915 916 917 918

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
935 936 937
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
938 939 940 941
		return;

	memset(&cp, 0, sizeof(cp));

942 943 944
	if (adv) {
		adv_min_interval = adv->min_interval;
		adv_max_interval = adv->max_interval;
945
	} else {
946 947
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
948 949 950 951
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
952
	} else {
953
		if (adv_cur_instance_is_scannable(hdev))
954 955 956 957 958 959 960 961 962 963 964 965 966
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
967 968 969 970 971 972 973 974
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

975
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
976 977 978 979 980 981 982
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

983
	if (ext_adv_capable(hdev)) {
984 985 986 987
		struct {
			struct hci_cp_le_set_ext_scan_rsp_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
988

989
		memset(&pdu, 0, sizeof(pdu));
990

991
		len = eir_create_scan_rsp(hdev, instance, pdu.data);
992 993

		if (hdev->scan_rsp_data_len == len &&
994
		    !memcmp(pdu.data, hdev->scan_rsp_data, len))
995 996
			return;

997
		memcpy(hdev->scan_rsp_data, pdu.data, len);
998 999
		hdev->scan_rsp_data_len = len;

1000 1001 1002 1003
		pdu.cp.handle = instance;
		pdu.cp.length = len;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1004

1005 1006
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1007 1008 1009 1010 1011
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

1012
		len = eir_create_scan_rsp(hdev, instance, cp.data);
1013 1014 1015 1016

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1017

1018 1019
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1020

1021
		cp.length = len;
1022

1023 1024
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1025 1026
}

1027
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1028 1029 1030 1031 1032 1033 1034
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1035
	if (ext_adv_capable(hdev)) {
1036 1037 1038 1039
		struct {
			struct hci_cp_le_set_ext_adv_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1040

1041
		memset(&pdu, 0, sizeof(pdu));
1042

1043
		len = eir_create_adv_data(hdev, instance, pdu.data);
1044 1045 1046

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
1047
		    memcmp(pdu.data, hdev->adv_data, len) == 0)
1048 1049
			return;

1050
		memcpy(hdev->adv_data, pdu.data, len);
1051 1052
		hdev->adv_data_len = len;

1053 1054 1055 1056
		pdu.cp.length = len;
		pdu.cp.handle = instance;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1057

1058 1059
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1060 1061 1062 1063
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1064

1065
		len = eir_create_adv_data(hdev, instance, cp.data);
1066 1067 1068 1069 1070

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1071

1072 1073 1074 1075 1076 1077 1078
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1079 1080
}

1081
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1082 1083 1084 1085 1086 1087 1088 1089 1090
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

1102
	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1103 1104 1105 1106 1107 1108 1109 1110 1111
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1112 1113
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1114
	bt_dev_dbg(hdev, "status %u", status);
1115 1116 1117 1118 1119 1120 1121
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1122
	    list_empty(&hdev->adv_instances))
1123 1124 1125 1126
		return;

	hci_req_init(&req, hdev);

1127 1128 1129
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1130
	} else {
1131 1132 1133 1134 1135 1136 1137
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1151
	bt_dev_dbg(hdev, "");
1152 1153 1154 1155 1156

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1157
	instance = hdev->cur_adv_instance;
1158 1159 1160 1161 1162
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1163
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1164 1165 1166 1167

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1168
	hci_req_run(&req, NULL);
1169 1170 1171 1172 1173

unlock:
	hci_dev_unlock(hdev);
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
1242 1243 1244
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1245
		if (use_ll_privacy(hdev))
1246 1247 1248
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1249 1250

		if (adv_instance) {
1251
			if (adv_rpa_valid(adv_instance))
1252 1253
				return 0;
		} else {
1254
			if (rpa_valid(hdev))
1255 1256 1257 1258 1259
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1260
			bt_dev_err(hdev, "failed to generate new RPA");
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1303 1304 1305 1306 1307
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
	    hci_lookup_le_connect(hdev)) {
		bt_dev_dbg(hdev, "Deferring random address update");
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

1332
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1333 1334 1335 1336 1337
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1338 1339 1340 1341
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1342
	bool secondary_adv;
1343

1344 1345 1346 1347 1348 1349 1350 1351
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1352
	flags = hci_adv_instance_flags(hdev, instance);
1353 1354 1355 1356 1357 1358 1359

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1360
	if (!is_advertising_allowed(hdev, connectable))
1361 1362
		return -EPERM;

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1373 1374
	memset(&cp, 0, sizeof(cp));

1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
1384

1385 1386 1387 1388 1389 1390 1391
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1392
	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1393
		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1404

1405
	cp.own_addr_type = own_addr_type;
1406
	cp.channel_map = hdev->le_adv_channel_map;
1407
	cp.handle = instance;
1408

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1421 1422
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1423 1424
	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
1435 1436 1437 1438 1439 1440 1441
			/* Instance 0x00 doesn't have an adv_info, instead it
			 * uses hdev->random_addr to track its address so
			 * whenever it needs to be updated this also set the
			 * random address since hdev->random_addr is shared with
			 * scan state machine.
			 */
			set_random_addr(req, &random_addr);
1442 1443 1444 1445
		}

		memset(&cp, 0, sizeof(cp));

1446
		cp.handle = instance;
1447 1448 1449 1450 1451 1452 1453
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1454 1455 1456
	return 0;
}

1457
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1458
{
1459
	struct hci_dev *hdev = req->hdev;
1460 1461 1462
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1463 1464 1465 1466 1467 1468 1469 1470 1471
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1483 1484 1485 1486 1487 1488
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1489
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1490 1491 1492 1493

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1494 1495 1496 1497

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1498 1499

	return 0;
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

1544 1545
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1546
	struct hci_dev *hdev = req->hdev;
1547
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
1548 1549
	int err;

1550 1551 1552 1553 1554
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
1555

1556 1557 1558 1559
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1560
	__hci_req_update_scan_rsp_data(req, instance);
1561
	__hci_req_enable_ext_advertising(req, instance);
1562 1563 1564 1565

	return 0;
}

1566 1567 1568 1569 1570 1571 1572 1573
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1574
	    list_empty(&hdev->adv_instances))
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1605 1606 1607 1608
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1609 1610
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
1611
	}
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
1622 1623 1624 1625 1626 1627 1628
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
1644 1645 1646
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
1672
				mgmt_advertising_removed(sk, hdev, rem_inst);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
1686
				mgmt_advertising_removed(sk, hdev, instance);
1687 1688 1689 1690 1691 1692 1693
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

1694
	if (next_instance && !ext_adv_capable(hdev))
1695 1696 1697 1698
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

1699
int hci_update_random_address(struct hci_request *req, bool require_privacy,
1700
			      bool use_rpa, u8 *own_addr_type)
1701 1702 1703 1704 1705 1706 1707 1708
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
1709
	if (use_rpa) {
1710 1711 1712
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1713
		if (use_ll_privacy(hdev))
1714 1715 1716
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1717

1718
		if (rpa_valid(hdev))
1719 1720 1721 1722
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1723
			bt_dev_err(hdev, "failed to generate new RPA");
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
1763 1764 1765 1766
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
1767
	 */
1768
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1769
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1770
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1771
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
1786

1787
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
1788 1789 1790
{
	struct bdaddr_list *b;

1791
	list_for_each_entry(b, &hdev->accept_list, list) {
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

1805
void __hci_req_update_scan(struct hci_request *req)
1806 1807 1808 1809
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

1810
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1811 1812 1813 1814 1815 1816 1817 1818
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

1819 1820 1821
	if (hdev->scanning_paused)
		return;

1822
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1823
	    disconnected_accept_list_entries(hdev))
1824 1825 1826 1827
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

1828
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1829 1830
		scan |= SCAN_INQUIRY;

1831 1832 1833 1834
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

1835 1836 1837
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

1838
static int update_scan(struct hci_request *req, unsigned long opt)
1839
{
1840 1841 1842 1843 1844
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
1845

1846 1847 1848 1849 1850
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1851 1852
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

1869
	bt_dev_dbg(hdev, "");
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
1937
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1938
		__hci_req_update_adv_data(req, 0x00);
1939

1940 1941 1942
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
1943 1944 1945 1946 1947 1948
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
1949 1950
	}

1951 1952 1953 1954 1955
	hci_dev_unlock(hdev);

	return 0;
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2013
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2028
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2042
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2043 2044 2045 2046 2047
		return err;
	}

	return 0;
}
2048

2049
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2050
{
2051
	hci_req_add_le_scan_disable(req, false);
2052
	return 0;
2053 2054
}

2055
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2056
{
2057
	u8 length = opt;
2058 2059
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2060 2061
	struct hci_cp_inquiry cp;

2062 2063 2064
	if (test_bit(HCI_INQUIRY, &req->hdev->flags))
		return 0;

2065
	bt_dev_dbg(req->hdev, "");
2066

2067 2068 2069
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2070

2071
	memset(&cp, 0, sizeof(cp));
2072 2073 2074 2075 2076 2077

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2078
	cp.length = length;
2079

2080
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2081

2082
	return 0;
2083 2084 2085 2086 2087 2088 2089 2090
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2091
	bt_dev_dbg(hdev, "");
2092

2093 2094 2095
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2096 2097
	cancel_delayed_work(&hdev->le_scan_restart);

2098 2099
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2100 2101
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2119 2120
		return;

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2132
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2133 2134 2135 2136 2137 2138 2139 2140 2141
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2142 2143
}

2144 2145 2146 2147 2148 2149 2150 2151
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

2152 2153 2154 2155 2156
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

2157
	hci_req_add_le_scan_disable(req, false);
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2176 2177 2178 2179 2180

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2181
{
2182 2183
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2184
	unsigned long timeout, duration, scan_start, now;
2185
	u8 status;
2186

2187
	bt_dev_dbg(hdev, "");
2188

2189
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2190
	if (status) {
2191 2192
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2230 2231 2232 2233 2234
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2235
	/* Accept list is not used for discovery */
2236
	u8 filter_policy = 0x00;
2237 2238
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2239 2240
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
2241 2242
	int err;

2243
	bt_dev_dbg(hdev, "");
2244 2245 2246 2247 2248

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
2249
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2250
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
2251 2252
		cancel_interleave_scan(hdev);
	}
2253 2254 2255 2256 2257

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2258 2259
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2260 2261 2262
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2263
	hci_dev_lock(hdev);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	if (hci_is_adv_monitoring(hdev)) {
		/* Duplicate filter should be disabled when some advertisement
		 * monitor is activated, otherwise AdvMon can only receive one
		 * advertisement for one peer(*) during active scanning, and
		 * might report loss to these peers.
		 *
		 * Note that different controllers have different meanings of
		 * |duplicate|. Some of them consider packets with the same
		 * address as duplicate, and others consider packets with the
		 * same address and the same RSSI as duplicate. Although in the
		 * latter case we don't need to disable duplicate filter, but
		 * it is common to have active scanning for a short period of
		 * time, the power impact should be neglectable.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
	}
2280
	hci_dev_unlock(hdev);
2281

2282 2283
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
2284
			   filter_policy, filter_dup, addr_resolv);
2285 2286 2287 2288 2289 2290 2291
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

2292
	bt_dev_dbg(req->hdev, "");
2293 2294 2295 2296 2297

	err = active_scan(req, opt);
	if (err)
		return err;

2298
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2299 2300 2301 2302 2303 2304
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

2305
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
2306 2307 2308 2309

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2310 2311
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
2331
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2332 2333 2334 2335 2336
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2337
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2338 2339 2340 2341
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2342
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

2353
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2370 2371 2372 2373 2374 2375 2376 2377
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

2378
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
2379 2380 2381 2382 2383 2384 2385

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
2386
			cancel_delayed_work(&hdev->le_scan_restart);
2387
			hci_req_add_le_scan_disable(req, false);
2388 2389 2390 2391 2392 2393
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2394
			hci_req_add_le_scan_disable(req, false);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
				      u16 opcode)
{
	bt_dev_dbg(hdev, "status %u", status);
}

int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
{
	struct hci_request req;
	int err;
	__u8 vnd_len, *vnd_data = NULL;
	struct hci_op_configure_data_path *cmd = NULL;

	hci_req_init(&req, hdev);

	err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
					  &vnd_data);
	if (err < 0)
		goto error;

	cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
	if (!cmd) {
		err = -ENOMEM;
		goto error;
	}

	err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
	if (err < 0)
		goto error;

	cmd->vnd_len = vnd_len;
	memcpy(cmd->vnd_data, vnd_data, vnd_len);

	cmd->direction = 0x00;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	cmd->direction = 0x01;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	err = hci_req_run(&req, config_data_path_complete);
error:

	kfree(cmd);
	kfree(vnd_data);
	return err;
}

2465 2466 2467 2468 2469 2470 2471 2472 2473
static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2489 2490 2491 2492 2493 2494
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2495 2496 2497 2498 2499 2500
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2501 2502 2503 2504 2505
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

2506
	bt_dev_dbg(hdev, "");
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

2562
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2563 2564 2565 2566
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
2567 2568
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
2582

2583
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2584
				if (!ext_adv_capable(hdev))
2585
					__hci_req_enable_advertising(req);
2586
				else if (!err)
2587 2588
					__hci_req_enable_ext_advertising(req,
									 0x00);
2589
			}
2590 2591
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
2592 2593 2594 2595

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
2596
							adv_instance->instance,
2597
							true);
2598
		}
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

2634 2635
void hci_request_setup(struct hci_dev *hdev)
{
2636
	INIT_WORK(&hdev->discov_update, discov_update);
2637
	INIT_WORK(&hdev->scan_update, scan_update_work);
2638
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2639 2640
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2641
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2642
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
2643 2644 2645 2646
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
2647
	__hci_cmd_sync_cancel(hdev, ENODEV);
2648

2649
	cancel_work_sync(&hdev->discov_update);
2650
	cancel_work_sync(&hdev->scan_update);
2651
	cancel_delayed_work_sync(&hdev->discov_off);
2652 2653
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
2654 2655 2656 2657 2658

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
2659 2660

	cancel_interleave_scan(hdev);
2661
}