xfs_reflink.c 42.9 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
D
Darrick J. Wong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
20
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
21 22 23 24 25 26 27 28
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
29
#include "xfs_iomap.h"
30 31
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
58 59 60 61 62 63 64 65
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
66
 * When dirty pages are being written out (typically in writepage), the
67 68 69 70 71 72 73
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
88 89 90 91 92 93 94 95
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
96 97 98 99 100 101
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
102 103 104 105 106 107 108 109 110
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
111 112 113 114 115 116 117 118 119
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
120 121 122 123 124 125 126 127 128 129 130

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
131
	struct xfs_trans	*tp,
132 133 134 135 136 137 138 139 140 141 142
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

143
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 145
	if (error)
		return error;
146 147
	if (!agbp)
		return -ENOMEM;
148

149
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
150 151 152 153

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

154
	xfs_btree_del_cursor(cur, error);
155

156
	xfs_trans_brelse(tp, agbp);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
174
	bool			*shared)
175 176 177 178 179 180 181 182 183
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
184
	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
185 186 187 188 189 190 191 192 193 194
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

195
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
196 197 198 199
			aglen, &fbno, &flen, true);
	if (error)
		return error;

200
	*shared = false;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		return 0;
	}
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
bool
xfs_inode_need_cow(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
{
	/* We can't update any real extents in always COW mode. */
	if (xfs_is_always_cow_inode(ip) &&
	    !isnullstartblock(imap->br_startblock)) {
		*shared = true;
		return 0;
	}

	/* Trim the mapping to the nearest shared extent boundary. */
	return xfs_reflink_trim_around_shared(ip, imap, shared);
}

243 244 245 246 247
static int
xfs_reflink_convert_cow_locked(
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb,
	xfs_filblks_t		count_fsb)
248
{
249 250 251 252
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;
	struct xfs_btree_cur	*dummy_cur = NULL;
	int			dummy_logflags;
253
	int			error = 0;
254

255
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
256 257
		return 0;

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	do {
		if (got.br_startoff >= offset_fsb + count_fsb)
			break;
		if (got.br_state == XFS_EXT_NORM)
			continue;
		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
			return -EIO;

		xfs_trim_extent(&got, offset_fsb, count_fsb);
		if (!got.br_blockcount)
			continue;

		got.br_state = XFS_EXT_NORM;
		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
				XFS_COW_FORK, &icur, &dummy_cur, &got,
				&dummy_logflags);
		if (error)
			return error;
	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));

	return error;
279 280 281 282 283 284 285 286 287 288 289 290
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
291
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
292
	int			error;
293

294
	ASSERT(count != 0);
295

296
	xfs_ilock(ip, XFS_ILOCK_EXCL);
297
	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
298 299 300 301
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * Find the extent that maps the given range in the COW fork. Even if the extent
 * is not shared we might have a preallocation for it in the COW fork. If so we
 * use it that rather than trigger a new allocation.
 */
static int
xfs_find_trim_cow_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	bool			*found)
{
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;

	*found = false;

	/*
	 * If we don't find an overlapping extent, trim the range we need to
	 * allocate to fit the hole we found.
	 */
325 326 327 328 329
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
		got.br_startoff = offset_fsb + count_fsb;
	if (got.br_startoff > offset_fsb) {
		xfs_trim_extent(imap, imap->br_startoff,
				got.br_startoff - imap->br_startoff);
330
		return xfs_inode_need_cow(ip, imap, shared);
331
	}
332 333 334 335 336 337 338 339 340 341 342 343 344 345

	*shared = true;
	if (isnullstartblock(got.br_startblock)) {
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
		return 0;
	}

	/* real extent found - no need to allocate */
	xfs_trim_extent(&got, offset_fsb, count_fsb);
	*imap = got;
	*found = true;
	return 0;
}

346
/* Allocate all CoW reservations covering a range of blocks in a file. */
347 348
int
xfs_reflink_allocate_cow(
349
	struct xfs_inode	*ip,
350 351
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
352
	uint			*lockmode,
353
	bool			convert_now)
354 355
{
	struct xfs_mount	*mp = ip->i_mount;
356 357
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
358
	struct xfs_trans	*tp;
359
	int			nimaps, error = 0;
360
	bool			found;
361
	xfs_filblks_t		resaligned;
362
	xfs_extlen_t		resblks = 0;
363

364
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
365 366 367 368
	if (!ip->i_cowfp) {
		ASSERT(!xfs_is_reflink_inode(ip));
		xfs_ifork_init_cow(ip);
	}
369

370 371 372 373 374
	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
	if (error || !*shared)
		return error;
	if (found)
		goto convert;
375

376 377 378
	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
379

380 381 382 383
	xfs_iunlock(ip, *lockmode);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	*lockmode = XFS_ILOCK_EXCL;
	xfs_ilock(ip, *lockmode);
384

385 386
	if (error)
		return error;
387

388 389 390
	error = xfs_qm_dqattach_locked(ip, false);
	if (error)
		goto out_trans_cancel;
391

392 393 394 395 396 397 398 399 400
	/*
	 * Check for an overlapping extent again now that we dropped the ilock.
	 */
	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
	if (error || !*shared)
		goto out_trans_cancel;
	if (found) {
		xfs_trans_cancel(tp);
		goto convert;
401 402 403 404
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
405
	if (error)
406
		goto out_trans_cancel;
407

408 409
	xfs_trans_ijoin(tp, ip, 0);

410
	/* Allocate the entire reservation as unwritten blocks. */
411
	nimaps = 1;
412
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
413
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
414
			resblks, imap, &nimaps);
415
	if (error)
416
		goto out_unreserve;
417

418
	xfs_inode_set_cowblocks_tag(ip);
419
	error = xfs_trans_commit(tp);
420
	if (error)
421
		return error;
422 423 424 425 426 427 428

	/*
	 * Allocation succeeded but the requested range was not even partially
	 * satisfied?  Bail out!
	 */
	if (nimaps == 0)
		return -ENOSPC;
429
convert:
430
	xfs_trim_extent(imap, offset_fsb, count_fsb);
431 432 433 434 435
	/*
	 * COW fork extents are supposed to remain unwritten until we're ready
	 * to initiate a disk write.  For direct I/O we are going to write the
	 * data and need the conversion, but for buffered writes we're done.
	 */
436
	if (!convert_now || imap->br_state == XFS_EXT_NORM)
437
		return 0;
438 439
	trace_xfs_reflink_convert_cow(ip, imap);
	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
440 441

out_unreserve:
442 443
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
444 445
out_trans_cancel:
	xfs_trans_cancel(tp);
446
	return error;
447 448
}

449
/*
450 451 452 453
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
454 455 456
 *
 * Caller must have already joined the inode to the current transaction. The
 * inode will be joined to the transaction returned to the caller.
457 458 459 460 461 462
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
463 464
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
465
{
466
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
467
	struct xfs_bmbt_irec		got, del;
468
	struct xfs_iext_cursor		icur;
469
	int				error = 0;
470

471
	if (!xfs_inode_has_cow_data(ip))
472
		return 0;
473
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
474
		return 0;
475

476 477
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
478 479
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
480 481 482 483 484 485 486

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

487
		trace_xfs_reflink_cancel_cow(ip, &del);
488

489 490
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
491
					&icur, &got, &del);
492 493
			if (error)
				break;
494
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
495
			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
496

497
			/* Free the CoW orphan record. */
498 499
			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
					del.br_blockcount);
500

501 502
			xfs_bmap_add_free(*tpp, del.br_startblock,
					  del.br_blockcount, NULL);
503 504

			/* Roll the transaction */
505
			error = xfs_defer_finish(tpp);
506
			if (error)
507 508 509
				break;

			/* Remove the mapping from the CoW fork. */
510
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
511 512 513 514 515 516 517

			/* Remove the quota reservation */
			error = xfs_trans_reserve_quota_nblks(NULL, ip,
					-(long)del.br_blockcount, 0,
					XFS_QMOPT_RES_REGBLKS);
			if (error)
				break;
518 519 520
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
521
		}
522 523
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
524
			break;
525 526
	}

527 528 529
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);
530 531 532 533
	return error;
}

/*
534 535 536 537
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
538 539 540 541 542
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
543 544
	xfs_off_t		count,
	bool			cancel_real)
545 546 547 548 549 550 551
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
552
	ASSERT(ip->i_cowfp);
553 554 555 556 557 558 559 560 561

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
C
Christoph Hellwig 已提交
562
			0, 0, 0, &tp);
563 564 565 566 567 568 569
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
570 571
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
589 590 591 592 593 594 595 596
 * Remap part of the CoW fork into the data fork.
 *
 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 * into the data fork; this function will remap what it can (at the end of the
 * range) and update @end_fsb appropriately.  Each remap gets its own
 * transaction because we can end up merging and splitting bmbt blocks for
 * every remap operation and we'd like to keep the block reservation
 * requirements as low as possible.
597
 */
598 599 600 601 602
STATIC int
xfs_reflink_end_cow_extent(
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb,
	xfs_fileoff_t		*end_fsb)
603
{
604 605 606 607 608 609 610 611
	struct xfs_bmbt_irec	got, del;
	struct xfs_iext_cursor	icur;
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	xfs_filblks_t		rlen;
	unsigned int		resblks;
	int			error;
612

613
	/* No COW extents?  That's easy! */
614 615
	if (ifp->if_bytes == 0) {
		*end_fsb = offset_fsb;
616
		return 0;
617
	}
618

619 620
	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
C
Christoph Hellwig 已提交
621
			XFS_TRANS_RESERVE, &tp);
622 623
	if (error)
		return error;
624

625
	/*
626 627 628
	 * Lock the inode.  We have to ijoin without automatic unlock because
	 * the lead transaction is the refcountbt record deletion; the data
	 * fork update follows as a deferred log item.
629
	 */
630 631 632
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

633 634 635 636 637
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
638 639 640
	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
	    got.br_startoff + got.br_blockcount <= offset_fsb) {
		*end_fsb = offset_fsb;
641
		goto out_cancel;
642
	}
643

644 645 646 647 648 649 650 651
	/*
	 * Structure copy @got into @del, then trim @del to the range that we
	 * were asked to remap.  We preserve @got for the eventual CoW fork
	 * deletion; from now on @del represents the mapping that we're
	 * actually remapping.
	 */
	del = got;
	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
652

653
	ASSERT(del.br_blockcount > 0);
654

655 656 657 658 659 660 661 662 663
	/*
	 * Only remap real extents that contain data.  With AIO, speculative
	 * preallocations can leak into the range we are called upon, and we
	 * need to skip them.
	 */
	if (!xfs_bmap_is_real_extent(&got)) {
		*end_fsb = del.br_startoff;
		goto out_cancel;
	}
664

665 666 667 668 669
	/* Unmap the old blocks in the data fork. */
	rlen = del.br_blockcount;
	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
	if (error)
		goto out_cancel;
670

671 672 673
	/* Trim the extent to whatever got unmapped. */
	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
	trace_xfs_reflink_cow_remap(ip, &del);
674

675
	/* Free the CoW orphan record. */
676
	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
677

678
	/* Map the new blocks into the data fork. */
679
	xfs_bmap_map_extent(tp, ip, &del);
680

681 682 683
	/* Charge this new data fork mapping to the on-disk quota. */
	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
			(long)del.br_blockcount);
684

685 686
	/* Remove the mapping from the CoW fork. */
	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
687 688 689 690

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
691 692 693 694
		return error;

	/* Update the caller about how much progress we made. */
	*end_fsb = del.br_startoff;
695 696
	return 0;

697
out_cancel:
698 699
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	int				error = 0;

	trace_xfs_reflink_end_cow(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/*
	 * Walk backwards until we're out of the I/O range.  The loop function
	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
	 * extent.
	 *
	 * If we're being called by writeback then the the pages will still
	 * have PageWriteback set, which prevents races with reflink remapping
	 * and truncate.  Reflink remapping prevents races with writeback by
	 * taking the iolock and mmaplock before flushing the pages and
	 * remapping, which means there won't be any further writeback or page
	 * cache dirtying until the reflink completes.
	 *
	 * We should never have two threads issuing writeback for the same file
	 * region.  There are also have post-eof checks in the writeback
	 * preparation code so that we don't bother writing out pages that are
	 * about to be truncated.
	 *
	 * If we're being called as part of directio write completion, the dio
	 * count is still elevated, which reflink and truncate will wait for.
	 * Reflink remapping takes the iolock and mmaplock and waits for
	 * pending dio to finish, which should prevent any directio until the
	 * remap completes.  Multiple concurrent directio writes to the same
	 * region are handled by end_cow processing only occurring for the
	 * threads which succeed; the outcome of multiple overlapping direct
	 * writes is not well defined anyway.
	 *
	 * It's possible that a buffered write and a direct write could collide
	 * here (the buffered write stumbles in after the dio flushes and
	 * invalidates the page cache and immediately queues writeback), but we
	 * have never supported this 100%.  If either disk write succeeds the
	 * blocks will be remapped.
	 */
	while (end_fsb > offset_fsb && !error)
		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);

	if (error)
		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
758 759
	return error;
}
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
882
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
917
 * Update destination inode size & cowextsize hint, if necessary.
918
 */
919
int
920 921
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
922
	xfs_off_t		newlen,
923
	xfs_extlen_t		cowextsize,
924
	unsigned int		remap_flags)
925 926 927 928 929
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

930
	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
931 932 933 934 935 936 937 938 939
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

940 941 942 943 944 945 946 947 948 949 950
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

951 952 953 954 955 956 957 958 959 960 961 962
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
981
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
982 983 984 985 986 987
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
1001
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	struct xfs_trans	*tp;
	unsigned int		resblks;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1013 1014 1015 1016 1017 1018 1019 1020
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
1044
		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1045
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1046
		if (error)
1047
			goto out_cancel;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
1066
		xfs_refcount_increase_extent(tp, &uirec);
1067 1068

		/* Map the new blocks into the data fork. */
1069
		xfs_bmap_map_extent(tp, ip, &uirec);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1088
		error = xfs_defer_finish(&tp);
1089
		if (error)
1090
			goto out_cancel;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
1110
int
1111 1112
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
1113
	loff_t			pos_in,
1114
	struct xfs_inode	*dest,
1115
	loff_t			pos_out,
1116 1117
	loff_t			remap_len,
	loff_t			*remapped)
1118 1119
{
	struct xfs_bmbt_irec	imap;
1120 1121 1122 1123
	xfs_fileoff_t		srcoff;
	xfs_fileoff_t		destoff;
	xfs_filblks_t		len;
	xfs_filblks_t		range_len;
1124
	xfs_filblks_t		remapped_len = 0;
1125
	xfs_off_t		new_isize = pos_out + remap_len;
1126 1127
	int			nimaps;
	int			error = 0;
1128 1129 1130 1131

	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1132 1133 1134

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
1135 1136
		uint		lock_mode;

1137 1138
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
1139

1140 1141
		/* Read extent from the source file */
		nimaps = 1;
1142
		lock_mode = xfs_ilock_data_map_shared(src);
1143
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1144
		xfs_iunlock(src, lock_mode);
1145
		if (error)
1146
			break;
1147 1148
		ASSERT(nimaps == 1);

1149
		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
1160
			break;
1161 1162 1163

		if (fatal_signal_pending(current)) {
			error = -EINTR;
1164
			break;
1165 1166 1167 1168 1169 1170
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
1171
		remapped_len += range_len;
1172 1173
	}

1174 1175
	if (error)
		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1176 1177
	*remapped = min_t(loff_t, remap_len,
			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1178 1179 1180
	return error;
}

1181
/*
1182 1183 1184 1185 1186
 * Grab the exclusive iolock for a data copy from src to dest, making sure to
 * abide vfs locking order (lowest pointer value goes first) and breaking the
 * layout leases before proceeding.  The loop is needed because we cannot call
 * the blocking break_layout() with the iolocks held, and therefore have to
 * back out both locks.
1187 1188 1189 1190 1191 1192 1193 1194
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

1195 1196
	if (src > dest)
		swap(src, dest);
1197

1198 1199 1200 1201 1202 1203
retry:
	/* Wait to break both inodes' layouts before we start locking. */
	error = break_layout(src, true);
	if (error)
		return error;
	if (src != dest) {
1204 1205 1206 1207
		error = break_layout(dest, true);
		if (error)
			return error;
	}
1208 1209 1210 1211

	/* Lock one inode and make sure nobody got in and leased it. */
	inode_lock(src);
	error = break_layout(src, false);
1212
	if (error) {
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
		inode_unlock(src);
		if (error == -EWOULDBLOCK)
			goto retry;
		return error;
	}

	if (src == dest)
		return 0;

	/* Lock the other inode and make sure nobody got in and leased it. */
	inode_lock_nested(dest, I_MUTEX_NONDIR2);
	error = break_layout(dest, false);
	if (error) {
		inode_unlock(src);
1227
		inode_unlock(dest);
1228 1229
		if (error == -EWOULDBLOCK)
			goto retry;
1230 1231
		return error;
	}
1232

1233 1234 1235
	return 0;
}

1236
/* Unlock both inodes after they've been prepped for a range clone. */
1237
void
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
xfs_reflink_remap_unlock(
	struct file		*file_in,
	struct file		*file_out)
{
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);

	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
	if (!same_inode)
1250
		xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1251 1252
	inode_unlock(inode_out);
	if (!same_inode)
1253
		inode_unlock(inode_in);
1254 1255
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * If we're reflinking to a point past the destination file's EOF, we must
 * zero any speculative post-EOF preallocations that sit between the old EOF
 * and the destination file offset.
 */
static int
xfs_reflink_zero_posteof(
	struct xfs_inode	*ip,
	loff_t			pos)
{
	loff_t			isize = i_size_read(VFS_I(ip));

	if (pos <= isize)
		return 0;

	trace_xfs_zero_eof(ip, isize, pos - isize);
	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
			&xfs_iomap_ops);
}

1276
/*
1277
 * Prepare two files for range cloning.  Upon a successful return both inodes
1278 1279 1280
 * will have the iolock and mmaplock held, the page cache of the out file will
 * be truncated, and any leases on the out file will have been broken.  This
 * function borrows heavily from xfs_file_aio_write_checks.
1281 1282 1283 1284
 *
 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
 * checked that the bytes beyond EOF physically match. Hence we cannot use the
 * EOF block in the source dedupe range because it's not a complete block match,
1285
 * hence can introduce a corruption into the file that has it's block replaced.
1286
 *
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
 * "block aligned" for the purposes of cloning entire files.  However, if the
 * source file range includes the EOF block and it lands within the existing EOF
 * of the destination file, then we can expose stale data from beyond the source
 * file EOF in the destination file.
 *
 * XFS doesn't support partial block sharing, so in both cases we have check
 * these cases ourselves. For dedupe, we can simply round the length to dedupe
 * down to the previous whole block and ignore the partial EOF block. While this
 * means we can't dedupe the last block of a file, this is an acceptible
 * tradeoff for simplicity on implementation.
 *
 * For cloning, we want to share the partial EOF block if it is also the new EOF
 * block of the destination file. If the partial EOF block lies inside the
 * existing destination EOF, then we have to abort the clone to avoid exposing
 * stale data in the destination file. Hence we reject these clone attempts with
 * -EINVAL in this case.
1304
 */
1305
int
1306
xfs_reflink_remap_prep(
1307 1308 1309 1310
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
1311
	loff_t			*len,
1312
	unsigned int		remap_flags)
1313
{
1314 1315 1316 1317 1318 1319
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);
	ssize_t			ret;
1320

1321
	/* Lock both files against IO */
1322 1323 1324
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1325
	if (same_inode)
1326
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1327
	else
1328
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1329
				XFS_MMAPLOCK_EXCL);
1330

1331
	/* Check file eligibility and prepare for block sharing. */
1332
	ret = -EINVAL;
1333 1334
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1335 1336 1337 1338 1339 1340
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1341
	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1342
			len, remap_flags);
1343
	if (ret < 0 || *len == 0)
1344 1345
		goto out_unlock;

1346
	/* Attach dquots to dest inode before changing block map */
1347
	ret = xfs_qm_dqattach(dest);
1348 1349 1350
	if (ret)
		goto out_unlock;

1351
	/*
1352 1353
	 * Zero existing post-eof speculative preallocations in the destination
	 * file.
1354
	 */
1355 1356 1357
	ret = xfs_reflink_zero_posteof(dest, pos_out);
	if (ret)
		goto out_unlock;
1358

1359
	/* Set flags and remap blocks. */
1360 1361 1362
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * If pos_out > EOF, we may have dirtied blocks between EOF and
	 * pos_out. In that case, we need to extend the flush and unmap to cover
	 * from EOF to the end of the copy length.
	 */
	if (pos_out > XFS_ISIZE(dest)) {
		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
	} else {
		ret = xfs_flush_unmap_range(dest, pos_out, *len);
	}
	if (ret)
		goto out_unlock;
1377

1378 1379 1380 1381 1382 1383
	return 1;
out_unlock:
	xfs_reflink_remap_unlock(file_in, file_out);
	return ret;
}

1384
/* Does this inode need the reflink flag? */
1385
int
1386 1387 1388 1389
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1390
{
1391 1392 1393 1394 1395 1396 1397 1398
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1399
	struct xfs_iext_cursor		icur;
1400 1401
	bool				found;
	int				error;
1402

1403 1404 1405
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1406 1407
		if (error)
			return error;
1408
	}
1409

1410
	*has_shared = false;
1411
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1412 1413 1414 1415 1416 1417 1418
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1419

1420
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1421 1422 1423 1424
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1425 1426
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1427
			return 0;
1428
		}
1429
next:
1430
		found = xfs_iext_next_extent(ifp, &icur, &got);
1431 1432
	}

1433 1434 1435
	return 0;
}

1436 1437 1438 1439 1440 1441
/*
 * Clear the inode reflink flag if there are no shared extents.
 *
 * The caller is responsible for joining the inode to the transaction passed in.
 * The inode will be joined to the transaction that is returned to the caller.
 */
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1456 1457 1458 1459
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1460
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1461 1462 1463 1464 1465 1466
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1467
	xfs_inode_clear_cowblocks_tag(ip);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1479
	struct xfs_inode	*ip)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
1520
	struct inode		*inode = VFS_I(ip);
1521 1522 1523 1524 1525 1526 1527
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

1528
	inode_dio_wait(inode);
1529

1530
	error = iomap_file_unshare(inode, offset, len, &xfs_iomap_ops);
1531
	if (error)
1532 1533
		goto out;
	error = filemap_write_and_wait(inode->i_mapping);
1534 1535 1536
	if (error)
		goto out;

1537 1538 1539 1540
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1541 1542 1543 1544 1545 1546
	return 0;

out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}