xfs_reflink.c 18.1 KB
Newer Older
D
Darrick J. Wong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 *
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
54
#include "xfs_iomap.h"
55
#include "xfs_rmap_btree.h"
D
Darrick J. Wong 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
 * When dirty pages are being written out (typically in writepage), the
 * delalloc reservations are converted into real mappings by allocating
 * blocks and replacing the delalloc mapping with real ones.  A delalloc
 * mapping can be replaced by several real ones if the free space is
 * fragmented.
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
 * the data fork, and remove the extent from the CoW fork.
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

	error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
	if (error)
		return error;

	cur = xfs_refcountbt_init_cursor(mp, NULL, agbp, agno, NULL);

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);

	xfs_buf_relse(agbp);
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
	if (!xfs_is_reflink_inode(ip) ||
	    ISUNWRITTEN(irec) ||
	    irec->br_startblock == HOLESTARTBLOCK ||
	    irec->br_startblock == DELAYSTARTBLOCK) {
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

	error = xfs_reflink_find_shared(ip->i_mount, agno, agbno,
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

/* Create a CoW reservation for a range of blocks within a file. */
static int
__xfs_reflink_reserve_cow(
	struct xfs_inode	*ip,
	xfs_fileoff_t		*offset_fsb,
	xfs_fileoff_t		end_fsb)
{
	struct xfs_bmbt_irec	got, prev, imap;
	xfs_fileoff_t		orig_end_fsb;
	int			nimaps, eof = 0, error = 0;
	bool			shared = false, trimmed = false;
	xfs_extnum_t		idx;

	/* Already reserved?  Skip the refcount btree access. */
	xfs_bmap_search_extents(ip, *offset_fsb, XFS_COW_FORK, &eof, &idx,
			&got, &prev);
	if (!eof && got.br_startoff <= *offset_fsb) {
		end_fsb = orig_end_fsb = got.br_startoff + got.br_blockcount;
		trace_xfs_reflink_cow_found(ip, &got);
		goto done;
	}

	/* Read extent from the source file. */
	nimaps = 1;
	error = xfs_bmapi_read(ip, *offset_fsb, end_fsb - *offset_fsb,
			&imap, &nimaps, 0);
	if (error)
		goto out_unlock;
	ASSERT(nimaps == 1);

	/* Trim the mapping to the nearest shared extent boundary. */
	error = xfs_reflink_trim_around_shared(ip, &imap, &shared, &trimmed);
	if (error)
		goto out_unlock;

	end_fsb = orig_end_fsb = imap.br_startoff + imap.br_blockcount;

	/* Not shared?  Just report the (potentially capped) extent. */
	if (!shared)
		goto done;

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
	error = xfs_qm_dqattach_locked(ip, 0);
	if (error)
		goto out_unlock;

retry:
	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, *offset_fsb,
			end_fsb - *offset_fsb, &got,
			&prev, &idx, eof);
	switch (error) {
	case 0:
		break;
	case -ENOSPC:
	case -EDQUOT:
		/* retry without any preallocation */
		trace_xfs_reflink_cow_enospc(ip, &imap);
		if (end_fsb != orig_end_fsb) {
			end_fsb = orig_end_fsb;
			goto retry;
		}
		/*FALLTHRU*/
	default:
		goto out_unlock;
	}

	trace_xfs_reflink_cow_alloc(ip, &got);
done:
	*offset_fsb = end_fsb;
out_unlock:
	return error;
}

/* Create a CoW reservation for part of a file. */
int
xfs_reflink_reserve_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error;

	trace_xfs_reflink_reserve_cow_range(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(mp, offset);
	end_fsb = XFS_B_TO_FSB(mp, offset + count);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	while (offset_fsb < end_fsb) {
		error = __xfs_reflink_reserve_cow(ip, &offset_fsb, end_fsb);
		if (error) {
			trace_xfs_reflink_reserve_cow_range_error(ip, error,
				_RET_IP_);
			break;
		}
	}
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	return error;
}
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

/*
 * Find the CoW reservation (and whether or not it needs block allocation)
 * for a given byte offset of a file.
 */
bool
xfs_reflink_find_cow_mapping(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	struct xfs_bmbt_irec		*imap,
	bool				*need_alloc)
{
	struct xfs_bmbt_irec		irec;
	struct xfs_ifork		*ifp;
	struct xfs_bmbt_rec_host	*gotp;
	xfs_fileoff_t			bno;
	xfs_extnum_t			idx;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
	ASSERT(xfs_is_reflink_inode(ip));

	/* Find the extent in the CoW fork. */
	ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	bno = XFS_B_TO_FSBT(ip->i_mount, offset);
	gotp = xfs_iext_bno_to_ext(ifp, bno, &idx);
	if (!gotp)
		return false;

	xfs_bmbt_get_all(gotp, &irec);
	if (bno >= irec.br_startoff + irec.br_blockcount ||
	    bno < irec.br_startoff)
		return false;

	trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
			&irec);

	/* If it's still delalloc, we must allocate later. */
	*imap = irec;
	*need_alloc = !!(isnullstartblock(irec.br_startblock));

	return true;
}

/*
 * Trim an extent to end at the next CoW reservation past offset_fsb.
 */
int
xfs_reflink_trim_irec_to_next_cow(
	struct xfs_inode		*ip,
	xfs_fileoff_t			offset_fsb,
	struct xfs_bmbt_irec		*imap)
{
	struct xfs_bmbt_irec		irec;
	struct xfs_ifork		*ifp;
	struct xfs_bmbt_rec_host	*gotp;
	xfs_extnum_t			idx;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	/* Find the extent in the CoW fork. */
	ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	gotp = xfs_iext_bno_to_ext(ifp, offset_fsb, &idx);
	if (!gotp)
		return 0;
	xfs_bmbt_get_all(gotp, &irec);

	/* This is the extent before; try sliding up one. */
	if (irec.br_startoff < offset_fsb) {
		idx++;
		if (idx >= ifp->if_bytes / sizeof(xfs_bmbt_rec_t))
			return 0;
		gotp = xfs_iext_get_ext(ifp, idx);
		xfs_bmbt_get_all(gotp, &irec);
	}

	if (irec.br_startoff >= imap->br_startoff + imap->br_blockcount)
		return 0;

	imap->br_blockcount = irec.br_startoff - imap->br_startoff;
	trace_xfs_reflink_trim_irec(ip, imap);

	return 0;
}
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

/*
 * Cancel all pending CoW reservations for some block range of an inode.
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
	xfs_fileoff_t			end_fsb)
{
	struct xfs_bmbt_irec		irec;
	xfs_filblks_t			count_fsb;
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
	int				error = 0;
	int				nimaps;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	/* Go find the old extent in the CoW fork. */
	while (offset_fsb < end_fsb) {
		nimaps = 1;
		count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
		error = xfs_bmapi_read(ip, offset_fsb, count_fsb, &irec,
				&nimaps, XFS_BMAPI_COWFORK);
		if (error)
			break;
		ASSERT(nimaps == 1);

		trace_xfs_reflink_cancel_cow(ip, &irec);

		if (irec.br_startblock == DELAYSTARTBLOCK) {
			/* Free a delayed allocation. */
			xfs_mod_fdblocks(ip->i_mount, irec.br_blockcount,
					false);
			ip->i_delayed_blks -= irec.br_blockcount;

			/* Remove the mapping from the CoW fork. */
			error = xfs_bunmapi_cow(ip, &irec);
			if (error)
				break;
		} else if (irec.br_startblock == HOLESTARTBLOCK) {
			/* empty */
		} else {
			xfs_trans_ijoin(*tpp, ip, 0);
			xfs_defer_init(&dfops, &firstfsb);

			xfs_bmap_add_free(ip->i_mount, &dfops,
					irec.br_startblock, irec.br_blockcount,
					NULL);

			/* Update quota accounting */
			xfs_trans_mod_dquot_byino(*tpp, ip, XFS_TRANS_DQ_BCOUNT,
					-(long)irec.br_blockcount);

			/* Roll the transaction */
			error = xfs_defer_finish(tpp, &dfops, ip);
			if (error) {
				xfs_defer_cancel(&dfops);
				break;
			}

			/* Remove the mapping from the CoW fork. */
			error = xfs_bunmapi_cow(ip, &irec);
			if (error)
				break;
		}

		/* Roll on... */
		offset_fsb = irec.br_startoff + irec.br_blockcount;
	}

	return error;
}

/*
 * Cancel all pending CoW reservations for some byte range of an inode.
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
			0, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb);
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
	struct xfs_bmbt_irec		irec;
	struct xfs_bmbt_irec		uirec;
	struct xfs_trans		*tp;
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	xfs_filblks_t			count_fsb;
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
	int				error;
	unsigned int			resblks;
	xfs_filblks_t			ilen;
	xfs_filblks_t			rlen;
	int				nimaps;

	trace_xfs_reflink_end_cow(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
	count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);

	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
			resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Go find the old extent in the CoW fork. */
	while (offset_fsb < end_fsb) {
		/* Read extent from the source file */
		nimaps = 1;
		count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
		error = xfs_bmapi_read(ip, offset_fsb, count_fsb, &irec,
				&nimaps, XFS_BMAPI_COWFORK);
		if (error)
			goto out_cancel;
		ASSERT(nimaps == 1);

		ASSERT(irec.br_startblock != DELAYSTARTBLOCK);
		trace_xfs_reflink_cow_remap(ip, &irec);

		/*
		 * We can have a hole in the CoW fork if part of a directio
		 * write is CoW but part of it isn't.
		 */
		rlen = ilen = irec.br_blockcount;
		if (irec.br_startblock == HOLESTARTBLOCK)
			goto next_extent;

		/* Unmap the old blocks in the data fork. */
		while (rlen) {
			xfs_defer_init(&dfops, &firstfsb);
			error = __xfs_bunmapi(tp, ip, irec.br_startoff,
					&rlen, 0, 1, &firstfsb, &dfops);
			if (error)
				goto out_defer;

			/*
			 * Trim the extent to whatever got unmapped.
			 * Remember, bunmapi works backwards.
			 */
			uirec.br_startblock = irec.br_startblock + rlen;
			uirec.br_startoff = irec.br_startoff + rlen;
			uirec.br_blockcount = irec.br_blockcount - rlen;
			irec.br_blockcount = rlen;
			trace_xfs_reflink_cow_remap_piece(ip, &uirec);

			/* Map the new blocks into the data fork. */
			error = xfs_bmap_map_extent(tp->t_mountp, &dfops,
					ip, &uirec);
			if (error)
				goto out_defer;

			/* Remove the mapping from the CoW fork. */
			error = xfs_bunmapi_cow(ip, &uirec);
			if (error)
				goto out_defer;

			error = xfs_defer_finish(&tp, &dfops, ip);
			if (error)
				goto out_defer;
		}

next_extent:
		/* Roll on... */
		offset_fsb = irec.br_startoff + ilen;
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
	xfs_defer_cancel(&dfops);
out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
	return error;
}