xfs_reflink.c 46.1 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
D
Darrick J. Wong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
29
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
30 31 32 33 34 35 36 37 38
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
39
#include "xfs_iomap.h"
40
#include "xfs_rmap_btree.h"
41 42
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
69 70 71 72 73 74 75 76
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
77
 * When dirty pages are being written out (typically in writepage), the
78 79 80 81 82 83 84
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
99 100 101 102 103 104 105 106
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
107 108 109 110 111 112
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
113 114 115 116 117 118 119 120 121
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
122 123 124 125 126 127 128 129 130
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
131 132 133 134 135 136 137 138 139 140 141

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
142
	struct xfs_trans	*tp,
143 144 145 146 147 148 149 150 151 152 153
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

154
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 156
	if (error)
		return error;
157 158
	if (!agbp)
		return -ENOMEM;
159

160
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 162 163 164

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

165
	xfs_btree_del_cursor(cur, error);
166

167
	xfs_trans_brelse(tp, agbp);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
196
	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 198 199 200 201 202 203 204 205 206
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

207
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

241 242 243 244 245 246 247 248 249 250 251
/*
 * Trim the passed in imap to the next shared/unshared extent boundary, and
 * if imap->br_startoff points to a shared extent reserve space for it in the
 * COW fork.  In this case *shared is set to true, else to false.
 *
 * Note that imap will always contain the block numbers for the existing blocks
 * in the data fork, as the upper layers need them for read-modify-write
 * operations.
 */
int
xfs_reflink_reserve_cow(
252
	struct xfs_inode	*ip,
253 254
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
255
{
256 257 258 259
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec	got;
	int			error = 0;
	bool			eof = false, trimmed;
260
	struct xfs_iext_cursor	icur;
261

262 263 264 265 266 267 268 269
	/*
	 * Search the COW fork extent list first.  This serves two purposes:
	 * first this implement the speculative preallocation using cowextisze,
	 * so that we also unshared block adjacent to shared blocks instead
	 * of just the shared blocks themselves.  Second the lookup in the
	 * extent list is generally faster than going out to the shared extent
	 * tree.
	 */
270

271
	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272
		eof = true;
273 274 275
	if (!eof && got.br_startoff <= imap->br_startoff) {
		trace_xfs_reflink_cow_found(ip, imap);
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276

277 278 279
		*shared = true;
		return 0;
	}
280 281

	/* Trim the mapping to the nearest shared extent boundary. */
282
	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283
	if (error)
284
		return error;
285 286

	/* Not shared?  Just report the (potentially capped) extent. */
287 288
	if (!*shared)
		return 0;
289 290 291 292 293

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
294
	error = xfs_qm_dqattach_locked(ip, false);
295
	if (error)
296 297 298
		return error;

	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299
			imap->br_blockcount, 0, &got, &icur, eof);
300
	if (error == -ENOSPC || error == -EDQUOT)
301
		trace_xfs_reflink_cow_enospc(ip, imap);
302
	if (error)
303
		return error;
304

305
	trace_xfs_reflink_cow_alloc(ip, &got);
306
	return 0;
307
}
308

309 310 311 312 313 314
/* Convert part of an unwritten CoW extent to a real one. */
STATIC int
xfs_reflink_convert_cow_extent(
	struct xfs_inode		*ip,
	struct xfs_bmbt_irec		*imap,
	xfs_fileoff_t			offset_fsb,
315
	xfs_filblks_t			count_fsb)
316 317 318 319 320 321
{
	int				nimaps = 1;

	if (imap->br_state == XFS_EXT_NORM)
		return 0;

322 323 324
	xfs_trim_extent(imap, offset_fsb, count_fsb);
	trace_xfs_reflink_convert_cow(ip, imap);
	if (imap->br_blockcount == 0)
325
		return 0;
326
	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
327
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
328
			&nimaps);
329 330 331 332 333 334 335 336 337 338 339 340
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
341 342 343
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
	struct xfs_bmbt_irec	imap;
	int			nimaps = 1, error = 0;
344

345
	ASSERT(count != 0);
346

347 348 349
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
350
			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
351 352 353 354
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/*
 * Find the extent that maps the given range in the COW fork. Even if the extent
 * is not shared we might have a preallocation for it in the COW fork. If so we
 * use it that rather than trigger a new allocation.
 */
static int
xfs_find_trim_cow_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	bool			*found)
{
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;
	bool			trimmed;

	*found = false;

	/*
	 * If we don't find an overlapping extent, trim the range we need to
	 * allocate to fit the hole we found.
	 */
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) ||
	    got.br_startoff > offset_fsb)
		return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);

	*shared = true;
	if (isnullstartblock(got.br_startblock)) {
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
		return 0;
	}

	/* real extent found - no need to allocate */
	xfs_trim_extent(&got, offset_fsb, count_fsb);
	*imap = got;
	*found = true;
	return 0;
}

396
/* Allocate all CoW reservations covering a range of blocks in a file. */
397 398
int
xfs_reflink_allocate_cow(
399
	struct xfs_inode	*ip,
400 401 402
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	uint			*lockmode)
403 404
{
	struct xfs_mount	*mp = ip->i_mount;
405 406
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
407
	struct xfs_trans	*tp;
408
	int			nimaps, error = 0;
409
	bool			found;
410
	xfs_filblks_t		resaligned;
411
	xfs_extlen_t		resblks = 0;
412

413
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
414
	ASSERT(xfs_is_reflink_inode(ip));
415

416 417 418 419 420
	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
	if (error || !*shared)
		return error;
	if (found)
		goto convert;
421

422 423 424
	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
425

426 427 428 429
	xfs_iunlock(ip, *lockmode);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	*lockmode = XFS_ILOCK_EXCL;
	xfs_ilock(ip, *lockmode);
430

431 432
	if (error)
		return error;
433

434 435 436
	error = xfs_qm_dqattach_locked(ip, false);
	if (error)
		goto out_trans_cancel;
437

438 439 440 441 442 443 444 445 446
	/*
	 * Check for an overlapping extent again now that we dropped the ilock.
	 */
	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
	if (error || !*shared)
		goto out_trans_cancel;
	if (found) {
		xfs_trans_cancel(tp);
		goto convert;
447 448 449 450
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
451
	if (error)
452
		goto out_trans_cancel;
453

454 455
	xfs_trans_ijoin(tp, ip, 0);

456
	/* Allocate the entire reservation as unwritten blocks. */
457
	nimaps = 1;
458
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
459
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
460
			resblks, imap, &nimaps);
461
	if (error)
462
		goto out_unreserve;
463

464
	xfs_inode_set_cowblocks_tag(ip);
465
	error = xfs_trans_commit(tp);
466
	if (error)
467
		return error;
468 469 470 471 472 473 474

	/*
	 * Allocation succeeded but the requested range was not even partially
	 * satisfied?  Bail out!
	 */
	if (nimaps == 0)
		return -ENOSPC;
475
convert:
476
	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
477 478

out_unreserve:
479 480
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
481 482
out_trans_cancel:
	xfs_trans_cancel(tp);
483
	return error;
484 485
}

486
/*
487 488 489 490
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
491 492 493
 *
 * Caller must have already joined the inode to the current transaction. The
 * inode will be joined to the transaction returned to the caller.
494 495 496 497 498 499
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
500 501
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
502
{
503
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
504
	struct xfs_bmbt_irec		got, del;
505
	struct xfs_iext_cursor		icur;
506
	int				error = 0;
507

508
	if (!xfs_inode_has_cow_data(ip))
509
		return 0;
510
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
511
		return 0;
512

513 514
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
515 516
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
517 518 519 520 521 522 523

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

524
		trace_xfs_reflink_cancel_cow(ip, &del);
525

526 527
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
528
					&icur, &got, &del);
529 530
			if (error)
				break;
531
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
532
			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
533

534
			/* Free the CoW orphan record. */
535 536
			error = xfs_refcount_free_cow_extent(*tpp,
					del.br_startblock, del.br_blockcount);
537 538 539
			if (error)
				break;

540 541
			xfs_bmap_add_free(*tpp, del.br_startblock,
					  del.br_blockcount, NULL);
542 543

			/* Roll the transaction */
544
			error = xfs_defer_finish(tpp);
545
			if (error)
546 547 548
				break;

			/* Remove the mapping from the CoW fork. */
549
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
550 551 552 553 554 555 556

			/* Remove the quota reservation */
			error = xfs_trans_reserve_quota_nblks(NULL, ip,
					-(long)del.br_blockcount, 0,
					XFS_QMOPT_RES_REGBLKS);
			if (error)
				break;
557 558 559
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
560
		}
561 562
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
563
			break;
564 565
	}

566 567 568
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);
569 570 571 572
	return error;
}

/*
573 574 575 576
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
577 578 579 580 581
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
582 583
	xfs_off_t		count,
	bool			cancel_real)
584 585 586 587 588 589 590
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
591
	ASSERT(xfs_is_reflink_inode(ip));
592 593 594 595 596 597 598 599 600

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
601
			0, 0, XFS_TRANS_NOFS, &tp);
602 603 604 605 606 607 608
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
609 610
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
636
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
637
	struct xfs_bmbt_irec		got, del;
638 639 640
	struct xfs_trans		*tp;
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
641
	int				error;
642 643
	unsigned int			resblks;
	xfs_filblks_t			rlen;
644
	struct xfs_iext_cursor		icur;
645 646 647

	trace_xfs_reflink_end_cow(ip, offset, count);

648 649 650 651
	/* No COW extents?  That's easy! */
	if (ifp->if_bytes == 0)
		return 0;

652 653 654
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/*
	 * Start a rolling transaction to switch the mappings.  We're
	 * unlikely ever to have to remap 16T worth of single-block
	 * extents, so just cap the worst case extent count to 2^32-1.
	 * Stick a warning in just in case, and avoid 64-bit division.
	 */
	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
	if (end_fsb - offset_fsb > UINT_MAX) {
		error = -EFSCORRUPTED;
		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
		ASSERT(0);
		goto out;
	}
	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
			(unsigned int)(end_fsb - offset_fsb),
			XFS_DATA_FORK);
671
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
672
			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
673 674 675 676 677 678
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

679 680 681 682 683
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
684
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
685
		goto out_cancel;
686

687 688 689 690 691
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);

692
		/* Extent delete may have bumped ext forward */
693 694
		if (!del.br_blockcount)
			goto prev_extent;
695

696
		/*
697 698 699
		 * Only remap real extent that contain data.  With AIO
		 * speculatively preallocations can leak into the range we
		 * are called upon, and we need to skip them.
700
		 */
701
		if (!xfs_bmap_is_real_extent(&got))
702
			goto prev_extent;
703

704
		/* Unmap the old blocks in the data fork. */
705
		ASSERT(tp->t_firstblock == NULLFSBLOCK);
706
		rlen = del.br_blockcount;
707
		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
708
		if (error)
709
			goto out_cancel;
710

711 712 713 714 715 716
		/* Trim the extent to whatever got unmapped. */
		if (rlen) {
			xfs_trim_extent(&del, del.br_startoff + rlen,
				del.br_blockcount - rlen);
		}
		trace_xfs_reflink_cow_remap(ip, &del);
717

718
		/* Free the CoW orphan record. */
719 720
		error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
				del.br_blockcount);
721
		if (error)
722
			goto out_cancel;
723

724
		/* Map the new blocks into the data fork. */
725
		error = xfs_bmap_map_extent(tp, ip, &del);
726
		if (error)
727
			goto out_cancel;
728

729 730 731 732
		/* Charge this new data fork mapping to the on-disk quota. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
				(long)del.br_blockcount);

733
		/* Remove the mapping from the CoW fork. */
734
		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
735

736
		error = xfs_defer_finish(&tp);
737
		if (error)
738
			goto out_cancel;
739
		if (!xfs_iext_get_extent(ifp, &icur, &got))
740
			break;
741 742 743 744
		continue;
prev_extent:
		if (!xfs_iext_prev_extent(ifp, &icur, &got))
			break;
745 746 747 748 749 750 751 752
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

753
out_cancel:
754 755 756 757 758 759
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
	return error;
}
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
882
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
917
 * Update destination inode size & cowextsize hint, if necessary.
918 919 920 921
 */
STATIC int
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
922
	xfs_off_t		newlen,
923
	xfs_extlen_t		cowextsize,
924
	unsigned int		remap_flags)
925 926 927 928 929
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

930 931
	if ((remap_flags & REMAP_FILE_DEDUP) &&
	    newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
932 933 934 935 936 937 938 939 940
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

941 942 943 944 945 946 947 948 949 950 951
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

952
	if (!(remap_flags & REMAP_FILE_DEDUP)) {
953 954 955
		xfs_trans_ichgtime(tp, dest,
				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}
956 957 958 959 960 961 962 963 964 965 966 967
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
986
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
987 988 989 990 991 992
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
1006
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	struct xfs_trans	*tp;
	unsigned int		resblks;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1018 1019 1020 1021 1022 1023 1024 1025
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
1049
		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1050
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1051
		if (error)
1052
			goto out_cancel;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
1071
		error = xfs_refcount_increase_extent(tp, &uirec);
1072
		if (error)
1073
			goto out_cancel;
1074 1075

		/* Map the new blocks into the data fork. */
1076
		error = xfs_bmap_map_extent(tp, ip, &uirec);
1077
		if (error)
1078
			goto out_cancel;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1097
		error = xfs_defer_finish(&tp);
1098
		if (error)
1099
			goto out_cancel;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
STATIC int
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
1122
	loff_t			pos_in,
1123
	struct xfs_inode	*dest,
1124
	loff_t			pos_out,
1125 1126
	loff_t			remap_len,
	loff_t			*remapped)
1127 1128
{
	struct xfs_bmbt_irec	imap;
1129 1130 1131 1132
	xfs_fileoff_t		srcoff;
	xfs_fileoff_t		destoff;
	xfs_filblks_t		len;
	xfs_filblks_t		range_len;
1133
	xfs_filblks_t		remapped_len = 0;
1134
	xfs_off_t		new_isize = pos_out + remap_len;
1135 1136
	int			nimaps;
	int			error = 0;
1137 1138 1139 1140

	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1141 1142 1143

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
1144 1145
		uint		lock_mode;

1146 1147
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
1148

1149 1150
		/* Read extent from the source file */
		nimaps = 1;
1151
		lock_mode = xfs_ilock_data_map_shared(src);
1152
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1153
		xfs_iunlock(src, lock_mode);
1154
		if (error)
1155
			break;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		ASSERT(nimaps == 1);

		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
1169
			break;
1170 1171 1172

		if (fatal_signal_pending(current)) {
			error = -EINTR;
1173
			break;
1174 1175 1176 1177 1178 1179
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
1180
		remapped_len += range_len;
1181 1182
	}

1183 1184
	if (error)
		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1185 1186
	*remapped = min_t(loff_t, remap_len,
			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1187 1188 1189
	return error;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * Grab the exclusive iolock for a data copy from src to dest, making
 * sure to abide vfs locking order (lowest pointer value goes first) and
 * breaking the pnfs layout leases on dest before proceeding.  The loop
 * is needed because we cannot call the blocking break_layout() with the
 * src iolock held, and therefore have to back out both locks.
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

retry:
	if (src < dest) {
1206
		inode_lock_shared(src);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		inode_lock_nested(dest, I_MUTEX_NONDIR2);
	} else {
		/* src >= dest */
		inode_lock(dest);
	}

	error = break_layout(dest, false);
	if (error == -EWOULDBLOCK) {
		inode_unlock(dest);
		if (src < dest)
1217
			inode_unlock_shared(src);
1218 1219 1220 1221 1222 1223 1224 1225
		error = break_layout(dest, true);
		if (error)
			return error;
		goto retry;
	}
	if (error) {
		inode_unlock(dest);
		if (src < dest)
1226
			inode_unlock_shared(src);
1227 1228 1229
		return error;
	}
	if (src > dest)
1230
		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1231 1232 1233
	return 0;
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/* Unlock both inodes after they've been prepped for a range clone. */
STATIC void
xfs_reflink_remap_unlock(
	struct file		*file_in,
	struct file		*file_out)
{
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);

	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
	if (!same_inode)
		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
	inode_unlock(inode_out);
	if (!same_inode)
		inode_unlock_shared(inode_in);
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
/*
 * If we're reflinking to a point past the destination file's EOF, we must
 * zero any speculative post-EOF preallocations that sit between the old EOF
 * and the destination file offset.
 */
static int
xfs_reflink_zero_posteof(
	struct xfs_inode	*ip,
	loff_t			pos)
{
	loff_t			isize = i_size_read(VFS_I(ip));

	if (pos <= isize)
		return 0;

	trace_xfs_zero_eof(ip, isize, pos - isize);
	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
			&xfs_iomap_ops);
}

1274
/*
1275
 * Prepare two files for range cloning.  Upon a successful return both inodes
1276 1277 1278
 * will have the iolock and mmaplock held, the page cache of the out file will
 * be truncated, and any leases on the out file will have been broken.  This
 * function borrows heavily from xfs_file_aio_write_checks.
1279 1280 1281 1282
 *
 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
 * checked that the bytes beyond EOF physically match. Hence we cannot use the
 * EOF block in the source dedupe range because it's not a complete block match,
1283
 * hence can introduce a corruption into the file that has it's block replaced.
1284
 *
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
 * "block aligned" for the purposes of cloning entire files.  However, if the
 * source file range includes the EOF block and it lands within the existing EOF
 * of the destination file, then we can expose stale data from beyond the source
 * file EOF in the destination file.
 *
 * XFS doesn't support partial block sharing, so in both cases we have check
 * these cases ourselves. For dedupe, we can simply round the length to dedupe
 * down to the previous whole block and ignore the partial EOF block. While this
 * means we can't dedupe the last block of a file, this is an acceptible
 * tradeoff for simplicity on implementation.
 *
 * For cloning, we want to share the partial EOF block if it is also the new EOF
 * block of the destination file. If the partial EOF block lies inside the
 * existing destination EOF, then we have to abort the clone to avoid exposing
 * stale data in the destination file. Hence we reject these clone attempts with
 * -EINVAL in this case.
1302
 */
1303 1304
STATIC int
xfs_reflink_remap_prep(
1305 1306 1307 1308
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
1309
	loff_t			*len,
1310
	unsigned int		remap_flags)
1311
{
1312 1313 1314 1315 1316 1317
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);
	ssize_t			ret;
1318

1319
	/* Lock both files against IO */
1320 1321 1322
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1323
	if (same_inode)
1324
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1325
	else
1326
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1327
				XFS_MMAPLOCK_EXCL);
1328

1329
	/* Check file eligibility and prepare for block sharing. */
1330
	ret = -EINVAL;
1331 1332
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1333 1334 1335 1336 1337 1338
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1339
	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1340
			len, remap_flags);
1341
	if (ret < 0 || *len == 0)
1342 1343
		goto out_unlock;

1344
	/* Attach dquots to dest inode before changing block map */
1345
	ret = xfs_qm_dqattach(dest);
1346 1347 1348
	if (ret)
		goto out_unlock;

1349
	/*
1350 1351
	 * Zero existing post-eof speculative preallocations in the destination
	 * file.
1352
	 */
1353 1354 1355
	ret = xfs_reflink_zero_posteof(dest, pos_out);
	if (ret)
		goto out_unlock;
1356

1357
	/* Set flags and remap blocks. */
1358 1359 1360
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1361

1362
	/* Zap any page cache for the destination file's range. */
1363 1364 1365
	truncate_inode_pages_range(&inode_out->i_data,
			round_down(pos_out, PAGE_SIZE),
			round_up(pos_out + *len, PAGE_SIZE) - 1);
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375
	return 1;
out_unlock:
	xfs_reflink_remap_unlock(file_in, file_out);
	return ret;
}

/*
 * Link a range of blocks from one file to another.
 */
1376
loff_t
1377 1378 1379 1380 1381
xfs_reflink_remap_range(
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
1382
	loff_t			len,
1383
	unsigned int		remap_flags)
1384 1385 1386 1387 1388 1389
{
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	struct xfs_mount	*mp = src->i_mount;
1390
	loff_t			remapped = 0;
1391
	xfs_extlen_t		cowextsize;
1392
	int			ret;
1393 1394 1395 1396 1397 1398 1399 1400 1401

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return -EOPNOTSUPP;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	/* Prepare and then clone file data. */
	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1402
			&len, remap_flags);
1403
	if (ret < 0 || len == 0)
1404 1405 1406 1407
		return ret;

	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);

1408 1409
	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
			&remapped);
1410 1411
	if (ret)
		goto out_unlock;
1412

1413 1414 1415 1416 1417 1418
	/*
	 * Carry the cowextsize hint from src to dest if we're sharing the
	 * entire source file to the entire destination file, the source file
	 * has a cowextsize hint, and the destination file does not.
	 */
	cowextsize = 0;
1419
	if (pos_in == 0 && len == i_size_read(inode_in) &&
1420
	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1421
	    pos_out == 0 && len >= i_size_read(inode_out) &&
1422 1423 1424
	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
		cowextsize = src->i_d.di_cowextsize;

1425
	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1426
			remap_flags);
1427

1428
out_unlock:
1429
	xfs_reflink_remap_unlock(file_in, file_out);
1430 1431
	if (ret)
		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1432
	return remapped > 0 ? remapped : ret;
1433
}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

/*
 * The user wants to preemptively CoW all shared blocks in this file,
 * which enables us to turn off the reflink flag.  Iterate all
 * extents which are not prealloc/delalloc to see which ranges are
 * mentioned in the refcount tree, then read those blocks into the
 * pagecache, dirty them, fsync them back out, and then we can update
 * the inode flag.  What happens if we run out of memory? :)
 */
STATIC int
xfs_reflink_dirty_extents(
	struct xfs_inode	*ip,
	xfs_fileoff_t		fbno,
	xfs_filblks_t		end,
	xfs_off_t		isize)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		rbno;
	xfs_extlen_t		rlen;
	xfs_off_t		fpos;
	xfs_off_t		flen;
	struct xfs_bmbt_irec	map[2];
	int			nmaps;
D
Darrick J. Wong 已提交
1460
	int			error = 0;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	while (end - fbno > 0) {
		nmaps = 1;
		/*
		 * Look for extents in the file.  Skip holes, delalloc, or
		 * unwritten extents; they can't be reflinked.
		 */
		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0)
			break;
1473
		if (!xfs_bmap_is_real_extent(&map[0]))
1474 1475 1476 1477 1478 1479 1480 1481
			goto next;

		map[1] = map[0];
		while (map[1].br_blockcount) {
			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
			aglen = map[1].br_blockcount;

1482 1483
			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
					aglen, &rbno, &rlen, true);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
			if (error)
				goto out;
			if (rbno == NULLAGBLOCK)
				break;

			/* Dirty the pages */
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
					(rbno - agbno));
			flen = XFS_FSB_TO_B(mp, rlen);
			if (fpos + flen > isize)
				flen = isize - fpos;
			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
					&xfs_iomap_ops);
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			if (error)
				goto out;

			map[1].br_blockcount -= (rbno - agbno + rlen);
			map[1].br_startoff += (rbno - agbno + rlen);
			map[1].br_startblock += (rbno - agbno + rlen);
		}

next:
		fbno = map[0].br_startoff + map[0].br_blockcount;
	}
out:
	return error;
}

1514
/* Does this inode need the reflink flag? */
1515
int
1516 1517 1518 1519
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1520
{
1521 1522 1523 1524 1525 1526 1527 1528
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1529
	struct xfs_iext_cursor		icur;
1530 1531
	bool				found;
	int				error;
1532

1533 1534 1535
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1536 1537
		if (error)
			return error;
1538
	}
1539

1540
	*has_shared = false;
1541
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1542 1543 1544 1545 1546 1547 1548
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1549

1550
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1551 1552 1553 1554
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1555 1556
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1557
			return 0;
1558
		}
1559
next:
1560
		found = xfs_iext_next_extent(ifp, &icur, &got);
1561 1562
	}

1563 1564 1565
	return 0;
}

1566 1567 1568 1569 1570 1571
/*
 * Clear the inode reflink flag if there are no shared extents.
 *
 * The caller is responsible for joining the inode to the transaction passed in.
 * The inode will be joined to the transaction that is returned to the caller.
 */
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1586 1587 1588 1589
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1590
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1591 1592 1593 1594 1595 1596
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1597
	xfs_inode_clear_cowblocks_tag(ip);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1609
	struct xfs_inode	*ip)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		fbno;
	xfs_filblks_t		end;
	xfs_off_t		isize;
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

	inode_dio_wait(VFS_I(ip));

	/* Try to CoW the selected ranges */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1665
	fbno = XFS_B_TO_FSBT(mp, offset);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	isize = i_size_read(VFS_I(ip));
	end = XFS_B_TO_FSB(mp, offset + len);
	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
	if (error)
		goto out_unlock;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* Wait for the IO to finish */
	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
	if (error)
		goto out;

1678 1679 1680 1681
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1682 1683 1684 1685 1686 1687 1688 1689 1690

	return 0;

out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}