xfs_reflink.c 42.9 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
D
Darrick J. Wong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
29
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
30 31 32 33 34 35 36 37 38
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
39
#include "xfs_iomap.h"
40
#include "xfs_rmap_btree.h"
41 42
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
69 70 71 72 73 74 75 76
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
77
 * When dirty pages are being written out (typically in writepage), the
78 79 80 81 82 83 84
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
99 100 101 102 103 104 105 106
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
107 108 109 110 111 112
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
113 114 115 116 117 118 119 120 121
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
122 123 124 125 126 127 128 129 130
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
131 132 133 134 135 136 137 138 139 140 141

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
142
	struct xfs_trans	*tp,
143 144 145 146 147 148 149 150 151 152 153
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

154
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 156
	if (error)
		return error;
157 158
	if (!agbp)
		return -ENOMEM;
159

160
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 162 163 164 165 166

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);

167
	xfs_trans_brelse(tp, agbp);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
196
	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 198 199 200 201 202 203 204 205 206
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

207
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

241 242 243 244 245 246 247 248 249 250 251
/*
 * Trim the passed in imap to the next shared/unshared extent boundary, and
 * if imap->br_startoff points to a shared extent reserve space for it in the
 * COW fork.  In this case *shared is set to true, else to false.
 *
 * Note that imap will always contain the block numbers for the existing blocks
 * in the data fork, as the upper layers need them for read-modify-write
 * operations.
 */
int
xfs_reflink_reserve_cow(
252
	struct xfs_inode	*ip,
253 254
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
255
{
256 257 258 259
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec	got;
	int			error = 0;
	bool			eof = false, trimmed;
260
	struct xfs_iext_cursor	icur;
261

262 263 264 265 266 267 268 269
	/*
	 * Search the COW fork extent list first.  This serves two purposes:
	 * first this implement the speculative preallocation using cowextisze,
	 * so that we also unshared block adjacent to shared blocks instead
	 * of just the shared blocks themselves.  Second the lookup in the
	 * extent list is generally faster than going out to the shared extent
	 * tree.
	 */
270

271
	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272
		eof = true;
273 274 275
	if (!eof && got.br_startoff <= imap->br_startoff) {
		trace_xfs_reflink_cow_found(ip, imap);
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276

277 278 279
		*shared = true;
		return 0;
	}
280 281

	/* Trim the mapping to the nearest shared extent boundary. */
282
	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283
	if (error)
284
		return error;
285 286

	/* Not shared?  Just report the (potentially capped) extent. */
287 288
	if (!*shared)
		return 0;
289 290 291 292 293

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
294
	error = xfs_qm_dqattach_locked(ip, false);
295
	if (error)
296 297 298
		return error;

	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299
			imap->br_blockcount, 0, &got, &icur, eof);
300
	if (error == -ENOSPC || error == -EDQUOT)
301
		trace_xfs_reflink_cow_enospc(ip, imap);
302
	if (error)
303
		return error;
304

305
	trace_xfs_reflink_cow_alloc(ip, &got);
306
	return 0;
307
}
308

309 310 311 312 313 314
/* Convert part of an unwritten CoW extent to a real one. */
STATIC int
xfs_reflink_convert_cow_extent(
	struct xfs_inode		*ip,
	struct xfs_bmbt_irec		*imap,
	xfs_fileoff_t			offset_fsb,
315
	xfs_filblks_t			count_fsb)
316 317 318 319 320 321
{
	int				nimaps = 1;

	if (imap->br_state == XFS_EXT_NORM)
		return 0;

322 323 324
	xfs_trim_extent(imap, offset_fsb, count_fsb);
	trace_xfs_reflink_convert_cow(ip, imap);
	if (imap->br_blockcount == 0)
325
		return 0;
326
	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
327 328
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, NULL, 0, imap,
			&nimaps);
329 330 331 332 333 334 335 336 337 338 339 340
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
341 342 343
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
	struct xfs_bmbt_irec	imap;
	int			nimaps = 1, error = 0;
344

345
	ASSERT(count != 0);
346

347 348 349
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
350
			XFS_BMAPI_CONVERT_ONLY, NULL, 0, &imap, &nimaps);
351 352 353 354
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

355
/* Allocate all CoW reservations covering a range of blocks in a file. */
356 357
int
xfs_reflink_allocate_cow(
358
	struct xfs_inode	*ip,
359 360 361
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	uint			*lockmode)
362 363
{
	struct xfs_mount	*mp = ip->i_mount;
364 365 366
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_bmbt_irec	got;
367
	struct xfs_defer_ops	dfops;
368 369 370
	struct xfs_trans	*tp = NULL;
	int			nimaps, error = 0;
	bool			trimmed;
371
	xfs_filblks_t		resaligned;
372
	xfs_extlen_t		resblks = 0;
373
	struct xfs_iext_cursor	icur;
374

375 376
retry:
	ASSERT(xfs_is_reflink_inode(ip));
377
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
378

379 380 381 382
	/*
	 * Even if the extent is not shared we might have a preallocation for
	 * it in the COW fork.  If so use it.
	 */
383
	if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) &&
384 385 386
	    got.br_startoff <= offset_fsb) {
		*shared = true;

387 388
		/* If we have a real allocation in the COW fork we're done. */
		if (!isnullstartblock(got.br_startblock)) {
389 390 391
			xfs_trim_extent(&got, offset_fsb, count_fsb);
			*imap = got;
			goto convert;
392
		}
393 394

		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
395
	} else {
396 397 398 399
		error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
		if (error || !*shared)
			goto out;
	}
400

401 402 403 404
	if (!tp) {
		resaligned = xfs_aligned_fsb_count(imap->br_startoff,
			imap->br_blockcount, xfs_get_cowextsz_hint(ip));
		resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
405

406 407 408 409
		xfs_iunlock(ip, *lockmode);
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
		*lockmode = XFS_ILOCK_EXCL;
		xfs_ilock(ip, *lockmode);
410

411 412 413
		if (error)
			return error;

414
		error = xfs_qm_dqattach_locked(ip, false);
415 416 417
		if (error)
			goto out;
		goto retry;
418 419 420 421
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
422
	if (error)
423
		goto out;
424

425 426
	xfs_trans_ijoin(tp, ip, 0);

427
	xfs_defer_init(tp, &dfops, &tp->t_firstblock);
428
	nimaps = 1;
429

430
	/* Allocate the entire reservation as unwritten blocks. */
431
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
432 433
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
			&tp->t_firstblock, resblks, imap, &nimaps);
434
	if (error)
435
		goto out_bmap_cancel;
436

437 438
	xfs_inode_set_cowblocks_tag(ip);

439
	/* Finish up. */
440
	error = xfs_defer_finish(&tp, tp->t_dfops);
441
	if (error)
442
		goto out_bmap_cancel;
443 444

	error = xfs_trans_commit(tp);
445
	if (error)
446
		return error;
447 448 449 450 451 452 453

	/*
	 * Allocation succeeded but the requested range was not even partially
	 * satisfied?  Bail out!
	 */
	if (nimaps == 0)
		return -ENOSPC;
454
convert:
455
	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
456
out_bmap_cancel:
457
	xfs_defer_cancel(tp->t_dfops);
458 459
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
460 461 462 463
out:
	if (tp)
		xfs_trans_cancel(tp);
	return error;
464 465
}

466
/*
467 468 469 470
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
471 472 473
 *
 * Caller must have already joined the inode to the current transaction. The
 * inode will be joined to the transaction returned to the caller.
474 475 476 477 478 479
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
480 481
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
482
{
483
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
484
	struct xfs_bmbt_irec		got, del;
485
	struct xfs_iext_cursor		icur;
486 487
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
488
	struct xfs_defer_ops		*odfops = (*tpp)->t_dfops;
489
	int				error = 0;
490 491 492

	if (!xfs_is_reflink_inode(ip))
		return 0;
493
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
494
		return 0;
495

496 497
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
498 499
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
500 501 502 503 504 505 506

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

507
		trace_xfs_reflink_cancel_cow(ip, &del);
508

509 510
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
511
					&icur, &got, &del);
512 513
			if (error)
				break;
514
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
515
			xfs_defer_init(*tpp, &dfops, &firstfsb);
516

517 518
			/* Free the CoW orphan record. */
			error = xfs_refcount_free_cow_extent(ip->i_mount,
519
					(*tpp)->t_dfops, del.br_startblock,
520
					del.br_blockcount);
521 522 523
			if (error)
				break;

524
			xfs_bmap_add_free(ip->i_mount, (*tpp)->t_dfops,
525
					del.br_startblock, del.br_blockcount,
526 527 528
					NULL);

			/* Roll the transaction */
529 530
			xfs_defer_ijoin((*tpp)->t_dfops, ip);
			error = xfs_defer_finish(tpp, (*tpp)->t_dfops);
531
			if (error) {
532
				xfs_defer_cancel((*tpp)->t_dfops);
533 534 535 536
				break;
			}

			/* Remove the mapping from the CoW fork. */
537
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
538 539 540 541 542 543 544

			/* Remove the quota reservation */
			error = xfs_trans_reserve_quota_nblks(NULL, ip,
					-(long)del.br_blockcount, 0,
					XFS_QMOPT_RES_REGBLKS);
			if (error)
				break;
545 546 547
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
548
		}
549 550
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
551
			break;
552 553
	}

554 555 556
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);
557
	(*tpp)->t_dfops = odfops;
558 559 560 561
	return error;
}

/*
562 563 564 565
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
566 567 568 569 570
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
571 572
	xfs_off_t		count,
	bool			cancel_real)
573 574 575 576 577 578 579
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
580
	ASSERT(xfs_is_reflink_inode(ip));
581 582 583 584 585 586 587 588 589

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
590
			0, 0, XFS_TRANS_NOFS, &tp);
591 592 593 594 595 596 597
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
598 599
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
625
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
626
	struct xfs_bmbt_irec		got, del;
627 628 629 630
	struct xfs_trans		*tp;
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	struct xfs_defer_ops		dfops;
631
	int				error;
632 633
	unsigned int			resblks;
	xfs_filblks_t			rlen;
634
	struct xfs_iext_cursor		icur;
635 636 637

	trace_xfs_reflink_end_cow(ip, offset, count);

638 639 640 641
	/* No COW extents?  That's easy! */
	if (ifp->if_bytes == 0)
		return 0;

642 643 644
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * Start a rolling transaction to switch the mappings.  We're
	 * unlikely ever to have to remap 16T worth of single-block
	 * extents, so just cap the worst case extent count to 2^32-1.
	 * Stick a warning in just in case, and avoid 64-bit division.
	 */
	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
	if (end_fsb - offset_fsb > UINT_MAX) {
		error = -EFSCORRUPTED;
		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
		ASSERT(0);
		goto out;
	}
	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
			(unsigned int)(end_fsb - offset_fsb),
			XFS_DATA_FORK);
661
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
662
			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
663 664 665 666 667 668
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

669 670 671 672 673
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
674
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
675
		goto out_cancel;
676

677 678 679 680 681
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);

682
		/* Extent delete may have bumped ext forward */
683 684
		if (!del.br_blockcount)
			goto prev_extent;
685 686

		ASSERT(!isnullstartblock(got.br_startblock));
687

688 689 690 691 692
		/*
		 * Don't remap unwritten extents; these are
		 * speculatively preallocated CoW extents that have been
		 * allocated but have not yet been involved in a write.
		 */
693 694
		if (got.br_state == XFS_EXT_UNWRITTEN)
			goto prev_extent;
695

696
		/* Unmap the old blocks in the data fork. */
697
		xfs_defer_init(tp, &dfops, &tp->t_firstblock);
698 699
		rlen = del.br_blockcount;
		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
700
				&tp->t_firstblock);
701 702
		if (error)
			goto out_defer;
703

704 705 706 707 708 709
		/* Trim the extent to whatever got unmapped. */
		if (rlen) {
			xfs_trim_extent(&del, del.br_startoff + rlen,
				del.br_blockcount - rlen);
		}
		trace_xfs_reflink_cow_remap(ip, &del);
710

711
		/* Free the CoW orphan record. */
712
		error = xfs_refcount_free_cow_extent(tp->t_mountp, tp->t_dfops,
713 714 715
				del.br_startblock, del.br_blockcount);
		if (error)
			goto out_defer;
716

717
		/* Map the new blocks into the data fork. */
718 719
		error = xfs_bmap_map_extent(tp->t_mountp, tp->t_dfops, ip,
					    &del);
720 721
		if (error)
			goto out_defer;
722

723 724 725 726
		/* Charge this new data fork mapping to the on-disk quota. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
				(long)del.br_blockcount);

727
		/* Remove the mapping from the CoW fork. */
728
		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
729

730 731
		xfs_defer_ijoin(tp->t_dfops, ip);
		error = xfs_defer_finish(&tp, tp->t_dfops);
732 733
		if (error)
			goto out_defer;
734
		if (!xfs_iext_get_extent(ifp, &icur, &got))
735
			break;
736 737 738 739
		continue;
prev_extent:
		if (!xfs_iext_prev_extent(ifp, &icur, &got))
			break;
740 741 742 743 744 745 746 747 748
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
749
	xfs_defer_cancel(tp->t_dfops);
750
out_cancel:
751 752 753 754 755 756
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
	return error;
}
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
879
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
914
 * Update destination inode size & cowextsize hint, if necessary.
915 916 917 918
 */
STATIC int
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
919
	xfs_off_t		newlen,
920 921
	xfs_extlen_t		cowextsize,
	bool			is_dedupe)
922 923 924 925 926
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

927
	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
928 929 930 931 932 933 934 935 936
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

937 938 939 940 941 942 943 944 945 946 947
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

948 949 950 951
	if (!is_dedupe) {
		xfs_trans_ichgtime(tp, dest,
				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}
952 953 954 955 956 957 958 959 960 961 962 963
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
982
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
983 984 985 986 987 988
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
1002
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct xfs_trans	*tp;
	unsigned int		resblks;
	struct xfs_defer_ops	dfops;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1015 1016 1017 1018 1019 1020 1021 1022
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
1046 1047 1048
		xfs_defer_init(tp, &dfops, &tp->t_firstblock);
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
				      &tp->t_firstblock);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		if (error)
			goto out_defer;

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
1069
		error = xfs_refcount_increase_extent(mp, tp->t_dfops, &uirec);
1070 1071 1072 1073
		if (error)
			goto out_defer;

		/* Map the new blocks into the data fork. */
1074
		error = xfs_bmap_map_extent(mp, tp->t_dfops, ip, &uirec);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		if (error)
			goto out_defer;

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1095 1096
		xfs_defer_ijoin(tp->t_dfops, ip);
		error = xfs_defer_finish(&tp, tp->t_dfops);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		if (error)
			goto out_defer;
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
1108
	xfs_defer_cancel(tp->t_dfops);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
STATIC int
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
	xfs_fileoff_t		srcoff,
	struct xfs_inode	*dest,
	xfs_fileoff_t		destoff,
	xfs_filblks_t		len,
	xfs_off_t		new_isize)
{
	struct xfs_bmbt_irec	imap;
	int			nimaps;
	int			error = 0;
	xfs_filblks_t		range_len;

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
1136 1137
		uint		lock_mode;

1138 1139
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
1140

1141 1142
		/* Read extent from the source file */
		nimaps = 1;
1143
		lock_mode = xfs_ilock_data_map_shared(src);
1144
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1145
		xfs_iunlock(src, lock_mode);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		if (error)
			goto err;
		ASSERT(nimaps == 1);

		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
			goto err;

		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto err;
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
	}

	return 0;

err:
	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
	return error;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Grab the exclusive iolock for a data copy from src to dest, making
 * sure to abide vfs locking order (lowest pointer value goes first) and
 * breaking the pnfs layout leases on dest before proceeding.  The loop
 * is needed because we cannot call the blocking break_layout() with the
 * src iolock held, and therefore have to back out both locks.
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

retry:
	if (src < dest) {
1197
		inode_lock_shared(src);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		inode_lock_nested(dest, I_MUTEX_NONDIR2);
	} else {
		/* src >= dest */
		inode_lock(dest);
	}

	error = break_layout(dest, false);
	if (error == -EWOULDBLOCK) {
		inode_unlock(dest);
		if (src < dest)
1208
			inode_unlock_shared(src);
1209 1210 1211 1212 1213 1214 1215 1216
		error = break_layout(dest, true);
		if (error)
			return error;
		goto retry;
	}
	if (error) {
		inode_unlock(dest);
		if (src < dest)
1217
			inode_unlock_shared(src);
1218 1219 1220
		return error;
	}
	if (src > dest)
1221
		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1222 1223 1224
	return 0;
}

1225 1226 1227 1228 1229
/*
 * Link a range of blocks from one file to another.
 */
int
xfs_reflink_remap_range(
1230 1231 1232 1233 1234 1235
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
	u64			len,
	bool			is_dedupe)
1236
{
1237 1238 1239 1240
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
1241
	struct xfs_mount	*mp = src->i_mount;
1242
	bool			same_inode = (inode_in == inode_out);
1243 1244
	xfs_fileoff_t		sfsbno, dfsbno;
	xfs_filblks_t		fsblen;
1245
	xfs_extlen_t		cowextsize;
1246
	ssize_t			ret;
1247 1248 1249 1250 1251 1252 1253

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return -EOPNOTSUPP;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1254
	/* Lock both files against IO */
1255 1256 1257
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1258
	if (same_inode)
1259
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1260
	else
1261
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1262
				XFS_MMAPLOCK_EXCL);
1263

1264
	/* Check file eligibility and prepare for block sharing. */
1265
	ret = -EINVAL;
1266 1267
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1268 1269 1270 1271 1272 1273
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1274 1275
	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
			&len, is_dedupe);
1276
	if (ret <= 0)
1277 1278
		goto out_unlock;

1279
	/* Attach dquots to dest inode before changing block map */
1280
	ret = xfs_qm_dqattach(dest);
1281 1282 1283
	if (ret)
		goto out_unlock;

1284
	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * Clear out post-eof preallocations because we don't have page cache
	 * backing the delayed allocations and they'll never get freed on
	 * their own.
	 */
	if (xfs_can_free_eofblocks(dest, true)) {
		ret = xfs_free_eofblocks(dest);
		if (ret)
			goto out_unlock;
	}

1297
	/* Set flags and remap blocks. */
1298 1299 1300
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1301

1302 1303
	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1304
	fsblen = XFS_B_TO_FSB(mp, len);
1305 1306 1307 1308
	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
			pos_out + len);
	if (ret)
		goto out_unlock;
1309

1310 1311 1312 1313
	/* Zap any page cache for the destination file's range. */
	truncate_inode_pages_range(&inode_out->i_data, pos_out,
				   PAGE_ALIGN(pos_out + len) - 1);

1314 1315 1316 1317 1318 1319
	/*
	 * Carry the cowextsize hint from src to dest if we're sharing the
	 * entire source file to the entire destination file, the source file
	 * has a cowextsize hint, and the destination file does not.
	 */
	cowextsize = 0;
1320
	if (pos_in == 0 && len == i_size_read(inode_in) &&
1321
	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1322
	    pos_out == 0 && len >= i_size_read(inode_out) &&
1323 1324 1325
	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
		cowextsize = src->i_d.di_cowextsize;

1326 1327
	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
			is_dedupe);
1328

1329
out_unlock:
1330 1331 1332 1333
	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
	if (!same_inode)
		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
	inode_unlock(inode_out);
1334
	if (!same_inode)
1335
		inode_unlock_shared(inode_in);
1336 1337 1338
	if (ret)
		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
	return ret;
1339
}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

/*
 * The user wants to preemptively CoW all shared blocks in this file,
 * which enables us to turn off the reflink flag.  Iterate all
 * extents which are not prealloc/delalloc to see which ranges are
 * mentioned in the refcount tree, then read those blocks into the
 * pagecache, dirty them, fsync them back out, and then we can update
 * the inode flag.  What happens if we run out of memory? :)
 */
STATIC int
xfs_reflink_dirty_extents(
	struct xfs_inode	*ip,
	xfs_fileoff_t		fbno,
	xfs_filblks_t		end,
	xfs_off_t		isize)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		rbno;
	xfs_extlen_t		rlen;
	xfs_off_t		fpos;
	xfs_off_t		flen;
	struct xfs_bmbt_irec	map[2];
	int			nmaps;
D
Darrick J. Wong 已提交
1366
	int			error = 0;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	while (end - fbno > 0) {
		nmaps = 1;
		/*
		 * Look for extents in the file.  Skip holes, delalloc, or
		 * unwritten extents; they can't be reflinked.
		 */
		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0)
			break;
1379
		if (!xfs_bmap_is_real_extent(&map[0]))
1380 1381 1382 1383 1384 1385 1386 1387
			goto next;

		map[1] = map[0];
		while (map[1].br_blockcount) {
			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
			aglen = map[1].br_blockcount;

1388 1389
			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
					aglen, &rbno, &rlen, true);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
			if (error)
				goto out;
			if (rbno == NULLAGBLOCK)
				break;

			/* Dirty the pages */
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
					(rbno - agbno));
			flen = XFS_FSB_TO_B(mp, rlen);
			if (fpos + flen > isize)
				flen = isize - fpos;
			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
					&xfs_iomap_ops);
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			if (error)
				goto out;

			map[1].br_blockcount -= (rbno - agbno + rlen);
			map[1].br_startoff += (rbno - agbno + rlen);
			map[1].br_startblock += (rbno - agbno + rlen);
		}

next:
		fbno = map[0].br_startoff + map[0].br_blockcount;
	}
out:
	return error;
}

1420
/* Does this inode need the reflink flag? */
1421
int
1422 1423 1424 1425
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1426
{
1427 1428 1429 1430 1431 1432 1433 1434
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1435
	struct xfs_iext_cursor		icur;
1436 1437
	bool				found;
	int				error;
1438

1439 1440 1441
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1442 1443
		if (error)
			return error;
1444
	}
1445

1446
	*has_shared = false;
1447
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1448 1449 1450 1451 1452 1453 1454
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1455

1456
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1457 1458 1459 1460
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1461 1462
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1463
			return 0;
1464
		}
1465
next:
1466
		found = xfs_iext_next_extent(ifp, &icur, &got);
1467 1468
	}

1469 1470 1471
	return 0;
}

1472 1473 1474 1475 1476 1477
/*
 * Clear the inode reflink flag if there are no shared extents.
 *
 * The caller is responsible for joining the inode to the transaction passed in.
 * The inode will be joined to the transaction that is returned to the caller.
 */
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1492 1493 1494 1495
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1496
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1497 1498 1499 1500 1501 1502
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1503
	xfs_inode_clear_cowblocks_tag(ip);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1515
	struct xfs_inode	*ip)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		fbno;
	xfs_filblks_t		end;
	xfs_off_t		isize;
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

	inode_dio_wait(VFS_I(ip));

	/* Try to CoW the selected ranges */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1571
	fbno = XFS_B_TO_FSBT(mp, offset);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	isize = i_size_read(VFS_I(ip));
	end = XFS_B_TO_FSB(mp, offset + len);
	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
	if (error)
		goto out_unlock;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* Wait for the IO to finish */
	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
	if (error)
		goto out;

1584 1585 1586 1587
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1588 1589 1590 1591 1592 1593 1594 1595 1596

	return 0;

out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}