xfs_reflink.c 42.1 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
D
Darrick J. Wong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
29
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
30 31 32 33 34 35 36 37 38
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
39
#include "xfs_iomap.h"
40
#include "xfs_rmap_btree.h"
41 42
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
69 70 71 72 73 74 75 76
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
77
 * When dirty pages are being written out (typically in writepage), the
78 79 80 81 82 83 84
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
99 100 101 102 103 104 105 106
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
107 108 109 110 111 112
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
113 114 115 116 117 118 119 120 121
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
122 123 124 125 126 127 128 129 130
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
131 132 133 134 135 136 137 138 139 140 141

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
142
	struct xfs_trans	*tp,
143 144 145 146 147 148 149 150 151 152 153
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

154
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 156
	if (error)
		return error;
157 158
	if (!agbp)
		return -ENOMEM;
159

160
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 162 163 164

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

165
	xfs_btree_del_cursor(cur, error);
166

167
	xfs_trans_brelse(tp, agbp);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
196
	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
197 198 199 200 201 202 203 204 205 206
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

207
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

241 242 243 244 245 246 247 248 249 250 251
/*
 * Trim the passed in imap to the next shared/unshared extent boundary, and
 * if imap->br_startoff points to a shared extent reserve space for it in the
 * COW fork.  In this case *shared is set to true, else to false.
 *
 * Note that imap will always contain the block numbers for the existing blocks
 * in the data fork, as the upper layers need them for read-modify-write
 * operations.
 */
int
xfs_reflink_reserve_cow(
252
	struct xfs_inode	*ip,
253 254
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
255
{
256 257 258 259
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec	got;
	int			error = 0;
	bool			eof = false, trimmed;
260
	struct xfs_iext_cursor	icur;
261

262 263 264 265 266 267 268 269
	/*
	 * Search the COW fork extent list first.  This serves two purposes:
	 * first this implement the speculative preallocation using cowextisze,
	 * so that we also unshared block adjacent to shared blocks instead
	 * of just the shared blocks themselves.  Second the lookup in the
	 * extent list is generally faster than going out to the shared extent
	 * tree.
	 */
270

271
	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
272
		eof = true;
273 274 275
	if (!eof && got.br_startoff <= imap->br_startoff) {
		trace_xfs_reflink_cow_found(ip, imap);
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
276

277 278 279
		*shared = true;
		return 0;
	}
280 281

	/* Trim the mapping to the nearest shared extent boundary. */
282
	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
283
	if (error)
284
		return error;
285 286

	/* Not shared?  Just report the (potentially capped) extent. */
287 288
	if (!*shared)
		return 0;
289 290 291 292 293

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
294
	error = xfs_qm_dqattach_locked(ip, false);
295
	if (error)
296 297 298
		return error;

	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
299
			imap->br_blockcount, 0, &got, &icur, eof);
300
	if (error == -ENOSPC || error == -EDQUOT)
301
		trace_xfs_reflink_cow_enospc(ip, imap);
302
	if (error)
303
		return error;
304

305
	trace_xfs_reflink_cow_alloc(ip, &got);
306
	return 0;
307
}
308

309 310 311 312 313 314
/* Convert part of an unwritten CoW extent to a real one. */
STATIC int
xfs_reflink_convert_cow_extent(
	struct xfs_inode		*ip,
	struct xfs_bmbt_irec		*imap,
	xfs_fileoff_t			offset_fsb,
315
	xfs_filblks_t			count_fsb)
316 317 318 319 320 321
{
	int				nimaps = 1;

	if (imap->br_state == XFS_EXT_NORM)
		return 0;

322 323 324
	xfs_trim_extent(imap, offset_fsb, count_fsb);
	trace_xfs_reflink_convert_cow(ip, imap);
	if (imap->br_blockcount == 0)
325
		return 0;
326
	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
327
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
328
			&nimaps);
329 330 331 332 333 334 335 336 337 338 339 340
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
341 342 343
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
	struct xfs_bmbt_irec	imap;
	int			nimaps = 1, error = 0;
344

345
	ASSERT(count != 0);
346

347 348 349
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
350
			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
351 352 353 354
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

355
/* Allocate all CoW reservations covering a range of blocks in a file. */
356 357
int
xfs_reflink_allocate_cow(
358
	struct xfs_inode	*ip,
359 360 361
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	uint			*lockmode)
362 363
{
	struct xfs_mount	*mp = ip->i_mount;
364 365 366 367 368 369
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_bmbt_irec	got;
	struct xfs_trans	*tp = NULL;
	int			nimaps, error = 0;
	bool			trimmed;
370
	xfs_filblks_t		resaligned;
371
	xfs_extlen_t		resblks = 0;
372
	struct xfs_iext_cursor	icur;
373

374 375
retry:
	ASSERT(xfs_is_reflink_inode(ip));
376
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
377

378 379 380 381
	/*
	 * Even if the extent is not shared we might have a preallocation for
	 * it in the COW fork.  If so use it.
	 */
382
	if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) &&
383 384 385
	    got.br_startoff <= offset_fsb) {
		*shared = true;

386 387
		/* If we have a real allocation in the COW fork we're done. */
		if (!isnullstartblock(got.br_startblock)) {
388 389 390
			xfs_trim_extent(&got, offset_fsb, count_fsb);
			*imap = got;
			goto convert;
391
		}
392 393

		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
394
	} else {
395 396 397 398
		error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
		if (error || !*shared)
			goto out;
	}
399

400 401 402 403
	if (!tp) {
		resaligned = xfs_aligned_fsb_count(imap->br_startoff,
			imap->br_blockcount, xfs_get_cowextsz_hint(ip));
		resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
404

405 406 407 408
		xfs_iunlock(ip, *lockmode);
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
		*lockmode = XFS_ILOCK_EXCL;
		xfs_ilock(ip, *lockmode);
409

410 411 412
		if (error)
			return error;

413
		error = xfs_qm_dqattach_locked(ip, false);
414 415 416
		if (error)
			goto out;
		goto retry;
417 418 419 420
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
421
	if (error)
422
		goto out;
423

424 425 426
	xfs_trans_ijoin(tp, ip, 0);

	nimaps = 1;
427

428
	/* Allocate the entire reservation as unwritten blocks. */
429
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
430
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
431
			resblks, imap, &nimaps);
432
	if (error)
433
		goto out_trans_cancel;
434

435 436
	xfs_inode_set_cowblocks_tag(ip);

437
	/* Finish up. */
438
	error = xfs_trans_commit(tp);
439
	if (error)
440
		return error;
441 442 443 444 445 446 447

	/*
	 * Allocation succeeded but the requested range was not even partially
	 * satisfied?  Bail out!
	 */
	if (nimaps == 0)
		return -ENOSPC;
448
convert:
449
	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
450
out_trans_cancel:
451 452
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
453 454 455 456
out:
	if (tp)
		xfs_trans_cancel(tp);
	return error;
457 458
}

459
/*
460 461 462 463
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
464 465 466
 *
 * Caller must have already joined the inode to the current transaction. The
 * inode will be joined to the transaction returned to the caller.
467 468 469 470 471 472
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
473 474
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
475
{
476
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
477
	struct xfs_bmbt_irec		got, del;
478
	struct xfs_iext_cursor		icur;
479
	int				error = 0;
480

481
	if (!xfs_inode_has_cow_data(ip))
482
		return 0;
483
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
484
		return 0;
485

486 487
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
488 489
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
490 491 492 493 494 495 496

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

497
		trace_xfs_reflink_cancel_cow(ip, &del);
498

499 500
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
501
					&icur, &got, &del);
502 503
			if (error)
				break;
504
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
505 506
			ASSERT((*tpp)->t_dfops);
			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
507

508
			/* Free the CoW orphan record. */
509 510
			error = xfs_refcount_free_cow_extent(*tpp,
					del.br_startblock, del.br_blockcount);
511 512 513
			if (error)
				break;

514 515
			xfs_bmap_add_free(*tpp, del.br_startblock,
					  del.br_blockcount, NULL);
516 517

			/* Roll the transaction */
518
			error = xfs_defer_finish(tpp);
519
			if (error)
520 521 522
				break;

			/* Remove the mapping from the CoW fork. */
523
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
524 525 526 527 528 529 530

			/* Remove the quota reservation */
			error = xfs_trans_reserve_quota_nblks(NULL, ip,
					-(long)del.br_blockcount, 0,
					XFS_QMOPT_RES_REGBLKS);
			if (error)
				break;
531 532 533
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
534
		}
535 536
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
537
			break;
538 539
	}

540 541 542
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);
543 544 545 546
	return error;
}

/*
547 548 549 550
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
551 552 553 554 555
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
556 557
	xfs_off_t		count,
	bool			cancel_real)
558 559 560 561 562 563 564
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
565
	ASSERT(xfs_is_reflink_inode(ip));
566 567 568 569 570 571 572 573 574

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
575
			0, 0, XFS_TRANS_NOFS, &tp);
576 577 578 579 580 581 582
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
583 584
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
610
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
611
	struct xfs_bmbt_irec		got, del;
612 613 614
	struct xfs_trans		*tp;
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
615
	int				error;
616 617
	unsigned int			resblks;
	xfs_filblks_t			rlen;
618
	struct xfs_iext_cursor		icur;
619 620 621

	trace_xfs_reflink_end_cow(ip, offset, count);

622 623 624 625
	/* No COW extents?  That's easy! */
	if (ifp->if_bytes == 0)
		return 0;

626 627 628
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	/*
	 * Start a rolling transaction to switch the mappings.  We're
	 * unlikely ever to have to remap 16T worth of single-block
	 * extents, so just cap the worst case extent count to 2^32-1.
	 * Stick a warning in just in case, and avoid 64-bit division.
	 */
	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
	if (end_fsb - offset_fsb > UINT_MAX) {
		error = -EFSCORRUPTED;
		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
		ASSERT(0);
		goto out;
	}
	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
			(unsigned int)(end_fsb - offset_fsb),
			XFS_DATA_FORK);
645
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
646
			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
647 648 649 650 651 652
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

653 654 655 656 657
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
658
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
659
		goto out_cancel;
660

661 662 663 664 665
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);

666
		/* Extent delete may have bumped ext forward */
667 668
		if (!del.br_blockcount)
			goto prev_extent;
669 670

		ASSERT(!isnullstartblock(got.br_startblock));
671

672 673 674 675 676
		/*
		 * Don't remap unwritten extents; these are
		 * speculatively preallocated CoW extents that have been
		 * allocated but have not yet been involved in a write.
		 */
677 678
		if (got.br_state == XFS_EXT_UNWRITTEN)
			goto prev_extent;
679

680
		/* Unmap the old blocks in the data fork. */
681
		ASSERT(tp->t_dfops && tp->t_firstblock == NULLFSBLOCK);
682
		rlen = del.br_blockcount;
683
		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
684
		if (error)
685
			goto out_cancel;
686

687 688 689 690 691 692
		/* Trim the extent to whatever got unmapped. */
		if (rlen) {
			xfs_trim_extent(&del, del.br_startoff + rlen,
				del.br_blockcount - rlen);
		}
		trace_xfs_reflink_cow_remap(ip, &del);
693

694
		/* Free the CoW orphan record. */
695 696
		error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
				del.br_blockcount);
697
		if (error)
698
			goto out_cancel;
699

700
		/* Map the new blocks into the data fork. */
701
		error = xfs_bmap_map_extent(tp, ip, &del);
702
		if (error)
703
			goto out_cancel;
704

705 706 707 708
		/* Charge this new data fork mapping to the on-disk quota. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
				(long)del.br_blockcount);

709
		/* Remove the mapping from the CoW fork. */
710
		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
711

712
		error = xfs_defer_finish(&tp);
713
		if (error)
714
			goto out_cancel;
715
		if (!xfs_iext_get_extent(ifp, &icur, &got))
716
			break;
717 718 719 720
		continue;
prev_extent:
		if (!xfs_iext_prev_extent(ifp, &icur, &got))
			break;
721 722 723 724 725 726 727 728
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

729
out_cancel:
730 731 732 733 734 735
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
	return error;
}
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
858
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
893
 * Update destination inode size & cowextsize hint, if necessary.
894 895 896 897
 */
STATIC int
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
898
	xfs_off_t		newlen,
899 900
	xfs_extlen_t		cowextsize,
	bool			is_dedupe)
901 902 903 904 905
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

906
	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
907 908 909 910 911 912 913 914 915
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

916 917 918 919 920 921 922 923 924 925 926
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

927 928 929 930
	if (!is_dedupe) {
		xfs_trans_ichgtime(tp, dest,
				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}
931 932 933 934 935 936 937 938 939 940 941 942
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
961
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
962 963 964 965 966 967
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
981
	bool			real_extent = xfs_bmap_is_real_extent(irec);
982 983 984 985 986 987 988 989 990 991 992
	struct xfs_trans	*tp;
	unsigned int		resblks;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

993 994 995 996 997 998 999 1000
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
1024
		ASSERT(tp->t_dfops && tp->t_firstblock == NULLFSBLOCK);
1025
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1026
		if (error)
1027
			goto out_cancel;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
1046
		error = xfs_refcount_increase_extent(tp, &uirec);
1047
		if (error)
1048
			goto out_cancel;
1049 1050

		/* Map the new blocks into the data fork. */
1051
		error = xfs_bmap_map_extent(tp, ip, &uirec);
1052
		if (error)
1053
			goto out_cancel;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1072
		error = xfs_defer_finish(&tp);
1073
		if (error)
1074
			goto out_cancel;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
STATIC int
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
	xfs_fileoff_t		srcoff,
	struct xfs_inode	*dest,
	xfs_fileoff_t		destoff,
	xfs_filblks_t		len,
	xfs_off_t		new_isize)
{
	struct xfs_bmbt_irec	imap;
	int			nimaps;
	int			error = 0;
	xfs_filblks_t		range_len;

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
1110 1111
		uint		lock_mode;

1112 1113
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
1114

1115 1116
		/* Read extent from the source file */
		nimaps = 1;
1117
		lock_mode = xfs_ilock_data_map_shared(src);
1118
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1119
		xfs_iunlock(src, lock_mode);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		if (error)
			goto err;
		ASSERT(nimaps == 1);

		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
			goto err;

		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto err;
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
	}

	return 0;

err:
	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
	return error;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Grab the exclusive iolock for a data copy from src to dest, making
 * sure to abide vfs locking order (lowest pointer value goes first) and
 * breaking the pnfs layout leases on dest before proceeding.  The loop
 * is needed because we cannot call the blocking break_layout() with the
 * src iolock held, and therefore have to back out both locks.
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

retry:
	if (src < dest) {
1171
		inode_lock_shared(src);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		inode_lock_nested(dest, I_MUTEX_NONDIR2);
	} else {
		/* src >= dest */
		inode_lock(dest);
	}

	error = break_layout(dest, false);
	if (error == -EWOULDBLOCK) {
		inode_unlock(dest);
		if (src < dest)
1182
			inode_unlock_shared(src);
1183 1184 1185 1186 1187 1188 1189 1190
		error = break_layout(dest, true);
		if (error)
			return error;
		goto retry;
	}
	if (error) {
		inode_unlock(dest);
		if (src < dest)
1191
			inode_unlock_shared(src);
1192 1193 1194
		return error;
	}
	if (src > dest)
1195
		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1196 1197 1198
	return 0;
}

1199 1200 1201 1202 1203
/*
 * Link a range of blocks from one file to another.
 */
int
xfs_reflink_remap_range(
1204 1205 1206 1207 1208 1209
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
	u64			len,
	bool			is_dedupe)
1210
{
1211 1212 1213 1214
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
1215
	struct xfs_mount	*mp = src->i_mount;
1216
	bool			same_inode = (inode_in == inode_out);
1217 1218
	xfs_fileoff_t		sfsbno, dfsbno;
	xfs_filblks_t		fsblen;
1219
	xfs_extlen_t		cowextsize;
1220
	ssize_t			ret;
1221 1222 1223 1224 1225 1226 1227

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return -EOPNOTSUPP;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1228
	/* Lock both files against IO */
1229 1230 1231
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1232
	if (same_inode)
1233
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1234
	else
1235
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1236
				XFS_MMAPLOCK_EXCL);
1237

1238
	/* Check file eligibility and prepare for block sharing. */
1239
	ret = -EINVAL;
1240 1241
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1242 1243 1244 1245 1246 1247
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1248 1249
	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
			&len, is_dedupe);
1250
	if (ret <= 0)
1251 1252
		goto out_unlock;

1253
	/* Attach dquots to dest inode before changing block map */
1254
	ret = xfs_qm_dqattach(dest);
1255 1256 1257
	if (ret)
		goto out_unlock;

1258
	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	/*
	 * Clear out post-eof preallocations because we don't have page cache
	 * backing the delayed allocations and they'll never get freed on
	 * their own.
	 */
	if (xfs_can_free_eofblocks(dest, true)) {
		ret = xfs_free_eofblocks(dest);
		if (ret)
			goto out_unlock;
	}

1271
	/* Set flags and remap blocks. */
1272 1273 1274
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1275

1276 1277
	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1278
	fsblen = XFS_B_TO_FSB(mp, len);
1279 1280 1281 1282
	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
			pos_out + len);
	if (ret)
		goto out_unlock;
1283

1284 1285 1286 1287
	/* Zap any page cache for the destination file's range. */
	truncate_inode_pages_range(&inode_out->i_data, pos_out,
				   PAGE_ALIGN(pos_out + len) - 1);

1288 1289 1290 1291 1292 1293
	/*
	 * Carry the cowextsize hint from src to dest if we're sharing the
	 * entire source file to the entire destination file, the source file
	 * has a cowextsize hint, and the destination file does not.
	 */
	cowextsize = 0;
1294
	if (pos_in == 0 && len == i_size_read(inode_in) &&
1295
	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1296
	    pos_out == 0 && len >= i_size_read(inode_out) &&
1297 1298 1299
	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
		cowextsize = src->i_d.di_cowextsize;

1300 1301
	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
			is_dedupe);
1302

1303
out_unlock:
1304 1305 1306 1307
	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
	if (!same_inode)
		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
	inode_unlock(inode_out);
1308
	if (!same_inode)
1309
		inode_unlock_shared(inode_in);
1310 1311 1312
	if (ret)
		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
	return ret;
1313
}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

/*
 * The user wants to preemptively CoW all shared blocks in this file,
 * which enables us to turn off the reflink flag.  Iterate all
 * extents which are not prealloc/delalloc to see which ranges are
 * mentioned in the refcount tree, then read those blocks into the
 * pagecache, dirty them, fsync them back out, and then we can update
 * the inode flag.  What happens if we run out of memory? :)
 */
STATIC int
xfs_reflink_dirty_extents(
	struct xfs_inode	*ip,
	xfs_fileoff_t		fbno,
	xfs_filblks_t		end,
	xfs_off_t		isize)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		rbno;
	xfs_extlen_t		rlen;
	xfs_off_t		fpos;
	xfs_off_t		flen;
	struct xfs_bmbt_irec	map[2];
	int			nmaps;
D
Darrick J. Wong 已提交
1340
	int			error = 0;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

	while (end - fbno > 0) {
		nmaps = 1;
		/*
		 * Look for extents in the file.  Skip holes, delalloc, or
		 * unwritten extents; they can't be reflinked.
		 */
		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0)
			break;
1353
		if (!xfs_bmap_is_real_extent(&map[0]))
1354 1355 1356 1357 1358 1359 1360 1361
			goto next;

		map[1] = map[0];
		while (map[1].br_blockcount) {
			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
			aglen = map[1].br_blockcount;

1362 1363
			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
					aglen, &rbno, &rlen, true);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			if (error)
				goto out;
			if (rbno == NULLAGBLOCK)
				break;

			/* Dirty the pages */
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
					(rbno - agbno));
			flen = XFS_FSB_TO_B(mp, rlen);
			if (fpos + flen > isize)
				flen = isize - fpos;
			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
					&xfs_iomap_ops);
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			if (error)
				goto out;

			map[1].br_blockcount -= (rbno - agbno + rlen);
			map[1].br_startoff += (rbno - agbno + rlen);
			map[1].br_startblock += (rbno - agbno + rlen);
		}

next:
		fbno = map[0].br_startoff + map[0].br_blockcount;
	}
out:
	return error;
}

1394
/* Does this inode need the reflink flag? */
1395
int
1396 1397 1398 1399
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1400
{
1401 1402 1403 1404 1405 1406 1407 1408
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1409
	struct xfs_iext_cursor		icur;
1410 1411
	bool				found;
	int				error;
1412

1413 1414 1415
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1416 1417
		if (error)
			return error;
1418
	}
1419

1420
	*has_shared = false;
1421
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1422 1423 1424 1425 1426 1427 1428
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1429

1430
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1431 1432 1433 1434
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1435 1436
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1437
			return 0;
1438
		}
1439
next:
1440
		found = xfs_iext_next_extent(ifp, &icur, &got);
1441 1442
	}

1443 1444 1445
	return 0;
}

1446 1447 1448 1449 1450 1451
/*
 * Clear the inode reflink flag if there are no shared extents.
 *
 * The caller is responsible for joining the inode to the transaction passed in.
 * The inode will be joined to the transaction that is returned to the caller.
 */
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1466 1467 1468 1469
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1470
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1471 1472 1473 1474 1475 1476
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1477
	xfs_inode_clear_cowblocks_tag(ip);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1489
	struct xfs_inode	*ip)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		fbno;
	xfs_filblks_t		end;
	xfs_off_t		isize;
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

	inode_dio_wait(VFS_I(ip));

	/* Try to CoW the selected ranges */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1545
	fbno = XFS_B_TO_FSBT(mp, offset);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	isize = i_size_read(VFS_I(ip));
	end = XFS_B_TO_FSB(mp, offset + len);
	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
	if (error)
		goto out_unlock;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* Wait for the IO to finish */
	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
	if (error)
		goto out;

1558 1559 1560 1561
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1562 1563 1564 1565 1566 1567 1568 1569 1570

	return 0;

out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}