xfs_reflink.c 45.6 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
D
Darrick J. Wong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
29
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
30 31 32 33 34 35 36 37 38
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
39
#include "xfs_iomap.h"
40
#include "xfs_rmap_btree.h"
41 42
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
69 70 71 72 73 74 75 76
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
77
 * When dirty pages are being written out (typically in writepage), the
78 79 80 81 82 83 84
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
99 100 101 102 103 104 105 106
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
107 108 109 110 111 112
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
113 114 115 116 117 118 119 120 121
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
122 123 124 125 126 127 128 129 130
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
131 132 133 134 135 136 137 138 139 140 141

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
142
	struct xfs_trans	*tp,
143 144 145 146 147 148 149 150 151 152 153
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

154
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 156
	if (error)
		return error;
157 158
	if (!agbp)
		return -ENOMEM;
159

160
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
161 162 163 164

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

165
	xfs_btree_del_cursor(cur, error);
166

167
	xfs_trans_brelse(tp, agbp);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
185
	bool			*shared)
186 187 188 189 190 191 192 193 194
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
195
	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
196 197 198 199 200 201 202 203 204 205
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

206
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
207 208 209 210
			aglen, &fbno, &flen, true);
	if (error)
		return error;

211
	*shared = false;
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		return 0;
	}
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
bool
xfs_inode_need_cow(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
{
	/* We can't update any real extents in always COW mode. */
	if (xfs_is_always_cow_inode(ip) &&
	    !isnullstartblock(imap->br_startblock)) {
		*shared = true;
		return 0;
	}

	/* Trim the mapping to the nearest shared extent boundary. */
	return xfs_reflink_trim_around_shared(ip, imap, shared);
}

254 255 256 257 258
static int
xfs_reflink_convert_cow_locked(
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb,
	xfs_filblks_t		count_fsb)
259
{
260 261 262 263 264
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;
	struct xfs_btree_cur	*dummy_cur = NULL;
	int			dummy_logflags;
	int			error;
265

266
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
267 268
		return 0;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	do {
		if (got.br_startoff >= offset_fsb + count_fsb)
			break;
		if (got.br_state == XFS_EXT_NORM)
			continue;
		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
			return -EIO;

		xfs_trim_extent(&got, offset_fsb, count_fsb);
		if (!got.br_blockcount)
			continue;

		got.br_state = XFS_EXT_NORM;
		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
				XFS_COW_FORK, &icur, &dummy_cur, &got,
				&dummy_logflags);
		if (error)
			return error;
	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));

	return error;
290 291 292 293 294 295 296 297 298 299 300 301
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
302
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
303
	int			error;
304

305
	ASSERT(count != 0);
306

307
	xfs_ilock(ip, XFS_ILOCK_EXCL);
308
	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
309 310 311 312
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Find the extent that maps the given range in the COW fork. Even if the extent
 * is not shared we might have a preallocation for it in the COW fork. If so we
 * use it that rather than trigger a new allocation.
 */
static int
xfs_find_trim_cow_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	bool			*found)
{
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;

	*found = false;

	/*
	 * If we don't find an overlapping extent, trim the range we need to
	 * allocate to fit the hole we found.
	 */
336 337 338 339 340
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
		got.br_startoff = offset_fsb + count_fsb;
	if (got.br_startoff > offset_fsb) {
		xfs_trim_extent(imap, imap->br_startoff,
				got.br_startoff - imap->br_startoff);
341
		return xfs_inode_need_cow(ip, imap, shared);
342
	}
343 344 345 346 347 348 349 350 351 352 353 354 355 356

	*shared = true;
	if (isnullstartblock(got.br_startblock)) {
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
		return 0;
	}

	/* real extent found - no need to allocate */
	xfs_trim_extent(&got, offset_fsb, count_fsb);
	*imap = got;
	*found = true;
	return 0;
}

357
/* Allocate all CoW reservations covering a range of blocks in a file. */
358 359
int
xfs_reflink_allocate_cow(
360
	struct xfs_inode	*ip,
361 362
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
363
	uint			*lockmode,
364
	bool			convert_now)
365 366
{
	struct xfs_mount	*mp = ip->i_mount;
367 368
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
369
	struct xfs_trans	*tp;
370
	int			nimaps, error = 0;
371
	bool			found;
372
	xfs_filblks_t		resaligned;
373
	xfs_extlen_t		resblks = 0;
374

375
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
376 377 378 379
	if (!ip->i_cowfp) {
		ASSERT(!xfs_is_reflink_inode(ip));
		xfs_ifork_init_cow(ip);
	}
380

381 382 383 384 385
	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
	if (error || !*shared)
		return error;
	if (found)
		goto convert;
386

387 388 389
	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
390

391 392 393 394
	xfs_iunlock(ip, *lockmode);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	*lockmode = XFS_ILOCK_EXCL;
	xfs_ilock(ip, *lockmode);
395

396 397
	if (error)
		return error;
398

399 400 401
	error = xfs_qm_dqattach_locked(ip, false);
	if (error)
		goto out_trans_cancel;
402

403 404 405 406 407 408 409 410 411
	/*
	 * Check for an overlapping extent again now that we dropped the ilock.
	 */
	error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
	if (error || !*shared)
		goto out_trans_cancel;
	if (found) {
		xfs_trans_cancel(tp);
		goto convert;
412 413 414 415
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
416
	if (error)
417
		goto out_trans_cancel;
418

419 420
	xfs_trans_ijoin(tp, ip, 0);

421
	/* Allocate the entire reservation as unwritten blocks. */
422
	nimaps = 1;
423
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
424
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
425
			resblks, imap, &nimaps);
426
	if (error)
427
		goto out_unreserve;
428

429
	xfs_inode_set_cowblocks_tag(ip);
430
	error = xfs_trans_commit(tp);
431
	if (error)
432
		return error;
433 434 435 436 437 438 439

	/*
	 * Allocation succeeded but the requested range was not even partially
	 * satisfied?  Bail out!
	 */
	if (nimaps == 0)
		return -ENOSPC;
440
convert:
441
	xfs_trim_extent(imap, offset_fsb, count_fsb);
442 443 444 445 446
	/*
	 * COW fork extents are supposed to remain unwritten until we're ready
	 * to initiate a disk write.  For direct I/O we are going to write the
	 * data and need the conversion, but for buffered writes we're done.
	 */
447
	if (!convert_now || imap->br_state == XFS_EXT_NORM)
448
		return 0;
449 450
	trace_xfs_reflink_convert_cow(ip, imap);
	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
451 452

out_unreserve:
453 454
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
455 456
out_trans_cancel:
	xfs_trans_cancel(tp);
457
	return error;
458 459
}

460
/*
461 462 463 464
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
465 466 467
 *
 * Caller must have already joined the inode to the current transaction. The
 * inode will be joined to the transaction returned to the caller.
468 469 470 471 472 473
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
474 475
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
476
{
477
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
478
	struct xfs_bmbt_irec		got, del;
479
	struct xfs_iext_cursor		icur;
480
	int				error = 0;
481

482
	if (!xfs_inode_has_cow_data(ip))
483
		return 0;
484
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
485
		return 0;
486

487 488
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
489 490
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
491 492 493 494 495 496 497

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

498
		trace_xfs_reflink_cancel_cow(ip, &del);
499

500 501
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
502
					&icur, &got, &del);
503 504
			if (error)
				break;
505
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
506
			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
507

508
			/* Free the CoW orphan record. */
509 510
			error = xfs_refcount_free_cow_extent(*tpp,
					del.br_startblock, del.br_blockcount);
511 512 513
			if (error)
				break;

514 515
			xfs_bmap_add_free(*tpp, del.br_startblock,
					  del.br_blockcount, NULL);
516 517

			/* Roll the transaction */
518
			error = xfs_defer_finish(tpp);
519
			if (error)
520 521 522
				break;

			/* Remove the mapping from the CoW fork. */
523
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
524 525 526 527 528 529 530

			/* Remove the quota reservation */
			error = xfs_trans_reserve_quota_nblks(NULL, ip,
					-(long)del.br_blockcount, 0,
					XFS_QMOPT_RES_REGBLKS);
			if (error)
				break;
531 532 533
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
534
		}
535 536
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
537
			break;
538 539
	}

540 541 542
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);
543 544 545 546
	return error;
}

/*
547 548 549 550
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
551 552 553 554 555
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
556 557
	xfs_off_t		count,
	bool			cancel_real)
558 559 560 561 562 563 564
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
565
	ASSERT(ip->i_cowfp);
566 567 568 569 570 571 572 573 574

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
575
			0, 0, XFS_TRANS_NOFS, &tp);
576 577 578 579 580 581 582
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
583 584
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
602 603 604 605 606 607 608 609
 * Remap part of the CoW fork into the data fork.
 *
 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 * into the data fork; this function will remap what it can (at the end of the
 * range) and update @end_fsb appropriately.  Each remap gets its own
 * transaction because we can end up merging and splitting bmbt blocks for
 * every remap operation and we'd like to keep the block reservation
 * requirements as low as possible.
610
 */
611 612 613 614 615
STATIC int
xfs_reflink_end_cow_extent(
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb,
	xfs_fileoff_t		*end_fsb)
616
{
617 618 619 620 621 622 623 624
	struct xfs_bmbt_irec	got, del;
	struct xfs_iext_cursor	icur;
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	xfs_filblks_t		rlen;
	unsigned int		resblks;
	int			error;
625

626
	/* No COW extents?  That's easy! */
627 628
	if (ifp->if_bytes == 0) {
		*end_fsb = offset_fsb;
629
		return 0;
630
	}
631

632 633 634 635 636
	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
			XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
	if (error)
		return error;
637

638
	/*
639 640 641
	 * Lock the inode.  We have to ijoin without automatic unlock because
	 * the lead transaction is the refcountbt record deletion; the data
	 * fork update follows as a deferred log item.
642
	 */
643 644 645
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

646 647 648 649 650
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
651 652 653
	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
	    got.br_startoff + got.br_blockcount <= offset_fsb) {
		*end_fsb = offset_fsb;
654
		goto out_cancel;
655
	}
656

657 658 659 660 661 662 663 664
	/*
	 * Structure copy @got into @del, then trim @del to the range that we
	 * were asked to remap.  We preserve @got for the eventual CoW fork
	 * deletion; from now on @del represents the mapping that we're
	 * actually remapping.
	 */
	del = got;
	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
665

666
	ASSERT(del.br_blockcount > 0);
667

668 669 670 671 672 673 674 675 676
	/*
	 * Only remap real extents that contain data.  With AIO, speculative
	 * preallocations can leak into the range we are called upon, and we
	 * need to skip them.
	 */
	if (!xfs_bmap_is_real_extent(&got)) {
		*end_fsb = del.br_startoff;
		goto out_cancel;
	}
677

678 679 680 681 682
	/* Unmap the old blocks in the data fork. */
	rlen = del.br_blockcount;
	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
	if (error)
		goto out_cancel;
683

684 685 686
	/* Trim the extent to whatever got unmapped. */
	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
	trace_xfs_reflink_cow_remap(ip, &del);
687

688 689 690 691 692
	/* Free the CoW orphan record. */
	error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
			del.br_blockcount);
	if (error)
		goto out_cancel;
693

694 695 696 697
	/* Map the new blocks into the data fork. */
	error = xfs_bmap_map_extent(tp, ip, &del);
	if (error)
		goto out_cancel;
698

699 700 701
	/* Charge this new data fork mapping to the on-disk quota. */
	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
			(long)del.br_blockcount);
702

703 704
	/* Remove the mapping from the CoW fork. */
	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
705 706 707 708

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
709 710 711 712
		return error;

	/* Update the caller about how much progress we made. */
	*end_fsb = del.br_startoff;
713 714
	return 0;

715
out_cancel:
716 717
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	int				error = 0;

	trace_xfs_reflink_end_cow(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/*
	 * Walk backwards until we're out of the I/O range.  The loop function
	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
	 * extent.
	 *
	 * If we're being called by writeback then the the pages will still
	 * have PageWriteback set, which prevents races with reflink remapping
	 * and truncate.  Reflink remapping prevents races with writeback by
	 * taking the iolock and mmaplock before flushing the pages and
	 * remapping, which means there won't be any further writeback or page
	 * cache dirtying until the reflink completes.
	 *
	 * We should never have two threads issuing writeback for the same file
	 * region.  There are also have post-eof checks in the writeback
	 * preparation code so that we don't bother writing out pages that are
	 * about to be truncated.
	 *
	 * If we're being called as part of directio write completion, the dio
	 * count is still elevated, which reflink and truncate will wait for.
	 * Reflink remapping takes the iolock and mmaplock and waits for
	 * pending dio to finish, which should prevent any directio until the
	 * remap completes.  Multiple concurrent directio writes to the same
	 * region are handled by end_cow processing only occurring for the
	 * threads which succeed; the outcome of multiple overlapping direct
	 * writes is not well defined anyway.
	 *
	 * It's possible that a buffered write and a direct write could collide
	 * here (the buffered write stumbles in after the dio flushes and
	 * invalidates the page cache and immediately queues writeback), but we
	 * have never supported this 100%.  If either disk write succeeds the
	 * blocks will be remapped.
	 */
	while (end_fsb > offset_fsb && !error)
		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);

	if (error)
		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
776 777
	return error;
}
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
900
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
935
 * Update destination inode size & cowextsize hint, if necessary.
936
 */
937
int
938 939
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
940
	xfs_off_t		newlen,
941
	xfs_extlen_t		cowextsize,
942
	unsigned int		remap_flags)
943 944 945 946 947
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

948
	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
949 950 951 952 953 954 955 956 957
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

958 959 960 961 962 963 964 965 966 967 968
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

969 970 971 972 973 974 975 976 977 978 979 980
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
999
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1000 1001 1002 1003 1004 1005
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
1019
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	struct xfs_trans	*tp;
	unsigned int		resblks;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1031 1032 1033 1034 1035 1036 1037 1038
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
1062
		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1063
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1064
		if (error)
1065
			goto out_cancel;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
1084
		error = xfs_refcount_increase_extent(tp, &uirec);
1085
		if (error)
1086
			goto out_cancel;
1087 1088

		/* Map the new blocks into the data fork. */
1089
		error = xfs_bmap_map_extent(tp, ip, &uirec);
1090
		if (error)
1091
			goto out_cancel;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1110
		error = xfs_defer_finish(&tp);
1111
		if (error)
1112
			goto out_cancel;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
1132
int
1133 1134
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
1135
	loff_t			pos_in,
1136
	struct xfs_inode	*dest,
1137
	loff_t			pos_out,
1138 1139
	loff_t			remap_len,
	loff_t			*remapped)
1140 1141
{
	struct xfs_bmbt_irec	imap;
1142 1143 1144 1145
	xfs_fileoff_t		srcoff;
	xfs_fileoff_t		destoff;
	xfs_filblks_t		len;
	xfs_filblks_t		range_len;
1146
	xfs_filblks_t		remapped_len = 0;
1147
	xfs_off_t		new_isize = pos_out + remap_len;
1148 1149
	int			nimaps;
	int			error = 0;
1150 1151 1152 1153

	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1154 1155 1156

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
1157 1158
		uint		lock_mode;

1159 1160
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
1161

1162 1163
		/* Read extent from the source file */
		nimaps = 1;
1164
		lock_mode = xfs_ilock_data_map_shared(src);
1165
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1166
		xfs_iunlock(src, lock_mode);
1167
		if (error)
1168
			break;
1169 1170
		ASSERT(nimaps == 1);

1171
		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
1182
			break;
1183 1184 1185

		if (fatal_signal_pending(current)) {
			error = -EINTR;
1186
			break;
1187 1188 1189 1190 1191 1192
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
1193
		remapped_len += range_len;
1194 1195
	}

1196 1197
	if (error)
		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1198 1199
	*remapped = min_t(loff_t, remap_len,
			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1200 1201 1202
	return error;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * Grab the exclusive iolock for a data copy from src to dest, making
 * sure to abide vfs locking order (lowest pointer value goes first) and
 * breaking the pnfs layout leases on dest before proceeding.  The loop
 * is needed because we cannot call the blocking break_layout() with the
 * src iolock held, and therefore have to back out both locks.
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

retry:
	if (src < dest) {
1219
		inode_lock_shared(src);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		inode_lock_nested(dest, I_MUTEX_NONDIR2);
	} else {
		/* src >= dest */
		inode_lock(dest);
	}

	error = break_layout(dest, false);
	if (error == -EWOULDBLOCK) {
		inode_unlock(dest);
		if (src < dest)
1230
			inode_unlock_shared(src);
1231 1232 1233 1234 1235 1236 1237 1238
		error = break_layout(dest, true);
		if (error)
			return error;
		goto retry;
	}
	if (error) {
		inode_unlock(dest);
		if (src < dest)
1239
			inode_unlock_shared(src);
1240 1241 1242
		return error;
	}
	if (src > dest)
1243
		inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1244 1245 1246
	return 0;
}

1247
/* Unlock both inodes after they've been prepped for a range clone. */
1248
void
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
xfs_reflink_remap_unlock(
	struct file		*file_in,
	struct file		*file_out)
{
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);

	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
	if (!same_inode)
		xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
	inode_unlock(inode_out);
	if (!same_inode)
		inode_unlock_shared(inode_in);
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * If we're reflinking to a point past the destination file's EOF, we must
 * zero any speculative post-EOF preallocations that sit between the old EOF
 * and the destination file offset.
 */
static int
xfs_reflink_zero_posteof(
	struct xfs_inode	*ip,
	loff_t			pos)
{
	loff_t			isize = i_size_read(VFS_I(ip));

	if (pos <= isize)
		return 0;

	trace_xfs_zero_eof(ip, isize, pos - isize);
	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
			&xfs_iomap_ops);
}

1287
/*
1288
 * Prepare two files for range cloning.  Upon a successful return both inodes
1289 1290 1291
 * will have the iolock and mmaplock held, the page cache of the out file will
 * be truncated, and any leases on the out file will have been broken.  This
 * function borrows heavily from xfs_file_aio_write_checks.
1292 1293 1294 1295
 *
 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
 * checked that the bytes beyond EOF physically match. Hence we cannot use the
 * EOF block in the source dedupe range because it's not a complete block match,
1296
 * hence can introduce a corruption into the file that has it's block replaced.
1297
 *
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
 * "block aligned" for the purposes of cloning entire files.  However, if the
 * source file range includes the EOF block and it lands within the existing EOF
 * of the destination file, then we can expose stale data from beyond the source
 * file EOF in the destination file.
 *
 * XFS doesn't support partial block sharing, so in both cases we have check
 * these cases ourselves. For dedupe, we can simply round the length to dedupe
 * down to the previous whole block and ignore the partial EOF block. While this
 * means we can't dedupe the last block of a file, this is an acceptible
 * tradeoff for simplicity on implementation.
 *
 * For cloning, we want to share the partial EOF block if it is also the new EOF
 * block of the destination file. If the partial EOF block lies inside the
 * existing destination EOF, then we have to abort the clone to avoid exposing
 * stale data in the destination file. Hence we reject these clone attempts with
 * -EINVAL in this case.
1315
 */
1316
int
1317
xfs_reflink_remap_prep(
1318 1319 1320 1321
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
1322
	loff_t			*len,
1323
	unsigned int		remap_flags)
1324
{
1325 1326 1327 1328 1329 1330
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);
	ssize_t			ret;
1331

1332
	/* Lock both files against IO */
1333 1334 1335
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1336
	if (same_inode)
1337
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1338
	else
1339
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1340
				XFS_MMAPLOCK_EXCL);
1341

1342
	/* Check file eligibility and prepare for block sharing. */
1343
	ret = -EINVAL;
1344 1345
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1346 1347 1348 1349 1350 1351
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1352
	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1353
			len, remap_flags);
1354
	if (ret < 0 || *len == 0)
1355 1356
		goto out_unlock;

1357
	/* Attach dquots to dest inode before changing block map */
1358
	ret = xfs_qm_dqattach(dest);
1359 1360 1361
	if (ret)
		goto out_unlock;

1362
	/*
1363 1364
	 * Zero existing post-eof speculative preallocations in the destination
	 * file.
1365
	 */
1366 1367 1368
	ret = xfs_reflink_zero_posteof(dest, pos_out);
	if (ret)
		goto out_unlock;
1369

1370
	/* Set flags and remap blocks. */
1371 1372 1373
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * If pos_out > EOF, we may have dirtied blocks between EOF and
	 * pos_out. In that case, we need to extend the flush and unmap to cover
	 * from EOF to the end of the copy length.
	 */
	if (pos_out > XFS_ISIZE(dest)) {
		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
	} else {
		ret = xfs_flush_unmap_range(dest, pos_out, *len);
	}
	if (ret)
		goto out_unlock;
1388

1389 1390 1391 1392 1393 1394
	return 1;
out_unlock:
	xfs_reflink_remap_unlock(file_in, file_out);
	return ret;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * The user wants to preemptively CoW all shared blocks in this file,
 * which enables us to turn off the reflink flag.  Iterate all
 * extents which are not prealloc/delalloc to see which ranges are
 * mentioned in the refcount tree, then read those blocks into the
 * pagecache, dirty them, fsync them back out, and then we can update
 * the inode flag.  What happens if we run out of memory? :)
 */
STATIC int
xfs_reflink_dirty_extents(
	struct xfs_inode	*ip,
	xfs_fileoff_t		fbno,
	xfs_filblks_t		end,
	xfs_off_t		isize)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		rbno;
	xfs_extlen_t		rlen;
	xfs_off_t		fpos;
	xfs_off_t		flen;
	struct xfs_bmbt_irec	map[2];
	int			nmaps;
D
Darrick J. Wong 已提交
1420
	int			error = 0;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

	while (end - fbno > 0) {
		nmaps = 1;
		/*
		 * Look for extents in the file.  Skip holes, delalloc, or
		 * unwritten extents; they can't be reflinked.
		 */
		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0)
			break;
1433
		if (!xfs_bmap_is_real_extent(&map[0]))
1434 1435 1436 1437 1438 1439 1440 1441
			goto next;

		map[1] = map[0];
		while (map[1].br_blockcount) {
			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
			aglen = map[1].br_blockcount;

1442 1443
			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
					aglen, &rbno, &rlen, true);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			if (error)
				goto out;
			if (rbno == NULLAGBLOCK)
				break;

			/* Dirty the pages */
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
					(rbno - agbno));
			flen = XFS_FSB_TO_B(mp, rlen);
			if (fpos + flen > isize)
				flen = isize - fpos;
			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
					&xfs_iomap_ops);
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			if (error)
				goto out;

			map[1].br_blockcount -= (rbno - agbno + rlen);
			map[1].br_startoff += (rbno - agbno + rlen);
			map[1].br_startblock += (rbno - agbno + rlen);
		}

next:
		fbno = map[0].br_startoff + map[0].br_blockcount;
	}
out:
	return error;
}

1474
/* Does this inode need the reflink flag? */
1475
int
1476 1477 1478 1479
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1480
{
1481 1482 1483 1484 1485 1486 1487 1488
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1489
	struct xfs_iext_cursor		icur;
1490 1491
	bool				found;
	int				error;
1492

1493 1494 1495
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1496 1497
		if (error)
			return error;
1498
	}
1499

1500
	*has_shared = false;
1501
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1502 1503 1504 1505 1506 1507 1508
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1509

1510
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1511 1512 1513 1514
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1515 1516
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1517
			return 0;
1518
		}
1519
next:
1520
		found = xfs_iext_next_extent(ifp, &icur, &got);
1521 1522
	}

1523 1524 1525
	return 0;
}

1526 1527 1528 1529 1530 1531
/*
 * Clear the inode reflink flag if there are no shared extents.
 *
 * The caller is responsible for joining the inode to the transaction passed in.
 * The inode will be joined to the transaction that is returned to the caller.
 */
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1546 1547 1548 1549
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1550
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1551 1552 1553 1554 1555 1556
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1557
	xfs_inode_clear_cowblocks_tag(ip);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1569
	struct xfs_inode	*ip)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		fbno;
	xfs_filblks_t		end;
	xfs_off_t		isize;
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

	inode_dio_wait(VFS_I(ip));

	/* Try to CoW the selected ranges */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1625
	fbno = XFS_B_TO_FSBT(mp, offset);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	isize = i_size_read(VFS_I(ip));
	end = XFS_B_TO_FSB(mp, offset + len);
	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
	if (error)
		goto out_unlock;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* Wait for the IO to finish */
	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
	if (error)
		goto out;

1638 1639 1640 1641
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1642 1643 1644 1645 1646 1647 1648 1649 1650

	return 0;

out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}