xfs_reflink.c 44.5 KB
Newer Older
D
Darrick J. Wong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 *
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
43
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
44 45 46 47 48 49 50 51 52
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
53
#include "xfs_iomap.h"
54
#include "xfs_rmap_btree.h"
55 56
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
83 84 85 86 87 88 89 90
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
91
 * When dirty pages are being written out (typically in writepage), the
92 93 94 95 96 97 98
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
113 114 115 116 117 118 119 120
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
121 122 123 124 125 126
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
127 128 129 130 131 132 133 134 135
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
136 137 138 139 140 141 142 143 144
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
145 146 147 148 149 150 151 152 153 154 155

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
156
	struct xfs_trans	*tp,
157 158 159 160 161 162 163 164 165 166 167
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

168
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
169 170
	if (error)
		return error;
171 172
	if (!agbp)
		return -ENOMEM;
173

174
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno, NULL);
175 176 177 178 179 180

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);

181
	xfs_trans_brelse(tp, agbp);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	bool			*shared,
	bool			*trimmed)
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
210
	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
211 212 213 214 215 216 217 218 219 220
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

221
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
			aglen, &fbno, &flen, true);
	if (error)
		return error;

	*shared = *trimmed = false;
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		if (flen != aglen)
			*trimmed = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		*trimmed = true;
		return 0;
	}
}

255 256 257 258 259 260 261 262 263 264 265
/*
 * Trim the passed in imap to the next shared/unshared extent boundary, and
 * if imap->br_startoff points to a shared extent reserve space for it in the
 * COW fork.  In this case *shared is set to true, else to false.
 *
 * Note that imap will always contain the block numbers for the existing blocks
 * in the data fork, as the upper layers need them for read-modify-write
 * operations.
 */
int
xfs_reflink_reserve_cow(
266
	struct xfs_inode	*ip,
267 268
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
269
{
270 271 272 273
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec	got;
	int			error = 0;
	bool			eof = false, trimmed;
274
	struct xfs_iext_cursor	icur;
275

276 277 278 279 280 281 282 283
	/*
	 * Search the COW fork extent list first.  This serves two purposes:
	 * first this implement the speculative preallocation using cowextisze,
	 * so that we also unshared block adjacent to shared blocks instead
	 * of just the shared blocks themselves.  Second the lookup in the
	 * extent list is generally faster than going out to the shared extent
	 * tree.
	 */
284

285
	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
286
		eof = true;
287 288 289
	if (!eof && got.br_startoff <= imap->br_startoff) {
		trace_xfs_reflink_cow_found(ip, imap);
		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
290

291 292 293
		*shared = true;
		return 0;
	}
294 295

	/* Trim the mapping to the nearest shared extent boundary. */
296
	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
297
	if (error)
298
		return error;
299 300

	/* Not shared?  Just report the (potentially capped) extent. */
301 302
	if (!*shared)
		return 0;
303 304 305 306 307 308 309

	/*
	 * Fork all the shared blocks from our write offset until the end of
	 * the extent.
	 */
	error = xfs_qm_dqattach_locked(ip, 0);
	if (error)
310 311 312
		return error;

	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
313
			imap->br_blockcount, 0, &got, &icur, eof);
314
	if (error == -ENOSPC || error == -EDQUOT)
315
		trace_xfs_reflink_cow_enospc(ip, imap);
316
	if (error)
317
		return error;
318

319
	trace_xfs_reflink_cow_alloc(ip, &got);
320
	return 0;
321
}
322

323 324 325 326 327 328 329 330 331
/* Convert part of an unwritten CoW extent to a real one. */
STATIC int
xfs_reflink_convert_cow_extent(
	struct xfs_inode		*ip,
	struct xfs_bmbt_irec		*imap,
	xfs_fileoff_t			offset_fsb,
	xfs_filblks_t			count_fsb,
	struct xfs_defer_ops		*dfops)
{
332
	xfs_fsblock_t			first_block = NULLFSBLOCK;
333 334 335 336 337
	int				nimaps = 1;

	if (imap->br_state == XFS_EXT_NORM)
		return 0;

338 339 340
	xfs_trim_extent(imap, offset_fsb, count_fsb);
	trace_xfs_reflink_convert_cow(ip, imap);
	if (imap->br_blockcount == 0)
341
		return 0;
342
	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
343
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, &first_block,
344
			0, imap, &nimaps, dfops);
345 346 347 348 349 350 351 352 353 354 355 356
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
357 358 359 360 361
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
	struct xfs_bmbt_irec	imap;
	struct xfs_defer_ops	dfops;
	xfs_fsblock_t		first_block = NULLFSBLOCK;
	int			nimaps = 1, error = 0;
362

363
	ASSERT(count != 0);
364

365 366 367 368 369
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
			XFS_BMAPI_CONVERT_ONLY, &first_block, 0, &imap, &nimaps,
			&dfops);
370 371 372 373
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

374
/* Allocate all CoW reservations covering a range of blocks in a file. */
375 376
int
xfs_reflink_allocate_cow(
377
	struct xfs_inode	*ip,
378 379 380
	struct xfs_bmbt_irec	*imap,
	bool			*shared,
	uint			*lockmode)
381 382
{
	struct xfs_mount	*mp = ip->i_mount;
383 384 385
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_bmbt_irec	got;
386
	struct xfs_defer_ops	dfops;
387
	struct xfs_trans	*tp = NULL;
388
	xfs_fsblock_t		first_block;
389 390
	int			nimaps, error = 0;
	bool			trimmed;
391
	xfs_filblks_t		resaligned;
392
	xfs_extlen_t		resblks = 0;
393
	struct xfs_iext_cursor	icur;
394

395 396 397
retry:
	ASSERT(xfs_is_reflink_inode(ip));
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
398

399 400 401 402
	/*
	 * Even if the extent is not shared we might have a preallocation for
	 * it in the COW fork.  If so use it.
	 */
403
	if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) &&
404 405 406
	    got.br_startoff <= offset_fsb) {
		*shared = true;

407 408
		/* If we have a real allocation in the COW fork we're done. */
		if (!isnullstartblock(got.br_startblock)) {
409 410 411
			xfs_trim_extent(&got, offset_fsb, count_fsb);
			*imap = got;
			goto convert;
412
		}
413 414

		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
415
	} else {
416 417 418 419
		error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
		if (error || !*shared)
			goto out;
	}
420

421 422 423 424
	if (!tp) {
		resaligned = xfs_aligned_fsb_count(imap->br_startoff,
			imap->br_blockcount, xfs_get_cowextsz_hint(ip));
		resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
425

426 427 428 429
		xfs_iunlock(ip, *lockmode);
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
		*lockmode = XFS_ILOCK_EXCL;
		xfs_ilock(ip, *lockmode);
430

431 432 433 434 435 436 437
		if (error)
			return error;

		error = xfs_qm_dqattach_locked(ip, 0);
		if (error)
			goto out;
		goto retry;
438 439 440 441
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
442
	if (error)
443
		goto out;
444

445 446 447 448
	xfs_trans_ijoin(tp, ip, 0);

	xfs_defer_init(&dfops, &first_block);
	nimaps = 1;
449

450
	/* Allocate the entire reservation as unwritten blocks. */
451
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
452
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, &first_block,
453
			resblks, imap, &nimaps, &dfops);
454
	if (error)
455
		goto out_bmap_cancel;
456

457 458
	xfs_inode_set_cowblocks_tag(ip);

459
	/* Finish up. */
460
	error = xfs_defer_finish(&tp, &dfops);
461
	if (error)
462
		goto out_bmap_cancel;
463 464

	error = xfs_trans_commit(tp);
465
	if (error)
466 467 468 469
		return error;
convert:
	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb,
			&dfops);
470
out_bmap_cancel:
471
	xfs_defer_cancel(&dfops);
472 473
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
474 475 476 477
out:
	if (tp)
		xfs_trans_cancel(tp);
	return error;
478 479
}

480
/*
481
 * Find the CoW reservation for a given byte offset of a file.
482 483 484 485 486
 */
bool
xfs_reflink_find_cow_mapping(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
487
	struct xfs_bmbt_irec		*imap)
488
{
489 490 491
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	xfs_fileoff_t			offset_fsb;
	struct xfs_bmbt_irec		got;
492
	struct xfs_iext_cursor		icur;
493 494 495

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));

496 497
	if (!xfs_is_reflink_inode(ip))
		return false;
498
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
499
	if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
500
		return false;
501
	if (got.br_startoff > offset_fsb)
502 503 504
		return false;

	trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
505 506
			&got);
	*imap = got;
507 508 509 510 511 512
	return true;
}

/*
 * Trim an extent to end at the next CoW reservation past offset_fsb.
 */
513
void
514 515 516 517 518
xfs_reflink_trim_irec_to_next_cow(
	struct xfs_inode		*ip,
	xfs_fileoff_t			offset_fsb,
	struct xfs_bmbt_irec		*imap)
{
519 520
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	struct xfs_bmbt_irec		got;
521
	struct xfs_iext_cursor		icur;
522 523

	if (!xfs_is_reflink_inode(ip))
524
		return;
525 526

	/* Find the extent in the CoW fork. */
527
	if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
528
		return;
529 530

	/* This is the extent before; try sliding up one. */
531
	if (got.br_startoff < offset_fsb) {
532
		if (!xfs_iext_next_extent(ifp, &icur, &got))
533
			return;
534 535
	}

536 537
	if (got.br_startoff >= imap->br_startoff + imap->br_blockcount)
		return;
538

539
	imap->br_blockcount = got.br_startoff - imap->br_startoff;
540 541
	trace_xfs_reflink_trim_irec(ip, imap);
}
542 543

/*
544 545 546 547
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
548 549 550 551 552 553
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
554 555
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
556
{
557
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
558
	struct xfs_bmbt_irec		got, del;
559
	struct xfs_iext_cursor		icur;
560 561
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
562
	int				error = 0;
563 564 565

	if (!xfs_is_reflink_inode(ip))
		return 0;
566
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
567
		return 0;
568

569 570
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
571 572
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
573 574 575 576 577 578 579

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

580
		trace_xfs_reflink_cancel_cow(ip, &del);
581

582 583
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
584
					&icur, &got, &del);
585 586
			if (error)
				break;
587
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
588 589 590
			xfs_trans_ijoin(*tpp, ip, 0);
			xfs_defer_init(&dfops, &firstfsb);

591 592
			/* Free the CoW orphan record. */
			error = xfs_refcount_free_cow_extent(ip->i_mount,
593 594
					&dfops, del.br_startblock,
					del.br_blockcount);
595 596 597
			if (error)
				break;

598
			xfs_bmap_add_free(ip->i_mount, &dfops,
599
					del.br_startblock, del.br_blockcount,
600 601 602 603
					NULL);

			/* Update quota accounting */
			xfs_trans_mod_dquot_byino(*tpp, ip, XFS_TRANS_DQ_BCOUNT,
604
					-(long)del.br_blockcount);
605 606

			/* Roll the transaction */
607 608
			xfs_defer_ijoin(&dfops, ip);
			error = xfs_defer_finish(tpp, &dfops);
609 610 611 612 613 614
			if (error) {
				xfs_defer_cancel(&dfops);
				break;
			}

			/* Remove the mapping from the CoW fork. */
615
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
616 617 618
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
619
		}
620 621
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
622
			break;
623 624
	}

625 626 627 628
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);

629 630 631 632
	return error;
}

/*
633 634 635 636
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
637 638 639 640 641
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
642 643
	xfs_off_t		count,
	bool			cancel_real)
644 645 646 647 648 649 650
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
651
	ASSERT(xfs_is_reflink_inode(ip));
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
			0, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
669 670
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
696
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
697
	struct xfs_bmbt_irec		got, del;
698 699 700 701 702
	struct xfs_trans		*tp;
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	xfs_fsblock_t			firstfsb;
	struct xfs_defer_ops		dfops;
703
	int				error;
704 705
	unsigned int			resblks;
	xfs_filblks_t			rlen;
706
	struct xfs_iext_cursor		icur;
707 708 709

	trace_xfs_reflink_end_cow(ip, offset, count);

710 711 712 713
	/* No COW extents?  That's easy! */
	if (ifp->if_bytes == 0)
		return 0;

714 715 716
	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	/*
	 * Start a rolling transaction to switch the mappings.  We're
	 * unlikely ever to have to remap 16T worth of single-block
	 * extents, so just cap the worst case extent count to 2^32-1.
	 * Stick a warning in just in case, and avoid 64-bit division.
	 */
	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
	if (end_fsb - offset_fsb > UINT_MAX) {
		error = -EFSCORRUPTED;
		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
		ASSERT(0);
		goto out;
	}
	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
			(unsigned int)(end_fsb - offset_fsb),
			XFS_DATA_FORK);
733
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
734
			resblks, 0, XFS_TRANS_RESERVE, &tp);
735 736 737 738 739 740
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

741 742 743 744 745
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
746
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
747
		goto out_cancel;
748

749 750 751 752 753
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);

754
		/* Extent delete may have bumped ext forward */
755
		if (!del.br_blockcount) {
756
			xfs_iext_prev(ifp, &icur);
757
			goto next_extent;
758 759 760
		}

		ASSERT(!isnullstartblock(got.br_startblock));
761

762 763 764 765 766 767
		/*
		 * Don't remap unwritten extents; these are
		 * speculatively preallocated CoW extents that have been
		 * allocated but have not yet been involved in a write.
		 */
		if (got.br_state == XFS_EXT_UNWRITTEN) {
768
			xfs_iext_prev(ifp, &icur);
769 770 771
			goto next_extent;
		}

772
		/* Unmap the old blocks in the data fork. */
773 774 775 776 777 778
		xfs_defer_init(&dfops, &firstfsb);
		rlen = del.br_blockcount;
		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
				&firstfsb, &dfops);
		if (error)
			goto out_defer;
779

780 781 782 783 784 785
		/* Trim the extent to whatever got unmapped. */
		if (rlen) {
			xfs_trim_extent(&del, del.br_startoff + rlen,
				del.br_blockcount - rlen);
		}
		trace_xfs_reflink_cow_remap(ip, &del);
786

787 788 789 790 791
		/* Free the CoW orphan record. */
		error = xfs_refcount_free_cow_extent(tp->t_mountp, &dfops,
				del.br_startblock, del.br_blockcount);
		if (error)
			goto out_defer;
792

793 794 795 796
		/* Map the new blocks into the data fork. */
		error = xfs_bmap_map_extent(tp->t_mountp, &dfops, ip, &del);
		if (error)
			goto out_defer;
797

798
		/* Remove the mapping from the CoW fork. */
799
		xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
800

801 802
		xfs_defer_ijoin(&dfops, ip);
		error = xfs_defer_finish(&tp, &dfops);
803 804
		if (error)
			goto out_defer;
805
next_extent:
806
		if (!xfs_iext_get_extent(ifp, &icur, &got))
807
			break;
808 809 810 811 812 813 814 815 816 817
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
	xfs_defer_cancel(&dfops);
818
out_cancel:
819 820 821 822 823 824
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
	return error;
}
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
947
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
982
 * Update destination inode size & cowextsize hint, if necessary.
983 984 985 986
 */
STATIC int
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
987
	xfs_off_t		newlen,
988 989
	xfs_extlen_t		cowextsize,
	bool			is_dedupe)
990 991 992 993 994
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

995
	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
996 997 998 999 1000 1001 1002 1003 1004
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

1016 1017 1018 1019
	if (!is_dedupe) {
		xfs_trans_ichgtime(tp, dest,
				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_AGFL) ||
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
1070
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	struct xfs_trans	*tp;
	xfs_fsblock_t		firstfsb;
	unsigned int		resblks;
	struct xfs_defer_ops	dfops;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1084 1085 1086 1087 1088 1089 1090 1091
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
		xfs_defer_init(&dfops, &firstfsb);
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
				&firstfsb, &dfops);
		if (error)
			goto out_defer;

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
		error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
		if (error)
			goto out_defer;

		/* Map the new blocks into the data fork. */
		error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
		if (error)
			goto out_defer;

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1164 1165
		xfs_defer_ijoin(&dfops, ip);
		error = xfs_defer_finish(&tp, &dfops);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (error)
			goto out_defer;
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_defer:
	xfs_defer_cancel(&dfops);
out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
STATIC int
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
	xfs_fileoff_t		srcoff,
	struct xfs_inode	*dest,
	xfs_fileoff_t		destoff,
	xfs_filblks_t		len,
	xfs_off_t		new_isize)
{
	struct xfs_bmbt_irec	imap;
	int			nimaps;
	int			error = 0;
	xfs_filblks_t		range_len;

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
		/* Read extent from the source file */
		nimaps = 1;
		xfs_ilock(src, XFS_ILOCK_EXCL);
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
		xfs_iunlock(src, XFS_ILOCK_EXCL);
		if (error)
			goto err;
		ASSERT(nimaps == 1);

		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
			goto err;

		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto err;
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
	}

	return 0;

err:
	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
	return error;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * Grab the exclusive iolock for a data copy from src to dest, making
 * sure to abide vfs locking order (lowest pointer value goes first) and
 * breaking the pnfs layout leases on dest before proceeding.  The loop
 * is needed because we cannot call the blocking break_layout() with the
 * src iolock held, and therefore have to back out both locks.
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

retry:
	if (src < dest) {
		inode_lock(src);
		inode_lock_nested(dest, I_MUTEX_NONDIR2);
	} else {
		/* src >= dest */
		inode_lock(dest);
	}

	error = break_layout(dest, false);
	if (error == -EWOULDBLOCK) {
		inode_unlock(dest);
		if (src < dest)
			inode_unlock(src);
		error = break_layout(dest, true);
		if (error)
			return error;
		goto retry;
	}
	if (error) {
		inode_unlock(dest);
		if (src < dest)
			inode_unlock(src);
		return error;
	}
	if (src > dest)
		inode_lock_nested(src, I_MUTEX_NONDIR2);
	return 0;
}

1291 1292 1293 1294 1295
/*
 * Link a range of blocks from one file to another.
 */
int
xfs_reflink_remap_range(
1296 1297 1298 1299 1300 1301
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
	u64			len,
	bool			is_dedupe)
1302
{
1303 1304 1305 1306
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
1307
	struct xfs_mount	*mp = src->i_mount;
1308
	bool			same_inode = (inode_in == inode_out);
1309 1310
	xfs_fileoff_t		sfsbno, dfsbno;
	xfs_filblks_t		fsblen;
1311
	xfs_extlen_t		cowextsize;
1312
	ssize_t			ret;
1313 1314 1315 1316 1317 1318 1319

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return -EOPNOTSUPP;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1320
	/* Lock both files against IO */
1321 1322 1323
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1324
	if (same_inode)
1325
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1326
	else
1327 1328
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
				XFS_MMAPLOCK_EXCL);
1329

1330
	/* Check file eligibility and prepare for block sharing. */
1331
	ret = -EINVAL;
1332 1333
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1334 1335 1336 1337 1338 1339
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1340 1341
	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
			&len, is_dedupe);
1342
	if (ret <= 0)
1343 1344
		goto out_unlock;

1345 1346 1347 1348 1349
	/* Attach dquots to dest inode before changing block map */
	ret = xfs_qm_dqattach(dest, 0);
	if (ret)
		goto out_unlock;

1350
	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * Clear out post-eof preallocations because we don't have page cache
	 * backing the delayed allocations and they'll never get freed on
	 * their own.
	 */
	if (xfs_can_free_eofblocks(dest, true)) {
		ret = xfs_free_eofblocks(dest);
		if (ret)
			goto out_unlock;
	}

1363
	/* Set flags and remap blocks. */
1364 1365 1366
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1367

1368 1369
	dfsbno = XFS_B_TO_FSBT(mp, pos_out);
	sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1370
	fsblen = XFS_B_TO_FSB(mp, len);
1371 1372 1373 1374
	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
			pos_out + len);
	if (ret)
		goto out_unlock;
1375

1376 1377 1378 1379
	/* Zap any page cache for the destination file's range. */
	truncate_inode_pages_range(&inode_out->i_data, pos_out,
				   PAGE_ALIGN(pos_out + len) - 1);

1380 1381 1382 1383 1384 1385
	/*
	 * Carry the cowextsize hint from src to dest if we're sharing the
	 * entire source file to the entire destination file, the source file
	 * has a cowextsize hint, and the destination file does not.
	 */
	cowextsize = 0;
1386
	if (pos_in == 0 && len == i_size_read(inode_in) &&
1387
	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1388
	    pos_out == 0 && len >= i_size_read(inode_out) &&
1389 1390 1391
	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
		cowextsize = src->i_d.di_cowextsize;

1392 1393
	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
			is_dedupe);
1394

1395 1396
out_unlock:
	xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1397
	if (!same_inode)
1398
		xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1399
	unlock_two_nondirectories(inode_in, inode_out);
1400 1401 1402
	if (ret)
		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
	return ret;
1403
}
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

/*
 * The user wants to preemptively CoW all shared blocks in this file,
 * which enables us to turn off the reflink flag.  Iterate all
 * extents which are not prealloc/delalloc to see which ranges are
 * mentioned in the refcount tree, then read those blocks into the
 * pagecache, dirty them, fsync them back out, and then we can update
 * the inode flag.  What happens if we run out of memory? :)
 */
STATIC int
xfs_reflink_dirty_extents(
	struct xfs_inode	*ip,
	xfs_fileoff_t		fbno,
	xfs_filblks_t		end,
	xfs_off_t		isize)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		rbno;
	xfs_extlen_t		rlen;
	xfs_off_t		fpos;
	xfs_off_t		flen;
	struct xfs_bmbt_irec	map[2];
	int			nmaps;
D
Darrick J. Wong 已提交
1430
	int			error = 0;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	while (end - fbno > 0) {
		nmaps = 1;
		/*
		 * Look for extents in the file.  Skip holes, delalloc, or
		 * unwritten extents; they can't be reflinked.
		 */
		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
		if (error)
			goto out;
		if (nmaps == 0)
			break;
1443
		if (!xfs_bmap_is_real_extent(&map[0]))
1444 1445 1446 1447 1448 1449 1450 1451
			goto next;

		map[1] = map[0];
		while (map[1].br_blockcount) {
			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
			aglen = map[1].br_blockcount;

1452 1453
			error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
					aglen, &rbno, &rlen, true);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
			if (error)
				goto out;
			if (rbno == NULLAGBLOCK)
				break;

			/* Dirty the pages */
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
					(rbno - agbno));
			flen = XFS_FSB_TO_B(mp, rlen);
			if (fpos + flen > isize)
				flen = isize - fpos;
			error = iomap_file_dirty(VFS_I(ip), fpos, flen,
					&xfs_iomap_ops);
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			if (error)
				goto out;

			map[1].br_blockcount -= (rbno - agbno + rlen);
			map[1].br_startoff += (rbno - agbno + rlen);
			map[1].br_startblock += (rbno - agbno + rlen);
		}

next:
		fbno = map[0].br_startoff + map[0].br_blockcount;
	}
out:
	return error;
}

1484
/* Does this inode need the reflink flag? */
1485
int
1486 1487 1488 1489
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1490
{
1491 1492 1493 1494 1495 1496 1497 1498
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1499
	struct xfs_iext_cursor		icur;
1500 1501
	bool				found;
	int				error;
1502

1503 1504 1505
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1506 1507
		if (error)
			return error;
1508
	}
1509

1510
	*has_shared = false;
1511
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1512 1513 1514 1515 1516 1517 1518
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1519

1520
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1521 1522 1523 1524
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1525 1526
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1527
			return 0;
1528
		}
1529
next:
1530
		found = xfs_iext_next_extent(ifp, &icur, &got);
1531 1532
	}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	return 0;
}

/* Clear the inode reflink flag if there are no shared extents. */
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1551 1552 1553 1554
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
1555
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1556 1557 1558 1559 1560 1561
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1562
	xfs_inode_clear_cowblocks_tag(ip);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	xfs_trans_ijoin(*tpp, ip, 0);
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1575
	struct xfs_inode	*ip)
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		fbno;
	xfs_filblks_t		end;
	xfs_off_t		isize;
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

	inode_dio_wait(VFS_I(ip));

	/* Try to CoW the selected ranges */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1631
	fbno = XFS_B_TO_FSBT(mp, offset);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	isize = i_size_read(VFS_I(ip));
	end = XFS_B_TO_FSB(mp, offset + len);
	error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
	if (error)
		goto out_unlock;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/* Wait for the IO to finish */
	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
	if (error)
		goto out;

1644 1645 1646 1647
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1648 1649 1650 1651 1652 1653 1654 1655 1656

	return 0;

out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}