amdgpu_smu.c 65.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/pci.h>
25

26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "smu_v11_0.h"
30
#include "smu_v12_0.h"
31
#include "atom.h"
32 33 34 35
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
36

37 38 39 40 41 42 43 44
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
45
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
46
		return "unknown smu message";
47 48 49
	return __smu_message_names[type];
}

50 51 52 53 54 55 56 57
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
58
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
59
		return "unknown smu feature";
60 61 62
	return __smu_feature_names[feature];
}

63 64
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
65
	struct amdgpu_device *adev = smu->adev;
66 67 68 69 70
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
71 72
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
73

74 75 76
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

77 78
	mutex_lock(&smu->mutex);

79 80 81 82 83 84 85 86 87 88 89
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
90 91 92 93 94
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
95 96
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
97 98 99
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
100
			       "enabled" : "disabled");
101 102 103
	}

failed:
104 105
	mutex_unlock(&smu->mutex);

106 107 108
	return size;
}

109 110 111 112 113 114 115 116 117 118 119 120 121
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
122
						  feature_low, NULL);
123 124 125
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
126
						  feature_high, NULL);
127 128 129 130
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
131
						  feature_low, NULL);
132 133 134
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
135
						  feature_high, NULL);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

152 153 154 155 156 157 158
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;
159 160 161 162
	struct amdgpu_device *adev = smu->adev;

	if (!adev->pm.dpm_enabled)
		return -EINVAL;
163

164 165
	mutex_lock(&smu->mutex);

166 167
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
168
		goto out;
169 170 171 172 173 174 175 176 177

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
178
			goto out;
179 180 181 182
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
183
			goto out;
184 185
	}

186 187 188
out:
	mutex_unlock(&smu->mutex);

189 190 191
	return ret;
}

192 193 194 195 196 197 198
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

199 200 201 202 203 204 205 206 207 208 209
	if (smu->smc_fw_if_version && smu->smc_fw_version)
	{
		if (if_version)
			*if_version = smu->smc_fw_if_version;

		if (smu_version)
			*smu_version = smu->smc_fw_version;

		return 0;
	}

210
	if (if_version) {
211
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion, if_version);
212 213
		if (ret)
			return ret;
214 215

		smu->smc_fw_if_version = *if_version;
216 217 218
	}

	if (smu_version) {
219
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion, smu_version);
220 221
		if (ret)
			return ret;
222 223

		smu->smc_fw_version = *smu_version;
224 225 226 227 228
	}

	return ret;
}

229
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
230
			    uint32_t min, uint32_t max, bool lock_needed)
231
{
232
	int ret = 0;
233

234 235 236
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

237 238
	if (lock_needed)
		mutex_lock(&smu->mutex);
239
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
240 241 242
	if (lock_needed)
		mutex_unlock(&smu->mutex);

243 244 245
	return ret;
}

246 247 248 249 250 251 252 253 254
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

255 256 257
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

258 259 260 261 262 263 264
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
265
						  param, NULL);
266 267 268 269 270 271 272
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
273
						  param, NULL);
274 275 276 277 278 279 280 281
		if (ret)
			return ret;
	}


	return ret;
}

282
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
283
			   uint32_t *min, uint32_t *max, bool lock_needed)
284
{
285
	uint32_t clock_limit;
286
	int ret = 0;
287 288 289 290

	if (!min && !max)
		return -EINVAL;

291 292 293
	if (lock_needed)
		mutex_lock(&smu->mutex);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
317 318 319 320 321 322
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
323
	}
324 325 326 327

	if (lock_needed)
		mutex_unlock(&smu->mutex);

328 329 330
	return ret;
}

331 332 333 334 335 336 337 338 339
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

340 341 342
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

343 344 345 346 347 348
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

349
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex,
350
					  param, value);
351 352 353 354 355
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
356
	*value = *value & 0x7fffffff;
357 358 359 360 361 362 363 364 365 366

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
int smu_get_dpm_level_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *min_value, uint32_t *max_value)
{
	int ret = 0;
	uint32_t level_count = 0;

	if (!min_value && !max_value)
		return -EINVAL;

	if (min_value) {
		/* by default, level 0 clock value as min value */
		ret = smu_get_dpm_freq_by_index(smu, clk_type, 0, min_value);
		if (ret)
			return ret;
	}

	if (max_value) {
		ret = smu_get_dpm_level_count(smu, clk_type, &level_count);
		if (ret)
			return ret;

		ret = smu_get_dpm_freq_by_index(smu, clk_type, level_count - 1, max_value);
		if (ret)
			return ret;
	}

	return ret;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
437 438 439
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
440
	struct amdgpu_device *adev = smu->adev;
441 442
	int ret = 0;

443 444 445
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

446 447
	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
448
		ret = smu_dpm_set_uvd_enable(smu, !gate);
449 450
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
451
		ret = smu_dpm_set_vce_enable(smu, !gate);
452
		break;
453 454 455
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
456 457 458
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
L
Leo Liu 已提交
459
	case AMD_IP_BLOCK_TYPE_JPEG:
460
		ret = smu_dpm_set_jpeg_enable(smu, !gate);
L
Leo Liu 已提交
461
		break;
462 463 464 465
	default:
		break;
	}

466
	return ret;
467 468
}

469 470 471 472 473 474 475 476
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
477 478
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
479 480 481 482

	return 0;
}

483 484 485
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
486 487
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
488 489
	int ret = 0;

490 491 492
	if(!data || !size)
		return -EINVAL;

493
	switch (sensor) {
494 495 496 497 498 499 500 501
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
502 503 504 505
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
506 507 508 509 510 511 512 513
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
514
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
515
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
516 517
		*size = 4;
		break;
518 519 520 521 522 523 524 525 526 527 528
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

529
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
530 531 532
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
533
	struct amdgpu_device *adev = smu->adev;
534
	struct smu_table *table = &smu_table->driver_table;
535
	int table_id = smu_table_get_index(smu, table_index);
536 537
	uint32_t table_size;
	int ret = 0;
538
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
539 540
		return -EINVAL;

541
	table_size = smu_table->tables[table_index].size;
542

543
	if (drv2smu) {
544
		memcpy(table->cpu_addr, table_data, table_size);
545 546 547 548 549 550
		/*
		 * Flush hdp cache: to guard the content seen by
		 * GPU is consitent with CPU.
		 */
		amdgpu_asic_flush_hdp(adev, NULL);
	}
551 552 553 554

	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
555 556
					  table_id | ((argument & 0xFFFF) << 16),
					  NULL);
557 558 559
	if (ret)
		return ret;

560 561
	if (!drv2smu) {
		amdgpu_asic_flush_hdp(adev, NULL);
562
		memcpy(table_data, table->cpu_addr, table_size);
563
	}
564 565 566 567

	return ret;
}

568 569
bool is_support_sw_smu(struct amdgpu_device *adev)
{
570 571
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
572
	else if (adev->asic_type >= CHIP_ARCTURUS) {
573
	      if (amdgpu_sriov_is_pp_one_vf(adev) || !amdgpu_sriov_vf(adev))
574
			return true;
575 576
	}
	return false;
577 578
}

579 580 581
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
582
	struct amdgpu_device *adev = smu->adev;
583
	uint32_t powerplay_table_size;
584

585 586 587
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

588 589 590
	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

591 592
	mutex_lock(&smu->mutex);

593 594 595 596 597
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

598 599 600 601 602
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
603 604 605 606 607
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
608
	struct amdgpu_device *adev = smu->adev;
609 610 611
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

612
	if (!adev->pm.dpm_enabled)
613
		return -EINVAL;
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

632 633 634 635 636 637
	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

638 639 640 641
	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

642 643
	smu->uploading_custom_pp_table = false;

644 645 646 647 648
failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

649 650 651 652
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
653
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
654

655
	mutex_lock(&feature->mutex);
656
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
657
	mutex_unlock(&feature->mutex);
658

659
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
660 661 662 663
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

664
	mutex_lock(&feature->mutex);
665 666
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
667
		      feature->feature_num);
668
	mutex_unlock(&feature->mutex);
669 670 671

	return ret;
}
672

673

674
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
675 676
{
	struct smu_feature *feature = &smu->smu_feature;
677
	int feature_id;
678 679
	int ret = 0;

680
	if (smu->is_apu)
681
		return 1;
682
	feature_id = smu_feature_get_index(smu, mask);
683 684
	if (feature_id < 0)
		return 0;
685

686
	WARN_ON(feature_id > feature->feature_num);
687 688 689 690 691 692

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
693 694
}

695 696
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
697 698
{
	struct smu_feature *feature = &smu->smu_feature;
699
	int feature_id;
700

701
	feature_id = smu_feature_get_index(smu, mask);
702 703
	if (feature_id < 0)
		return -EINVAL;
704

705
	WARN_ON(feature_id > feature->feature_num);
706

707 708 709
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
710 711
}

712
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
713 714
{
	struct smu_feature *feature = &smu->smu_feature;
715
	int feature_id;
716 717
	int ret = 0;

718
	feature_id = smu_feature_get_index(smu, mask);
719 720
	if (feature_id < 0)
		return 0;
721

722
	WARN_ON(feature_id > feature->feature_num);
723 724 725 726 727 728

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
729 730
}

731 732
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
733 734 735
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
736
	int feature_id;
737 738
	int ret = 0;

739
	feature_id = smu_feature_get_index(smu, mask);
740 741
	if (feature_id < 0)
		return -EINVAL;
742

743
	WARN_ON(feature_id > feature->feature_num);
744

745
	mutex_lock(&feature->mutex);
746 747 748 749
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
750 751 752
	mutex_unlock(&feature->mutex);

	return ret;
753 754
}

755 756
static int smu_set_funcs(struct amdgpu_device *adev)
{
757 758
	struct smu_context *smu = &adev->smu;

759 760 761
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

762 763
	switch (adev->asic_type) {
	case CHIP_VEGA20:
764
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
765 766
		vega20_set_ppt_funcs(smu);
		break;
767
	case CHIP_NAVI10:
768
	case CHIP_NAVI14:
769
	case CHIP_NAVI12:
770 771
		navi10_set_ppt_funcs(smu);
		break;
772
	case CHIP_ARCTURUS:
773
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
774
		arcturus_set_ppt_funcs(smu);
775 776
		/* OD is not supported on Arcturus */
		smu->od_enabled =false;
777
		break;
778
	case CHIP_RENOIR:
779
		renoir_set_ppt_funcs(smu);
780
		break;
781 782 783 784
	default:
		return -EINVAL;
	}

785 786 787 788 789 790 791 792 793
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
794
	smu->pm_enabled = !!amdgpu_dpm;
795
	smu->is_apu = false;
796 797
	mutex_init(&smu->mutex);

798
	return smu_set_funcs(adev);
799 800
}

801 802 803 804
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
805 806 807

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
808

809 810
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
811 812
			AMD_PP_TASK_COMPLETE_INIT,
			false);
813 814 815 816

	return 0;
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

849 850 851 852 853 854 855 856 857 858
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

859 860 861 862 863 864 865 866 867 868
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

869 870 871
	return 0;
}

872 873 874 875 876 877 878 879 880 881 882 883 884
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

885 886 887 888 889 890
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

891
	smu->pool_size = adev->pm.smu_prv_buffer_size;
892
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
893
	mutex_init(&smu->smu_feature.mutex);
894 895 896
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
897 898 899 900 901

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

902
	mutex_init(&smu->sensor_lock);
903
	mutex_init(&smu->metrics_lock);
904
	mutex_init(&smu->message_lock);
905

906
	smu->watermarks_bitmap = 0;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
926
	smu->display_config = &adev->pm.pm_display_cfg;
927

928 929
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
930 931 932 933 934 935
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

936 937 938 939 940 941
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

942 943 944 945 946 947
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

948 949 950 951 952 953
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
954 955
	struct smu_context *smu = &adev->smu;
	int ret;
956

957 958 959
	kfree(smu->irq_source);
	smu->irq_source = NULL;

960 961 962 963 964 965
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

966 967 968 969 970 971
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

972 973 974
	return 0;
}

975 976
static int smu_init_fb_allocations(struct smu_context *smu)
{
977 978 979
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
980 981
	struct smu_table *driver_table = &(smu_table->driver_table);
	uint32_t max_table_size = 0;
982
	int ret, i;
983

984 985
	/* VRAM allocation for tool table */
	if (tables[SMU_TABLE_PMSTATUSLOG].size) {
986
		ret = amdgpu_bo_create_kernel(adev,
987 988 989 990 991 992 993 994 995 996
					      tables[SMU_TABLE_PMSTATUSLOG].size,
					      tables[SMU_TABLE_PMSTATUSLOG].align,
					      tables[SMU_TABLE_PMSTATUSLOG].domain,
					      &tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
		if (ret) {
			pr_err("VRAM allocation for tool table failed!\n");
			return ret;
		}
997 998
	}

999 1000
	/* VRAM allocation for driver table */
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
1001 1002 1003
		if (tables[i].size == 0)
			continue;

1004 1005 1006 1007 1008
		if (i == SMU_TABLE_PMSTATUSLOG)
			continue;

		if (max_table_size < tables[i].size)
			max_table_size = tables[i].size;
1009
	}
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	driver_table->size = max_table_size;
	driver_table->align = PAGE_SIZE;
	driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM;

	ret = amdgpu_bo_create_kernel(adev,
				      driver_table->size,
				      driver_table->align,
				      driver_table->domain,
				      &driver_table->bo,
				      &driver_table->mc_address,
				      &driver_table->cpu_addr);
	if (ret) {
		pr_err("VRAM allocation for driver table failed!\n");
		if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
			amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
	}

1030
	return ret;
1031 1032
}

1033 1034 1035 1036
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
1037
	struct smu_table *driver_table = &(smu_table->driver_table);
1038

1039
	if (!tables)
1040
		return 0;
1041

1042 1043 1044 1045 1046 1047 1048 1049
	if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
		amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
				      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
				      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);

	amdgpu_bo_free_kernel(&driver_table->bo,
			      &driver_table->mc_address,
			      &driver_table->cpu_addr);
1050 1051 1052

	return 0;
}
1053

1054 1055
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
1056
{
1057
	struct amdgpu_device *adev = smu->adev;
1058 1059
	int ret;

1060 1061 1062 1063 1064
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

1065 1066 1067 1068 1069
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
1070

1071
	if (initialize) {
1072 1073
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1074 1075
		if (ret)
			return ret;
1076

1077
		ret = smu_setup_pptable(smu);
1078 1079
		if (ret)
			return ret;
1080

1081 1082 1083 1084
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1085 1086 1087 1088 1089 1090 1091
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1092

1093 1094 1095 1096 1097 1098
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1099

1100 1101 1102 1103 1104 1105 1106 1107
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1108

1109 1110 1111 1112 1113 1114 1115 1116
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1117

1118 1119 1120 1121
	ret = smu_set_driver_table_location(smu);
	if (ret)
		return ret;

1122
	/* smu_dump_pptable(smu); */
1123 1124 1125 1126 1127 1128 1129 1130
	if (!amdgpu_sriov_vf(adev)) {
		/*
		 * Copy pptable bo in the vram to smc with SMU MSGs such as
		 * SetDriverDramAddr and TransferTableDram2Smu.
		 */
		ret = smu_write_pptable(smu);
		if (ret)
			return ret;
1131

1132 1133 1134 1135 1136 1137 1138
		/* issue Run*Btc msg */
		ret = smu_run_btc(smu);
		if (ret)
			return ret;
		ret = smu_feature_set_allowed_mask(smu);
		if (ret)
			return ret;
1139

1140 1141 1142
		ret = smu_system_features_control(smu, true);
		if (ret)
			return ret;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		if (adev->asic_type == CHIP_NAVI10) {
			if ((adev->pdev->device == 0x731f && (adev->pdev->revision == 0xc2 ||
							      adev->pdev->revision == 0xc3 ||
							      adev->pdev->revision == 0xca ||
							      adev->pdev->revision == 0xcb)) ||
			    (adev->pdev->device == 0x66af && (adev->pdev->revision == 0xf3 ||
							      adev->pdev->revision == 0xf4 ||
							      adev->pdev->revision == 0xf5 ||
							      adev->pdev->revision == 0xf6))) {
				ret = smu_disable_umc_cdr_12gbps_workaround(smu);
				if (ret) {
					pr_err("Workaround failed to disable UMC CDR feature on 12Gbps SKU!\n");
					return ret;
				}
			}
		}
1160

1161
		if (smu->ppt_funcs->set_power_source) {
1162 1163 1164 1165
			/*
			 * For Navi1X, manually switch it to AC mode as PMFW
			 * may boot it with DC mode.
			 */
1166 1167 1168 1169
			if (adev->pm.ac_power)
				ret = smu_set_power_source(smu, SMU_POWER_SOURCE_AC);
			else
				ret = smu_set_power_source(smu, SMU_POWER_SOURCE_DC);
1170
			if (ret) {
1171
				pr_err("Failed to switch to %s mode!\n", adev->pm.ac_power ? "AC" : "DC");
1172 1173 1174
				return ret;
			}
		}
1175
	}
1176 1177 1178 1179
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1180

1181 1182 1183 1184 1185 1186 1187 1188
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1189

1190 1191 1192 1193 1194
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1195
	if (initialize) {
1196
		ret = smu_populate_smc_tables(smu);
1197 1198
		if (ret)
			return ret;
1199

1200 1201 1202 1203
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1204

1205 1206 1207 1208 1209 1210
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;
	}

1211
	ret = smu_set_default_od_settings(smu, initialize);
1212 1213 1214
	if (ret)
		return ret;

1215 1216 1217 1218
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1219

1220
		ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1221 1222 1223
		if (ret)
			return ret;
	}
1224

1225 1226 1227
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
1228 1229 1230
	if (!amdgpu_sriov_vf(adev)) {
		ret = smu_set_tool_table_location(smu);
	}
1231 1232 1233
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1234
	return ret;
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1280 1281
}

1282 1283 1284 1285 1286 1287
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
1288
		return 0;
1289 1290 1291 1292 1293 1294 1295

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

1296
	return 0;
1297
}
1298

1299
static int smu_start_smc_engine(struct smu_context *smu)
1300
{
1301 1302
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1303

1304 1305
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1306 1307
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1308 1309 1310
				if (ret)
					return ret;
			}
1311
		}
1312 1313
	}

1314 1315
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1316 1317 1318
		if (ret)
			pr_err("SMC is not ready\n");
	}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1329 1330 1331
	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1332
	ret = smu_start_smc_engine(smu);
1333
	if (ret) {
1334
		pr_err("SMU is not ready yet!\n");
1335 1336 1337
		return ret;
	}

1338
	if (smu->is_apu) {
1339
		smu_powergate_sdma(&adev->smu, false);
1340
		smu_powergate_vcn(&adev->smu, false);
1341
		smu_powergate_jpeg(&adev->smu, false);
1342
		smu_set_gfx_cgpg(&adev->smu, true);
1343
	}
1344

1345 1346 1347
	if (!smu->pm_enabled)
		return 0;

1348 1349 1350 1351
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1352
	ret = smu_smc_table_hw_init(smu, true);
1353 1354
	if (ret)
		goto failed;
1355

1356 1357 1358 1359
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1368 1369 1370 1371
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1372 1373 1374 1375
	ret = smu_i2c_eeprom_init(smu, &adev->pm.smu_i2c);
	if (ret)
		goto failed;

1376
	adev->pm.dpm_enabled = true;
1377

1378 1379 1380
	pr_info("SMU is initialized successfully!\n");

	return 0;
1381 1382 1383

failed:
	return ret;
1384 1385
}

1386 1387
static int smu_stop_dpms(struct smu_context *smu)
{
1388 1389 1390
	if (amdgpu_sriov_vf(smu->adev))
		return 0;

1391
	return smu_system_features_control(smu, false);
1392 1393
}

1394 1395 1396 1397
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1398
	struct smu_table_context *table_context = &smu->smu_table;
1399
	int ret = 0;
1400

1401 1402 1403
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1404
	if (smu->is_apu) {
1405
		smu_powergate_sdma(&adev->smu, true);
1406
		smu_powergate_vcn(&adev->smu, true);
1407
		smu_powergate_jpeg(&adev->smu, true);
1408
	}
1409

1410 1411 1412
	if (!smu->pm_enabled)
		return 0;

1413 1414
	adev->pm.dpm_enabled = false;

1415 1416
	smu_i2c_eeprom_fini(smu, &adev->pm.smu_i2c);

1417 1418
	if (!amdgpu_sriov_vf(adev)){
		ret = smu_stop_thermal_control(smu);
1419
		if (ret) {
1420
			pr_warn("Fail to stop thermal control!\n");
1421 1422
			return ret;
		}
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

		/*
		 * For custom pptable uploading, skip the DPM features
		 * disable process on Navi1x ASICs.
		 *   - As the gfx related features are under control of
		 *     RLC on those ASICs. RLC reinitialization will be
		 *     needed to reenable them. That will cost much more
		 *     efforts.
		 *
		 *   - SMU firmware can handle the DPM reenablement
		 *     properly.
		 */
		if (!smu->uploading_custom_pp_table ||
				!((adev->asic_type >= CHIP_NAVI10) &&
					(adev->asic_type <= CHIP_NAVI12))) {
			ret = smu_stop_dpms(smu);
			if (ret) {
				pr_warn("Fail to stop Dpms!\n");
				return ret;
			}
		}
1444 1445
	}

1446 1447
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1448

1449 1450
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1451

1452 1453
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1454

1455 1456 1457 1458
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1459 1460 1461 1462
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1463 1464 1465
	return 0;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1482
static int smu_disable_dpm(struct smu_context *smu)
1483 1484 1485 1486
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t smu_version;
	int ret = 0;
1487 1488 1489
	bool use_baco = !smu->is_apu &&
		((adev->in_gpu_reset &&
		  (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
1490
		 ((adev->in_runpm || adev->in_hibernate) && amdgpu_asic_supports_baco(adev)));
1491 1492 1493 1494 1495 1496 1497 1498

	ret = smu_get_smc_version(smu, NULL, &smu_version);
	if (ret) {
		pr_err("Failed to get smu version.\n");
		return ret;
	}

	/*
1499 1500 1501 1502
	 * Disable all enabled SMU features.
	 * This should be handled in SMU FW, as a backup
	 * driver can issue call to SMU FW until sequence
	 * in SMU FW is operational.
1503 1504 1505 1506 1507 1508 1509
	 */
	ret = smu_system_features_control(smu, false);
	if (ret) {
		pr_err("Failed to disable smu features.\n");
		return ret;
	}

1510 1511 1512 1513 1514 1515 1516 1517 1518
	/*
	 * Arcturus does not have BACO bit in disable feature mask.
	 * Enablement of BACO bit on Arcturus should be skipped.
	 */
	if (adev->asic_type == CHIP_ARCTURUS) {
		if (use_baco && (smu_version > 0x360e00))
			return 0;
	}

1519 1520
	/* For baco, need to leave BACO feature enabled */
	if (use_baco) {
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * Correct the way for checking whether SMU_FEATURE_BACO_BIT
		 * is supported.
		 *
		 * Since 'smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)' will
		 * always return false as the 'smu_system_features_control(smu, false)'
		 * was just issued above which disabled all SMU features.
		 *
		 * Thus 'smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT)' is used
		 * now for the checking.
		 */
		if (smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT) >= 0) {
1533 1534 1535 1536 1537
			ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
			if (ret) {
				pr_warn("set BACO feature enabled failed, return %d\n", ret);
				return ret;
			}
1538 1539 1540 1541 1542 1543
		}
	}

	return ret;
}

1544 1545 1546
static int smu_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1547
	struct smu_context *smu = &adev->smu;
1548
	int ret;
1549

1550 1551 1552
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1553 1554 1555
	if (!smu->pm_enabled)
		return 0;

1556 1557
	adev->pm.dpm_enabled = false;

1558 1559
	smu_i2c_eeprom_fini(smu, &adev->pm.smu_i2c);

1560
	if(!amdgpu_sriov_vf(adev)) {
1561
		ret = smu_disable_dpm(smu);
1562
		if (ret)
1563 1564 1565
			return ret;
	}

1566 1567
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1568 1569 1570
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1571 1572
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1583 1584 1585 1586 1587 1588
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	if (!smu->pm_enabled)
		return 0;

1589 1590
	pr_info("SMU is resuming...\n");

1591 1592 1593
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1594
		goto failed;
1595 1596
	}

1597
	ret = smu_smc_table_hw_init(smu, false);
1598 1599 1600
	if (ret)
		goto failed;

1601
	ret = smu_start_thermal_control(smu);
1602 1603
	if (ret)
		goto failed;
1604

1605 1606 1607 1608
	ret = smu_i2c_eeprom_init(smu, &adev->pm.smu_i2c);
	if (ret)
		goto failed;

1609 1610 1611
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1612 1613
	smu->disable_uclk_switch = 0;

1614 1615
	adev->pm.dpm_enabled = true;

1616 1617
	pr_info("SMU is resumed successfully!\n");

1618
	return 0;
1619

1620 1621
failed:
	return ret;
1622 1623
}

1624 1625 1626
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
1627
	struct amdgpu_device *adev = smu->adev;
1628 1629 1630
	int index = 0;
	int num_of_active_display = 0;

1631 1632 1633 1634
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

	if (!is_support_sw_smu(smu->adev))
1635 1636 1637 1638 1639 1640 1641
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1642 1643
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1644
				display_config->min_dcef_deep_sleep_set_clk / 100);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
1696
	struct amdgpu_device *adev = smu->adev;
1697 1698 1699 1700 1701 1702
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

1703 1704 1705
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1767

1768
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
1779 1780 1781
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
A
Alex Deucher 已提交
1825
		ret = smu_notify_smc_display_config(smu);
1826 1827 1828 1829 1830 1831 1832
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1833 1834
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
1835 1836
			pr_err("Failed to set performance level!");
			return ret;
1837
		}
1838 1839 1840

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1841 1842 1843 1844 1845 1846 1847 1848
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1849
			smu_set_power_profile_mode(smu, &workload, 0, false);
1850 1851 1852 1853 1854 1855 1856
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1857 1858
		    enum amd_pp_task task_id,
		    bool lock_needed)
1859
{
1860
	struct amdgpu_device *adev = smu->adev;
1861 1862
	int ret = 0;

1863 1864 1865
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

1866 1867 1868
	if (lock_needed)
		mutex_lock(&smu->mutex);

1869 1870 1871 1872
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1873
			goto out;
1874 1875
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1876
			goto out;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1887 1888 1889 1890
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1891 1892 1893
	return ret;
}

1894 1895 1896 1897 1898
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1899
	struct amdgpu_device *adev = smu->adev;
1900 1901 1902
	long workload;
	uint32_t index;

1903
	if (!adev->pm.dpm_enabled)
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1924
		smu_set_power_profile_mode(smu, &workload, 0, false);
1925 1926 1927 1928 1929 1930

	mutex_unlock(&smu->mutex);

	return 0;
}

1931 1932 1933
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1934
	struct amdgpu_device *adev = smu->adev;
1935
	enum amd_dpm_forced_level level;
1936

1937 1938 1939
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

1940
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1941 1942 1943
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1944
	level = smu_dpm_ctx->dpm_level;
1945 1946
	mutex_unlock(&(smu->mutex));

1947
	return level;
1948 1949 1950 1951 1952
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1953
	struct amdgpu_device *adev = smu->adev;
1954
	int ret = 0;
1955

1956 1957 1958
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

1959
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1960 1961
		return -EINVAL;

1962 1963
	mutex_lock(&smu->mutex);

1964
	ret = smu_enable_umd_pstate(smu, &level);
1965 1966
	if (ret) {
		mutex_unlock(&smu->mutex);
1967
		return ret;
1968
	}
1969

1970
	ret = smu_handle_task(smu, level,
1971 1972 1973 1974
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1975 1976 1977 1978

	return ret;
}

1979 1980
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
1981
	struct amdgpu_device *adev = smu->adev;
1982 1983
	int ret = 0;

1984 1985 1986
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

1987 1988 1989 1990 1991 1992 1993
	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1994 1995
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1996 1997
			 uint32_t mask,
			 bool lock_needed)
1998 1999
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
2000
	struct amdgpu_device *adev = smu->adev;
2001 2002
	int ret = 0;

2003 2004 2005
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2006 2007 2008 2009 2010
	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

2011 2012 2013
	if (lock_needed)
		mutex_lock(&smu->mutex);

2014 2015 2016
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

2017 2018 2019
	if (lock_needed)
		mutex_unlock(&smu->mutex);

2020 2021 2022
	return ret;
}

2023 2024 2025 2026 2027 2028 2029
/*
 * On system suspending or resetting, the dpm_enabled
 * flag will be cleared. So that those SMU services which
 * are not supported will be gated.
 * However, the mp1 state setting should still be granted
 * even if the dpm_enabled cleared.
 */
2030 2031 2032 2033 2034 2035
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

2036 2037
	mutex_lock(&smu->mutex);

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
2050
		mutex_unlock(&smu->mutex);
2051 2052 2053 2054
		return 0;
	}

	/* some asics may not support those messages */
2055 2056
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
2057
		return 0;
2058
	}
2059

2060
	ret = smu_send_smc_msg(smu, msg, NULL);
2061 2062 2063
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

2064 2065
	mutex_unlock(&smu->mutex);

2066 2067 2068
	return ret;
}

2069 2070 2071
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
2072
	struct amdgpu_device *adev = smu->adev;
2073 2074
	int ret = 0;

2075 2076
	if (!adev->pm.dpm_enabled)
		return -EINVAL;
2077 2078 2079 2080

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

2081 2082
	mutex_lock(&smu->mutex);

2083 2084 2085 2086
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

2087 2088
	mutex_unlock(&smu->mutex);

2089 2090 2091
	return ret;
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
int smu_allow_xgmi_power_down(struct smu_context *smu, bool en)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	if (!adev->pm.dpm_enabled)
		return -EINVAL;

	if (!smu->ppt_funcs || !smu->ppt_funcs->allow_xgmi_power_down)
		return 0;

	mutex_lock(&smu->mutex);

	ret = smu->ppt_funcs->allow_xgmi_power_down(smu, en);
	if (ret)
		pr_err("[AllowXgmiPowerDown] failed!\n");

	mutex_unlock(&smu->mutex);

	return ret;
}

2114 2115
int smu_write_watermarks_table(struct smu_context *smu)
{
2116
	void *watermarks_table = smu->smu_table.watermarks_table;
2117

2118
	if (!watermarks_table)
2119 2120
		return -EINVAL;

2121 2122 2123 2124
	return smu_update_table(smu,
				SMU_TABLE_WATERMARKS,
				0,
				watermarks_table,
2125 2126 2127 2128 2129 2130
				true);
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
2131
	void *table = smu->smu_table.watermarks_table;
2132 2133 2134 2135
	struct amdgpu_device *adev = smu->adev;

	if (!adev->pm.dpm_enabled)
		return -EINVAL;
2136

2137 2138
	if (!table)
		return -EINVAL;
2139

2140 2141
	mutex_lock(&smu->mutex);

2142 2143 2144 2145
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
2146 2147 2148 2149 2150

		if (!(smu->watermarks_bitmap & WATERMARKS_EXIST)) {
			smu->watermarks_bitmap |= WATERMARKS_EXIST;
			smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
		}
2151 2152
	}

2153 2154
	mutex_unlock(&smu->mutex);

2155
	return 0;
2156 2157
}

2158 2159
int smu_set_ac_dc(struct smu_context *smu)
{
2160
	struct amdgpu_device *adev = smu->adev;
2161 2162
	int ret = 0;

2163 2164 2165
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	/* controlled by firmware */
	if (smu->dc_controlled_by_gpio)
		return 0;

	mutex_lock(&smu->mutex);
	if (smu->ppt_funcs->set_power_source) {
		if (smu->adev->pm.ac_power)
			ret = smu_set_power_source(smu, SMU_POWER_SOURCE_AC);
		else
			ret = smu_set_power_source(smu, SMU_POWER_SOURCE_DC);
		if (ret)
			pr_err("Failed to switch to %s mode!\n",
			       smu->adev->pm.ac_power ? "AC" : "DC");
	}
	mutex_unlock(&smu->mutex);

	return ret;
}

2185 2186 2187
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
2188
	.late_init = smu_late_init,
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
2201
	.enable_umd_pstate = smu_enable_umd_pstate,
2202
};
2203 2204 2205 2206 2207 2208 2209 2210 2211

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2212 2213 2214 2215 2216 2217 2218 2219 2220

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2221 2222 2223

int smu_load_microcode(struct smu_context *smu)
{
2224
	struct amdgpu_device *adev = smu->adev;
2225 2226
	int ret = 0;

2227 2228 2229
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2230 2231
	mutex_lock(&smu->mutex);

2232 2233
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
2234 2235 2236 2237 2238 2239 2240 2241

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
2242
	struct amdgpu_device *adev = smu->adev;
2243 2244
	int ret = 0;

2245 2246 2247
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2248 2249
	mutex_lock(&smu->mutex);

2250 2251
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2264 2265
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2266 2267 2268 2269 2270 2271 2272 2273

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
2274
	struct amdgpu_device *adev = smu->adev;
2275 2276
	int ret = 0;

2277 2278 2279
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2280 2281
	mutex_lock(&smu->mutex);

2282 2283
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
2295
	struct amdgpu_device *adev = smu->adev;
2296 2297
	int ret = 0;

2298 2299 2300 2301
	if (lock_needed) {
		if (!adev->pm.dpm_enabled)
			return -EINVAL;

2302
		mutex_lock(&smu->mutex);
2303
	}
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
2316
	struct amdgpu_device *adev = smu->adev;
2317 2318
	int ret = 0;

2319 2320 2321
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2322 2323
	mutex_lock(&smu->mutex);

2324 2325
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2326 2327 2328 2329 2330 2331 2332 2333

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
2334
	struct amdgpu_device *adev = smu->adev;
2335 2336
	int ret = 0;

2337 2338 2339
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
2352
	struct amdgpu_device *adev = smu->adev;
2353 2354
	int ret = 0;

2355 2356 2357
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
2370
	struct amdgpu_device *adev = smu->adev;
2371 2372
	int ret = 0;

2373 2374 2375
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
2390
	struct amdgpu_device *adev = smu->adev;
2391 2392
	int ret = 0;

2393 2394 2395
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
2410
	struct amdgpu_device *adev = smu->adev;
2411 2412
	int ret = 0;

2413 2414 2415
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
2428
	struct amdgpu_device *adev = smu->adev;
2429 2430
	int ret = 0;

2431 2432 2433
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
2449
	struct amdgpu_device *adev = smu->adev;
2450 2451
	int ret = 0;

2452 2453 2454
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
2470
	struct amdgpu_device *adev = smu->adev;
2471 2472
	int ret = 0;

2473 2474 2475
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2476 2477
	mutex_lock(&smu->mutex);

2478 2479
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2480 2481 2482 2483 2484 2485 2486 2487

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
2488
	struct amdgpu_device *adev = smu->adev;
2489 2490
	int ret = 0;

2491 2492 2493
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2494 2495
	mutex_lock(&smu->mutex);

2496 2497
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2498 2499 2500 2501 2502 2503 2504 2505

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
2506
	struct amdgpu_device *adev = smu->adev;
2507 2508
	int ret = 0;

2509 2510 2511
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
2524
	struct amdgpu_device *adev = smu->adev;
2525 2526
	int ret = 0;

2527 2528 2529
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2530 2531
	mutex_lock(&smu->mutex);

2532 2533
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2534 2535 2536 2537 2538 2539 2540 2541

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
2542
	struct amdgpu_device *adev = smu->adev;
2543 2544
	int ret = 0;

2545 2546 2547
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
2560
	struct amdgpu_device *adev = smu->adev;
2561 2562
	int ret = 0;

2563 2564 2565
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2566 2567
	mutex_lock(&smu->mutex);

2568 2569
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2570 2571 2572 2573 2574 2575 2576 2577

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
2578
	struct amdgpu_device *adev = smu->adev;
2579 2580
	int ret = 0;

2581 2582 2583
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2584 2585
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2586 2587 2588 2589 2590 2591 2592 2593

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
2594
	struct amdgpu_device *adev = smu->adev;
2595 2596
	int ret = 0;

2597 2598 2599
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2600 2601
	mutex_lock(&smu->mutex);

2602 2603
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2604 2605 2606 2607 2608 2609 2610 2611 2612

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
2613
	struct amdgpu_device *adev = smu->adev;
2614 2615
	int ret = 0;

2616 2617 2618
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2619 2620
	mutex_lock(&smu->mutex);

2621 2622
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
2633
	struct amdgpu_device *adev = smu->adev;
2634 2635
	int ret = 0;

2636 2637 2638
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
2653
	struct amdgpu_device *adev = smu->adev;
2654 2655
	int ret = 0;

2656 2657 2658
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
2673
	struct amdgpu_device *adev = smu->adev;
2674 2675
	int ret = 0;

2676 2677 2678
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2679 2680
	mutex_lock(&smu->mutex);

2681 2682
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2683 2684 2685 2686 2687 2688 2689 2690 2691

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
2692
	struct amdgpu_device *adev = smu->adev;
2693 2694
	int ret = -EINVAL;

2695 2696 2697
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
2710
	struct amdgpu_device *adev = smu->adev;
2711 2712
	int ret = 0;

2713 2714 2715
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2716 2717
	mutex_lock(&smu->mutex);

2718 2719
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2720 2721 2722 2723 2724 2725 2726 2727 2728

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
2729
	struct amdgpu_device *adev = smu->adev;
2730 2731
	int ret = 0;

2732 2733 2734
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2735 2736
	mutex_lock(&smu->mutex);

2737 2738
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2739 2740 2741 2742 2743 2744 2745 2746

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
2747
	struct amdgpu_device *adev = smu->adev;
2748 2749
	int ret = 0;

2750 2751 2752
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2753 2754
	mutex_lock(&smu->mutex);

2755 2756
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2757 2758 2759 2760 2761 2762

	mutex_unlock(&smu->mutex);

	return ret;
}

2763 2764 2765 2766 2767 2768 2769 2770
/*
 * On system suspending or resetting, the dpm_enabled
 * flag will be cleared. So that those SMU services which
 * are not supported will be gated.
 *
 * However, the baco/mode1 reset should still be granted
 * as they are still supported and necessary.
 */
2771 2772 2773 2774 2775 2776
bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2777
	if (smu->ppt_funcs && smu->ppt_funcs->baco_is_support)
2778
		ret = smu->ppt_funcs->baco_is_support(smu);
2779 2780 2781 2782 2783 2784 2785 2786

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2787
	if (smu->ppt_funcs->baco_get_state)
2788 2789 2790
		return -EINVAL;

	mutex_lock(&smu->mutex);
2791
	*state = smu->ppt_funcs->baco_get_state(smu);
2792 2793 2794 2795 2796
	mutex_unlock(&smu->mutex);

	return 0;
}

2797
int smu_baco_enter(struct smu_context *smu)
2798 2799 2800 2801 2802
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (smu->ppt_funcs->baco_enter)
		ret = smu->ppt_funcs->baco_enter(smu);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_exit(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->baco_exit)
		ret = smu->ppt_funcs->baco_exit(smu);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2831 2832
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2833 2834 2835 2836 2837 2838 2839 2840 2841

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
2842
	struct amdgpu_device *adev = smu->adev;
2843 2844
	int ret = 0;

2845 2846 2847
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2848 2849
	mutex_lock(&smu->mutex);

2850 2851
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
2862
	struct amdgpu_device *adev = smu->adev;
2863 2864
	int ret = 0;

2865 2866 2867
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;
2881 2882 2883 2884
	struct amdgpu_device *adev = smu->adev;

	if (!adev->pm.dpm_enabled)
		return -EINVAL;
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
2899
	struct amdgpu_device *adev = smu->adev;
2900 2901
	int ret = 0;

2902 2903 2904
	if (!adev->pm.dpm_enabled)
		return -EINVAL;

2905 2906 2907 2908 2909 2910 2911 2912 2913
	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923

uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
{
	uint32_t ret = 0;

	if (smu->ppt_funcs->get_pptable_power_limit)
		ret = smu->ppt_funcs->get_pptable_power_limit(smu);

	return ret;
}