amdgpu_smu.c 59.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/pci.h>
25 26

#include "pp_debug.h"
27 28
#include "amdgpu.h"
#include "amdgpu_smu.h"
29
#include "smu_internal.h"
30
#include "soc15_common.h"
31
#include "smu_v11_0.h"
32
#include "smu_v12_0.h"
33
#include "atom.h"
34
#include "amd_pcie.h"
35 36 37 38
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
39

40 41 42 43 44 45 46 47
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
48
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
49
		return "unknown smu message";
50 51 52
	return __smu_message_names[type];
}

53 54 55 56 57 58 59 60
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
61
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
62
		return "unknown smu feature";
63 64 65
	return __smu_feature_names[feature];
}

66 67 68 69 70 71 72
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
73 74
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
75

76 77
	mutex_lock(&smu->mutex);

78 79 80 81 82 83 84 85 86 87 88
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
89 90 91 92 93
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
94 95
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
96 97 98
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
99
			       "enabled" : "disabled");
100 101 102
	}

failed:
103 104
	mutex_unlock(&smu->mutex);

105 106 107
	return size;
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
124
						  feature_low, NULL);
125 126 127
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
128
						  feature_high, NULL);
129 130 131 132
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
133
						  feature_low, NULL);
134 135 136
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
137
						  feature_high, NULL);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

154 155 156 157 158 159 160 161
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

162 163
	mutex_lock(&smu->mutex);

164 165
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
166
		goto out;
167 168 169 170 171 172 173 174 175

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
176
			goto out;
177 178 179 180
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
181
			goto out;
182 183
	}

184 185 186
out:
	mutex_unlock(&smu->mutex);

187 188 189
	return ret;
}

190 191 192 193 194 195 196 197
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
198
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion, if_version);
199 200 201 202 203
		if (ret)
			return ret;
	}

	if (smu_version) {
204
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion, smu_version);
205 206 207 208 209 210 211
		if (ret)
			return ret;
	}

	return ret;
}

212 213 214
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
215
	int ret = 0;
216 217 218 219

	if (min <= 0 && max <= 0)
		return -EINVAL;

220 221 222
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

223
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
224 225 226
	return ret;
}

227 228 229 230 231 232 233 234 235
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

236 237 238
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

239 240 241 242 243 244 245
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
246
						  param, NULL);
247 248 249 250 251 252 253
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
254
						  param, NULL);
255 256 257 258 259 260 261 262
		if (ret)
			return ret;
	}


	return ret;
}

263
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
264
			   uint32_t *min, uint32_t *max, bool lock_needed)
265
{
266
	uint32_t clock_limit;
267
	int ret = 0;
268 269 270 271

	if (!min && !max)
		return -EINVAL;

272 273 274
	if (lock_needed)
		mutex_lock(&smu->mutex);

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
298 299 300 301 302 303
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
304
	}
305 306 307 308

	if (lock_needed)
		mutex_unlock(&smu->mutex);

309 310 311
	return ret;
}

312 313 314 315 316 317 318 319 320
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

321 322 323
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

324 325 326 327 328 329
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

330 331
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex,
					  param, &param);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
int smu_get_dpm_level_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *min_value, uint32_t *max_value)
{
	int ret = 0;
	uint32_t level_count = 0;

	if (!min_value && !max_value)
		return -EINVAL;

	if (min_value) {
		/* by default, level 0 clock value as min value */
		ret = smu_get_dpm_freq_by_index(smu, clk_type, 0, min_value);
		if (ret)
			return ret;
	}

	if (max_value) {
		ret = smu_get_dpm_level_count(smu, clk_type, &level_count);
		if (ret)
			return ret;

		ret = smu_get_dpm_freq_by_index(smu, clk_type, level_count - 1, max_value);
		if (ret)
			return ret;
	}

	return ret;
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
418 419 420 421 422 423 424
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
425
		ret = smu_dpm_set_uvd_enable(smu, !gate);
426 427
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
428
		ret = smu_dpm_set_vce_enable(smu, !gate);
429
		break;
430 431 432
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
433 434 435
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
L
Leo Liu 已提交
436
	case AMD_IP_BLOCK_TYPE_JPEG:
437
		ret = smu_dpm_set_jpeg_enable(smu, !gate);
L
Leo Liu 已提交
438
		break;
439 440 441 442
	default:
		break;
	}

443
	return ret;
444 445
}

446 447 448 449 450 451 452 453
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
454 455
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
456 457 458 459

	return 0;
}

460 461 462
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
463 464
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
465 466
	int ret = 0;

467 468 469
	if(!data || !size)
		return -EINVAL;

470
	switch (sensor) {
471 472 473 474 475 476 477 478
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
479 480 481 482
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
483 484 485 486 487 488 489 490
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
491
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
492
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
493 494
		*size = 4;
		break;
495 496 497 498 499 500 501 502 503 504 505
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

506
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
507 508 509
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
510
	struct amdgpu_device *adev = smu->adev;
511
	struct smu_table *table = &smu_table->driver_table;
512
	int table_id = smu_table_get_index(smu, table_index);
513 514
	uint32_t table_size;
	int ret = 0;
515

516
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
517 518
		return -EINVAL;

519
	table_size = smu_table->tables[table_index].size;
520

521
	if (drv2smu) {
522
		memcpy(table->cpu_addr, table_data, table_size);
523 524 525 526 527 528
		/*
		 * Flush hdp cache: to guard the content seen by
		 * GPU is consitent with CPU.
		 */
		amdgpu_asic_flush_hdp(adev, NULL);
	}
529 530 531 532

	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
533 534
					  table_id | ((argument & 0xFFFF) << 16),
					  NULL);
535 536 537
	if (ret)
		return ret;

538 539
	if (!drv2smu) {
		amdgpu_asic_flush_hdp(adev, NULL);
540
		memcpy(table_data, table->cpu_addr, table_size);
541
	}
542 543 544 545

	return ret;
}

546 547
bool is_support_sw_smu(struct amdgpu_device *adev)
{
548 549
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
550
	else if (adev->asic_type >= CHIP_ARCTURUS) {
551
		if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
552 553 554 555
			return false;
		else
			return true;
	} else
556
		return false;
557 558
}

559 560
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
561
	if (!is_support_sw_smu(adev))
562 563 564 565 566 567 568 569
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

570 571 572
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
573
	uint32_t powerplay_table_size;
574 575 576 577

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

578 579
	mutex_lock(&smu->mutex);

580 581 582 583 584
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

585 586 587 588 589
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
590 591 592 593 594 595 596 597
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

598 599
	if (!smu->pm_enabled)
		return -EINVAL;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

617 618 619 620 621 622
	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

623 624 625 626
	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

627 628
	smu->uploading_custom_pp_table = false;

629 630 631 632 633
failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

634 635 636 637
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
638
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
639

640 641
	if (!smu->pm_enabled)
		return ret;
642
	mutex_lock(&feature->mutex);
643
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
644
	mutex_unlock(&feature->mutex);
645

646
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
647 648 649 650
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

651
	mutex_lock(&feature->mutex);
652 653
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
654
		      feature->feature_num);
655
	mutex_unlock(&feature->mutex);
656 657 658

	return ret;
}
659

660

661
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
662 663
{
	struct smu_feature *feature = &smu->smu_feature;
664
	int feature_id;
665 666
	int ret = 0;

667
	if (smu->is_apu)
668
		return 1;
669

670
	feature_id = smu_feature_get_index(smu, mask);
671 672
	if (feature_id < 0)
		return 0;
673

674
	WARN_ON(feature_id > feature->feature_num);
675 676 677 678 679 680

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
681 682
}

683 684
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
685 686
{
	struct smu_feature *feature = &smu->smu_feature;
687
	int feature_id;
688

689
	feature_id = smu_feature_get_index(smu, mask);
690 691
	if (feature_id < 0)
		return -EINVAL;
692

693
	WARN_ON(feature_id > feature->feature_num);
694

695 696 697
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
698 699
}

700
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
701 702
{
	struct smu_feature *feature = &smu->smu_feature;
703
	int feature_id;
704 705
	int ret = 0;

706
	feature_id = smu_feature_get_index(smu, mask);
707 708
	if (feature_id < 0)
		return 0;
709

710
	WARN_ON(feature_id > feature->feature_num);
711 712 713 714 715 716

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
717 718
}

719 720
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
721 722 723
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
724
	int feature_id;
725 726
	int ret = 0;

727
	feature_id = smu_feature_get_index(smu, mask);
728 729
	if (feature_id < 0)
		return -EINVAL;
730

731
	WARN_ON(feature_id > feature->feature_num);
732

733
	mutex_lock(&feature->mutex);
734 735 736 737
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
738 739 740
	mutex_unlock(&feature->mutex);

	return ret;
741 742
}

743 744
static int smu_set_funcs(struct amdgpu_device *adev)
{
745 746
	struct smu_context *smu = &adev->smu;

747 748 749
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

750 751
	switch (adev->asic_type) {
	case CHIP_VEGA20:
752
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
753 754
		vega20_set_ppt_funcs(smu);
		break;
755
	case CHIP_NAVI10:
756
	case CHIP_NAVI14:
757
	case CHIP_NAVI12:
758 759
		navi10_set_ppt_funcs(smu);
		break;
760
	case CHIP_ARCTURUS:
761
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
762
		arcturus_set_ppt_funcs(smu);
763 764
		/* OD is not supported on Arcturus */
		smu->od_enabled =false;
765
		break;
766
	case CHIP_RENOIR:
767
		renoir_set_ppt_funcs(smu);
768
		break;
769 770 771 772
	default:
		return -EINVAL;
	}

773 774 775 776 777 778 779 780 781
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
782
	smu->pm_enabled = !!amdgpu_dpm;
783
	smu->is_apu = false;
784 785
	mutex_init(&smu->mutex);

786
	return smu_set_funcs(adev);
787 788
}

789 790 791 792
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
793 794 795

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
796

797 798
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
799 800
			AMD_PP_TASK_COMPLETE_INIT,
			false);
801 802 803 804

	return 0;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

837 838 839 840 841 842 843 844 845 846
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

847 848 849 850 851 852 853 854 855 856
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

857 858 859
	return 0;
}

860 861 862 863 864 865 866 867 868 869 870 871 872
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

873 874 875 876 877 878
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

879
	smu->pool_size = adev->pm.smu_prv_buffer_size;
880
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
881
	mutex_init(&smu->smu_feature.mutex);
882 883 884
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
885 886 887 888 889

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

890
	mutex_init(&smu->sensor_lock);
891
	mutex_init(&smu->metrics_lock);
892

893
	smu->watermarks_bitmap = 0;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
913
	smu->display_config = &adev->pm.pm_display_cfg;
914

915 916
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
917 918 919 920 921 922
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

923 924 925 926 927 928
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

929 930 931 932 933 934
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

935 936 937 938 939 940
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
941 942
	struct smu_context *smu = &adev->smu;
	int ret;
943

944 945 946
	kfree(smu->irq_source);
	smu->irq_source = NULL;

947 948 949 950 951 952
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

953 954 955 956 957 958
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

959 960 961
	return 0;
}

962 963
static int smu_init_fb_allocations(struct smu_context *smu)
{
964 965 966
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
967 968
	struct smu_table *driver_table = &(smu_table->driver_table);
	uint32_t max_table_size = 0;
969
	int ret, i;
970

971 972
	/* VRAM allocation for tool table */
	if (tables[SMU_TABLE_PMSTATUSLOG].size) {
973
		ret = amdgpu_bo_create_kernel(adev,
974 975 976 977 978 979 980 981 982 983
					      tables[SMU_TABLE_PMSTATUSLOG].size,
					      tables[SMU_TABLE_PMSTATUSLOG].align,
					      tables[SMU_TABLE_PMSTATUSLOG].domain,
					      &tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
		if (ret) {
			pr_err("VRAM allocation for tool table failed!\n");
			return ret;
		}
984 985
	}

986 987
	/* VRAM allocation for driver table */
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
988 989 990
		if (tables[i].size == 0)
			continue;

991 992 993 994 995
		if (i == SMU_TABLE_PMSTATUSLOG)
			continue;

		if (max_table_size < tables[i].size)
			max_table_size = tables[i].size;
996
	}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	driver_table->size = max_table_size;
	driver_table->align = PAGE_SIZE;
	driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM;

	ret = amdgpu_bo_create_kernel(adev,
				      driver_table->size,
				      driver_table->align,
				      driver_table->domain,
				      &driver_table->bo,
				      &driver_table->mc_address,
				      &driver_table->cpu_addr);
	if (ret) {
		pr_err("VRAM allocation for driver table failed!\n");
		if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
			amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
	}

1017
	return ret;
1018 1019
}

1020 1021 1022 1023
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
1024
	struct smu_table *driver_table = &(smu_table->driver_table);
1025

1026
	if (!tables)
1027
		return 0;
1028

1029 1030 1031 1032 1033 1034 1035 1036
	if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
		amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
				      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
				      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);

	amdgpu_bo_free_kernel(&driver_table->bo,
			      &driver_table->mc_address,
			      &driver_table->cpu_addr);
1037 1038 1039

	return 0;
}
1040

1041 1042
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
1043
{
1044
	struct amdgpu_device *adev = smu->adev;
1045 1046
	int ret;

1047 1048 1049 1050 1051
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

1052 1053 1054 1055 1056
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
1057

1058
	if (initialize) {
1059 1060
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1061 1062
		if (ret)
			return ret;
1063

1064
		ret = smu_setup_pptable(smu);
1065 1066
		if (ret)
			return ret;
1067

1068 1069 1070 1071
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1072 1073 1074 1075 1076 1077 1078
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1079

1080 1081 1082 1083 1084 1085
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1086

1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1095

1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1104

1105 1106 1107 1108
	ret = smu_set_driver_table_location(smu);
	if (ret)
		return ret;

1109
	/* smu_dump_pptable(smu); */
1110 1111 1112 1113 1114 1115 1116 1117
	if (!amdgpu_sriov_vf(adev)) {
		/*
		 * Copy pptable bo in the vram to smc with SMU MSGs such as
		 * SetDriverDramAddr and TransferTableDram2Smu.
		 */
		ret = smu_write_pptable(smu);
		if (ret)
			return ret;
1118

1119 1120 1121 1122 1123 1124 1125
		/* issue Run*Btc msg */
		ret = smu_run_btc(smu);
		if (ret)
			return ret;
		ret = smu_feature_set_allowed_mask(smu);
		if (ret)
			return ret;
1126

1127 1128 1129
		ret = smu_system_features_control(smu, true);
		if (ret)
			return ret;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

		if (adev->asic_type == CHIP_NAVI10) {
			if ((adev->pdev->device == 0x731f && (adev->pdev->revision == 0xc2 ||
							      adev->pdev->revision == 0xc3 ||
							      adev->pdev->revision == 0xca ||
							      adev->pdev->revision == 0xcb)) ||
			    (adev->pdev->device == 0x66af && (adev->pdev->revision == 0xf3 ||
							      adev->pdev->revision == 0xf4 ||
							      adev->pdev->revision == 0xf5 ||
							      adev->pdev->revision == 0xf6))) {
				ret = smu_disable_umc_cdr_12gbps_workaround(smu);
				if (ret) {
					pr_err("Workaround failed to disable UMC CDR feature on 12Gbps SKU!\n");
					return ret;
				}
			}
		}
1147
	}
1148 1149 1150 1151
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1152

1153 1154 1155 1156 1157 1158 1159 1160
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1161

1162 1163 1164 1165 1166
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1167
	if (initialize) {
1168
		ret = smu_populate_smc_tables(smu);
1169 1170
		if (ret)
			return ret;
1171

1172 1173 1174 1175
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1176

1177 1178 1179 1180 1181 1182
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;
	}

1183
	ret = smu_set_default_od_settings(smu, initialize);
1184 1185 1186
	if (ret)
		return ret;

1187 1188 1189 1190
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1191

1192
		ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1193 1194 1195
		if (ret)
			return ret;
	}
1196

1197 1198 1199
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
1200 1201 1202
	if (!amdgpu_sriov_vf(adev)) {
		ret = smu_set_tool_table_location(smu);
	}
1203 1204 1205
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1206
	return ret;
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1252 1253
}

1254 1255 1256 1257 1258 1259
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
1260
		return 0;
1261 1262 1263 1264 1265 1266 1267

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

1268
	return 0;
1269
}
1270

1271
static int smu_start_smc_engine(struct smu_context *smu)
1272
{
1273 1274
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1275

1276 1277
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1278 1279
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1280 1281 1282
				if (ret)
					return ret;
			}
1283
		}
1284 1285
	}

1286 1287
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1288 1289 1290
		if (ret)
			pr_err("SMC is not ready\n");
	}
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1302
	if (ret) {
1303
		pr_err("SMU is not ready yet!\n");
1304 1305 1306
		return ret;
	}

1307
	if (smu->is_apu) {
1308
		smu_powergate_sdma(&adev->smu, false);
1309
		smu_powergate_vcn(&adev->smu, false);
1310
		smu_powergate_jpeg(&adev->smu, false);
1311
		smu_set_gfx_cgpg(&adev->smu, true);
1312
	}
1313

1314 1315 1316
	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1317 1318 1319
	if (!smu->pm_enabled)
		return 0;

1320 1321 1322 1323
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1324
	ret = smu_smc_table_hw_init(smu, true);
1325 1326
	if (ret)
		goto failed;
1327

1328 1329 1330 1331
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1340 1341 1342 1343
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1344 1345 1346
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1347
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1348

1349 1350 1351
	pr_info("SMU is initialized successfully!\n");

	return 0;
1352 1353 1354

failed:
	return ret;
1355 1356
}

1357 1358
static int smu_stop_dpms(struct smu_context *smu)
{
1359
	return smu_system_features_control(smu, false);
1360 1361
}

1362 1363 1364 1365
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1366
	struct smu_table_context *table_context = &smu->smu_table;
1367
	int ret = 0;
1368

1369 1370 1371
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1372
	if (smu->is_apu) {
1373
		smu_powergate_sdma(&adev->smu, true);
1374
		smu_powergate_vcn(&adev->smu, true);
1375
		smu_powergate_jpeg(&adev->smu, true);
1376
	}
1377

1378 1379 1380
	if (!smu->pm_enabled)
		return 0;

1381 1382
	if (!amdgpu_sriov_vf(adev)){
		ret = smu_stop_thermal_control(smu);
1383
		if (ret) {
1384
			pr_warn("Fail to stop thermal control!\n");
1385 1386
			return ret;
		}
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

		/*
		 * For custom pptable uploading, skip the DPM features
		 * disable process on Navi1x ASICs.
		 *   - As the gfx related features are under control of
		 *     RLC on those ASICs. RLC reinitialization will be
		 *     needed to reenable them. That will cost much more
		 *     efforts.
		 *
		 *   - SMU firmware can handle the DPM reenablement
		 *     properly.
		 */
		if (!smu->uploading_custom_pp_table ||
				!((adev->asic_type >= CHIP_NAVI10) &&
					(adev->asic_type <= CHIP_NAVI12))) {
			ret = smu_stop_dpms(smu);
			if (ret) {
				pr_warn("Fail to stop Dpms!\n");
				return ret;
			}
		}
1408 1409
	}

1410 1411
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1412

1413 1414
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1415

1416 1417
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1418

1419 1420 1421 1422
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1423 1424 1425 1426
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1427 1428 1429
	return 0;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1446
static int smu_disable_dpm(struct smu_context *smu)
1447 1448 1449 1450
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t smu_version;
	int ret = 0;
1451 1452 1453 1454
	bool use_baco = !smu->is_apu &&
		((adev->in_gpu_reset &&
		  (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
		 (adev->in_runpm && amdgpu_asic_supports_baco(adev)));
1455 1456 1457 1458 1459 1460 1461 1462

	ret = smu_get_smc_version(smu, NULL, &smu_version);
	if (ret) {
		pr_err("Failed to get smu version.\n");
		return ret;
	}

	/*
1463
	 * For baco on Arcturus, this operation
1464 1465
	 * (disable all smu feature) will be handled by SMU FW.
	 */
1466 1467 1468 1469
	if (adev->asic_type == CHIP_ARCTURUS) {
		if (use_baco && (smu_version > 0x360e00))
			return 0;
	}
1470 1471 1472 1473 1474 1475 1476 1477

	/* Disable all enabled SMU features */
	ret = smu_system_features_control(smu, false);
	if (ret) {
		pr_err("Failed to disable smu features.\n");
		return ret;
	}

1478 1479
	/* For baco, need to leave BACO feature enabled */
	if (use_baco) {
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		/*
		 * Correct the way for checking whether SMU_FEATURE_BACO_BIT
		 * is supported.
		 *
		 * Since 'smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)' will
		 * always return false as the 'smu_system_features_control(smu, false)'
		 * was just issued above which disabled all SMU features.
		 *
		 * Thus 'smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT)' is used
		 * now for the checking.
		 */
		if (smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT) >= 0) {
1492 1493 1494 1495 1496
			ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
			if (ret) {
				pr_warn("set BACO feature enabled failed, return %d\n", ret);
				return ret;
			}
1497 1498 1499 1500 1501 1502
		}
	}

	return ret;
}

1503 1504 1505
static int smu_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1506
	struct smu_context *smu = &adev->smu;
1507
	int ret;
1508

1509 1510 1511
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1512 1513 1514
	if (!smu->pm_enabled)
		return 0;

1515
	if(!amdgpu_sriov_vf(adev)) {
1516
		ret = smu_disable_dpm(smu);
1517
		if (ret)
1518 1519 1520
			return ret;
	}

1521 1522
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1523 1524 1525
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1526 1527
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1538 1539 1540 1541 1542 1543
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	if (!smu->pm_enabled)
		return 0;

1544 1545
	pr_info("SMU is resuming...\n");

1546 1547 1548
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1549
		goto failed;
1550 1551
	}

1552
	ret = smu_smc_table_hw_init(smu, false);
1553 1554 1555
	if (ret)
		goto failed;

1556
	ret = smu_start_thermal_control(smu);
1557 1558
	if (ret)
		goto failed;
1559

1560 1561 1562
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1563 1564
	smu->disable_uclk_switch = 0;

1565 1566
	pr_info("SMU is resumed successfully!\n");

1567
	return 0;
1568

1569 1570
failed:
	return ret;
1571 1572
}

1573 1574 1575 1576 1577 1578
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1579
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1580 1581 1582 1583 1584 1585 1586
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1587 1588
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1589
				display_config->min_dcef_deep_sleep_set_clk / 100);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1708 1709

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1751 1752
	if (!smu->pm_enabled)
		return -EINVAL;
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
A
Alex Deucher 已提交
1769
		ret = smu_notify_smc_display_config(smu);
1770 1771 1772 1773 1774 1775 1776
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1777 1778
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
1779 1780
			pr_err("Failed to set performance level!");
			return ret;
1781
		}
1782 1783 1784

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1785 1786 1787 1788 1789 1790 1791 1792
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1793
			smu_set_power_profile_mode(smu, &workload, 0, false);
1794 1795 1796 1797 1798 1799 1800
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1801 1802
		    enum amd_pp_task task_id,
		    bool lock_needed)
1803 1804 1805
{
	int ret = 0;

1806 1807 1808
	if (lock_needed)
		mutex_lock(&smu->mutex);

1809 1810 1811 1812
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1813
			goto out;
1814 1815
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1816
			goto out;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1827 1828 1829 1830
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1831 1832 1833
	return ret;
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1863
		smu_set_power_profile_mode(smu, &workload, 0, false);
1864 1865 1866 1867 1868 1869

	mutex_unlock(&smu->mutex);

	return 0;
}

1870 1871 1872
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1873
	enum amd_dpm_forced_level level;
1874

1875
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1876 1877 1878
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1879
	level = smu_dpm_ctx->dpm_level;
1880 1881
	mutex_unlock(&(smu->mutex));

1882
	return level;
1883 1884 1885 1886 1887
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1888
	int ret = 0;
1889

1890
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1891 1892
		return -EINVAL;

1893 1894
	mutex_lock(&smu->mutex);

1895
	ret = smu_enable_umd_pstate(smu, &level);
1896 1897
	if (ret) {
		mutex_unlock(&smu->mutex);
1898
		return ret;
1899
	}
1900

1901
	ret = smu_handle_task(smu, level,
1902 1903 1904 1905
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1906 1907 1908 1909

	return ret;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1921 1922
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1923 1924
			 uint32_t mask,
			 bool lock_needed)
1925 1926 1927 1928 1929 1930 1931 1932 1933
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1934 1935 1936
	if (lock_needed)
		mutex_lock(&smu->mutex);

1937 1938 1939
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1940 1941 1942
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1943 1944 1945
	return ret;
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1960 1961
	mutex_lock(&smu->mutex);

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
1974
		mutex_unlock(&smu->mutex);
1975 1976 1977 1978
		return 0;
	}

	/* some asics may not support those messages */
1979 1980
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
1981
		return 0;
1982
	}
1983

1984
	ret = smu_send_smc_msg(smu, msg, NULL);
1985 1986 1987
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

1988 1989
	mutex_unlock(&smu->mutex);

1990 1991 1992
	return ret;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

2009 2010
	mutex_lock(&smu->mutex);

2011 2012 2013 2014
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

2015 2016
	mutex_unlock(&smu->mutex);

2017 2018 2019
	return ret;
}

2020 2021
int smu_write_watermarks_table(struct smu_context *smu)
{
2022
	void *watermarks_table = smu->smu_table.watermarks_table;
2023

2024
	if (!watermarks_table)
2025 2026
		return -EINVAL;

2027 2028 2029 2030
	return smu_update_table(smu,
				SMU_TABLE_WATERMARKS,
				0,
				watermarks_table,
2031 2032 2033 2034 2035 2036
				true);
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
2037
	void *table = smu->smu_table.watermarks_table;
2038

2039 2040
	if (!table)
		return -EINVAL;
2041

2042 2043
	mutex_lock(&smu->mutex);

2044 2045 2046 2047
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
2048 2049 2050 2051 2052

		if (!(smu->watermarks_bitmap & WATERMARKS_EXIST)) {
			smu->watermarks_bitmap |= WATERMARKS_EXIST;
			smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
		}
2053 2054
	}

2055 2056
	mutex_unlock(&smu->mutex);

2057
	return 0;
2058 2059
}

2060 2061 2062
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
2063
	.late_init = smu_late_init,
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
2076
	.enable_umd_pstate = smu_enable_umd_pstate,
2077
};
2078 2079 2080 2081 2082 2083 2084 2085 2086

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2087 2088 2089 2090 2091 2092 2093 2094 2095

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2096 2097 2098 2099 2100 2101 2102

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2103 2104
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2117 2118
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2131 2132
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2145 2146
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2178 2179
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2300 2301
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2314 2315
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2342 2343
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2370 2371
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

2382 2383
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2396 2397
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2411 2412
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2459 2460
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2488 2489
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2503 2504
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2517 2518
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2531
	if (smu->ppt_funcs && smu->ppt_funcs->baco_is_support)
2532
		ret = smu->ppt_funcs->baco_is_support(smu);
2533 2534 2535 2536 2537 2538 2539 2540

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2541
	if (smu->ppt_funcs->baco_get_state)
2542 2543 2544
		return -EINVAL;

	mutex_lock(&smu->mutex);
2545
	*state = smu->ppt_funcs->baco_get_state(smu);
2546 2547 2548 2549 2550
	mutex_unlock(&smu->mutex);

	return 0;
}

2551
int smu_baco_enter(struct smu_context *smu)
2552 2553 2554 2555 2556
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	if (smu->ppt_funcs->baco_enter)
		ret = smu->ppt_funcs->baco_enter(smu);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_exit(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->baco_exit)
		ret = smu->ppt_funcs->baco_exit(smu);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2585 2586
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2600 2601
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
{
	uint32_t ret = 0;

	if (smu->ppt_funcs->get_pptable_power_limit)
		ret = smu->ppt_funcs->get_pptable_power_limit(smu);

	return ret;
}