amdgpu_smu.c 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/pci.h>
25

26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "smu_v11_0.h"
30
#include "smu_v12_0.h"
31
#include "atom.h"
32 33 34 35
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
36

37 38 39 40 41 42 43 44
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
45
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
46
		return "unknown smu message";
47 48 49
	return __smu_message_names[type];
}

50 51 52 53 54 55 56 57
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
58
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
59
		return "unknown smu feature";
60 61 62
	return __smu_feature_names[feature];
}

63 64 65 66 67 68 69
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
70 71
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
72

73 74
	mutex_lock(&smu->mutex);

75 76 77 78 79 80 81 82 83 84 85
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
86 87 88 89 90
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
91 92
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
93 94 95
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
96
			       "enabled" : "disabled");
97 98 99
	}

failed:
100 101
	mutex_unlock(&smu->mutex);

102 103 104
	return size;
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
121
						  feature_low, NULL);
122 123 124
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
125
						  feature_high, NULL);
126 127 128 129
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
130
						  feature_low, NULL);
131 132 133
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
134
						  feature_high, NULL);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

151 152 153 154 155 156 157 158
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

159 160
	mutex_lock(&smu->mutex);

161 162
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
163
		goto out;
164 165 166 167 168 169 170 171 172

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
173
			goto out;
174 175 176 177
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
178
			goto out;
179 180
	}

181 182 183
out:
	mutex_unlock(&smu->mutex);

184 185 186
	return ret;
}

187 188 189 190 191 192 193 194
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
195
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion, if_version);
196 197 198 199 200
		if (ret)
			return ret;
	}

	if (smu_version) {
201
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion, smu_version);
202 203 204 205 206 207 208
		if (ret)
			return ret;
	}

	return ret;
}

209
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
210
			    uint32_t min, uint32_t max, bool lock_needed)
211
{
212
	int ret = 0;
213

214 215 216
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

217 218
	if (lock_needed)
		mutex_lock(&smu->mutex);
219
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
220 221 222
	if (lock_needed)
		mutex_unlock(&smu->mutex);

223 224 225
	return ret;
}

226 227 228 229 230 231 232 233 234
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

235 236 237
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

238 239 240 241 242 243 244
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
245
						  param, NULL);
246 247 248 249 250 251 252
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
253
						  param, NULL);
254 255 256 257 258 259 260 261
		if (ret)
			return ret;
	}


	return ret;
}

262
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
263
			   uint32_t *min, uint32_t *max, bool lock_needed)
264
{
265
	uint32_t clock_limit;
266
	int ret = 0;
267 268 269 270

	if (!min && !max)
		return -EINVAL;

271 272 273
	if (lock_needed)
		mutex_lock(&smu->mutex);

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
297 298 299 300 301 302
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
303
	}
304 305 306 307

	if (lock_needed)
		mutex_unlock(&smu->mutex);

308 309 310
	return ret;
}

311 312 313 314 315 316 317 318 319
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

320 321 322
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

323 324 325 326 327 328
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

329 330
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex,
					  param, &param);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
int smu_get_dpm_level_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *min_value, uint32_t *max_value)
{
	int ret = 0;
	uint32_t level_count = 0;

	if (!min_value && !max_value)
		return -EINVAL;

	if (min_value) {
		/* by default, level 0 clock value as min value */
		ret = smu_get_dpm_freq_by_index(smu, clk_type, 0, min_value);
		if (ret)
			return ret;
	}

	if (max_value) {
		ret = smu_get_dpm_level_count(smu, clk_type, &level_count);
		if (ret)
			return ret;

		ret = smu_get_dpm_freq_by_index(smu, clk_type, level_count - 1, max_value);
		if (ret)
			return ret;
	}

	return ret;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
417 418 419 420 421 422 423
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
424
		ret = smu_dpm_set_uvd_enable(smu, !gate);
425 426
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
427
		ret = smu_dpm_set_vce_enable(smu, !gate);
428
		break;
429 430 431
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
432 433 434
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
L
Leo Liu 已提交
435
	case AMD_IP_BLOCK_TYPE_JPEG:
436
		ret = smu_dpm_set_jpeg_enable(smu, !gate);
L
Leo Liu 已提交
437
		break;
438 439 440 441
	default:
		break;
	}

442
	return ret;
443 444
}

445 446 447 448 449 450 451 452
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
453 454
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
455 456 457 458

	return 0;
}

459 460 461
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
462 463
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
464 465
	int ret = 0;

466 467 468
	if(!data || !size)
		return -EINVAL;

469
	switch (sensor) {
470 471 472 473 474 475 476 477
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
478 479 480 481
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
482 483 484 485 486 487 488 489
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
490
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
491
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
492 493
		*size = 4;
		break;
494 495 496 497 498 499 500 501 502 503 504
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

505
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
506 507 508
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
509
	struct amdgpu_device *adev = smu->adev;
510
	struct smu_table *table = &smu_table->driver_table;
511
	int table_id = smu_table_get_index(smu, table_index);
512 513
	uint32_t table_size;
	int ret = 0;
514

515
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
516 517
		return -EINVAL;

518
	table_size = smu_table->tables[table_index].size;
519

520
	if (drv2smu) {
521
		memcpy(table->cpu_addr, table_data, table_size);
522 523 524 525 526 527
		/*
		 * Flush hdp cache: to guard the content seen by
		 * GPU is consitent with CPU.
		 */
		amdgpu_asic_flush_hdp(adev, NULL);
	}
528 529 530 531

	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
532 533
					  table_id | ((argument & 0xFFFF) << 16),
					  NULL);
534 535 536
	if (ret)
		return ret;

537 538
	if (!drv2smu) {
		amdgpu_asic_flush_hdp(adev, NULL);
539
		memcpy(table_data, table->cpu_addr, table_size);
540
	}
541 542 543 544

	return ret;
}

545 546
bool is_support_sw_smu(struct amdgpu_device *adev)
{
547 548
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
549
	else if (adev->asic_type >= CHIP_ARCTURUS) {
550
		if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
551 552 553 554
			return false;
		else
			return true;
	} else
555
		return false;
556 557
}

558 559
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
560
	if (!is_support_sw_smu(adev))
561 562 563 564 565 566 567 568
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

569 570 571
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
572
	uint32_t powerplay_table_size;
573 574 575 576

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

577 578
	mutex_lock(&smu->mutex);

579 580 581 582 583
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

584 585 586 587 588
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
589 590 591 592 593 594 595 596
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

597 598
	if (!smu->pm_enabled)
		return -EINVAL;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

616 617 618 619 620 621
	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

622 623 624 625
	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

626 627
	smu->uploading_custom_pp_table = false;

628 629 630 631 632
failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

633 634 635 636
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
637
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
638

639 640
	if (!smu->pm_enabled)
		return ret;
641
	mutex_lock(&feature->mutex);
642
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
643
	mutex_unlock(&feature->mutex);
644

645
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
646 647 648 649
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

650
	mutex_lock(&feature->mutex);
651 652
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
653
		      feature->feature_num);
654
	mutex_unlock(&feature->mutex);
655 656 657

	return ret;
}
658

659

660
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
661 662
{
	struct smu_feature *feature = &smu->smu_feature;
663
	int feature_id;
664 665
	int ret = 0;

666
	if (smu->is_apu)
667
		return 1;
668

669
	feature_id = smu_feature_get_index(smu, mask);
670 671
	if (feature_id < 0)
		return 0;
672

673
	WARN_ON(feature_id > feature->feature_num);
674 675 676 677 678 679

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
680 681
}

682 683
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
684 685
{
	struct smu_feature *feature = &smu->smu_feature;
686
	int feature_id;
687

688
	feature_id = smu_feature_get_index(smu, mask);
689 690
	if (feature_id < 0)
		return -EINVAL;
691

692
	WARN_ON(feature_id > feature->feature_num);
693

694 695 696
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
697 698
}

699
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
700 701
{
	struct smu_feature *feature = &smu->smu_feature;
702
	int feature_id;
703 704
	int ret = 0;

705
	feature_id = smu_feature_get_index(smu, mask);
706 707
	if (feature_id < 0)
		return 0;
708

709
	WARN_ON(feature_id > feature->feature_num);
710 711 712 713 714 715

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
716 717
}

718 719
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
720 721 722
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
723
	int feature_id;
724 725
	int ret = 0;

726
	feature_id = smu_feature_get_index(smu, mask);
727 728
	if (feature_id < 0)
		return -EINVAL;
729

730
	WARN_ON(feature_id > feature->feature_num);
731

732
	mutex_lock(&feature->mutex);
733 734 735 736
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
737 738 739
	mutex_unlock(&feature->mutex);

	return ret;
740 741
}

742 743
static int smu_set_funcs(struct amdgpu_device *adev)
{
744 745
	struct smu_context *smu = &adev->smu;

746 747 748
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

749 750
	switch (adev->asic_type) {
	case CHIP_VEGA20:
751
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
752 753
		vega20_set_ppt_funcs(smu);
		break;
754
	case CHIP_NAVI10:
755
	case CHIP_NAVI14:
756
	case CHIP_NAVI12:
757 758
		navi10_set_ppt_funcs(smu);
		break;
759
	case CHIP_ARCTURUS:
760
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
761
		arcturus_set_ppt_funcs(smu);
762 763
		/* OD is not supported on Arcturus */
		smu->od_enabled =false;
764
		break;
765
	case CHIP_RENOIR:
766
		renoir_set_ppt_funcs(smu);
767
		break;
768 769 770 771
	default:
		return -EINVAL;
	}

772 773 774 775 776 777 778 779 780
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
781
	smu->pm_enabled = !!amdgpu_dpm;
782
	smu->is_apu = false;
783 784
	mutex_init(&smu->mutex);

785
	return smu_set_funcs(adev);
786 787
}

788 789 790 791
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
792 793 794

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
795

796 797
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
798 799
			AMD_PP_TASK_COMPLETE_INIT,
			false);
800 801 802 803

	return 0;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

836 837 838 839 840 841 842 843 844 845
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

846 847 848 849 850 851 852 853 854 855
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

856 857 858
	return 0;
}

859 860 861 862 863 864 865 866 867 868 869 870 871
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

872 873 874 875 876 877
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

878
	smu->pool_size = adev->pm.smu_prv_buffer_size;
879
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
880
	mutex_init(&smu->smu_feature.mutex);
881 882 883
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
884 885 886 887 888

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

889
	mutex_init(&smu->sensor_lock);
890
	mutex_init(&smu->metrics_lock);
891
	mutex_init(&smu->message_lock);
892

893
	smu->watermarks_bitmap = 0;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
913
	smu->display_config = &adev->pm.pm_display_cfg;
914

915 916
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
917 918 919 920 921 922
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

923 924 925 926 927 928
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

929 930 931 932 933 934
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

935 936 937 938 939 940
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
941 942
	struct smu_context *smu = &adev->smu;
	int ret;
943

944 945 946
	kfree(smu->irq_source);
	smu->irq_source = NULL;

947 948 949 950 951 952
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

953 954 955 956 957 958
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

959 960 961
	return 0;
}

962 963
static int smu_init_fb_allocations(struct smu_context *smu)
{
964 965 966
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
967 968
	struct smu_table *driver_table = &(smu_table->driver_table);
	uint32_t max_table_size = 0;
969
	int ret, i;
970

971 972
	/* VRAM allocation for tool table */
	if (tables[SMU_TABLE_PMSTATUSLOG].size) {
973
		ret = amdgpu_bo_create_kernel(adev,
974 975 976 977 978 979 980 981 982 983
					      tables[SMU_TABLE_PMSTATUSLOG].size,
					      tables[SMU_TABLE_PMSTATUSLOG].align,
					      tables[SMU_TABLE_PMSTATUSLOG].domain,
					      &tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
		if (ret) {
			pr_err("VRAM allocation for tool table failed!\n");
			return ret;
		}
984 985
	}

986 987
	/* VRAM allocation for driver table */
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
988 989 990
		if (tables[i].size == 0)
			continue;

991 992 993 994 995
		if (i == SMU_TABLE_PMSTATUSLOG)
			continue;

		if (max_table_size < tables[i].size)
			max_table_size = tables[i].size;
996
	}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	driver_table->size = max_table_size;
	driver_table->align = PAGE_SIZE;
	driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM;

	ret = amdgpu_bo_create_kernel(adev,
				      driver_table->size,
				      driver_table->align,
				      driver_table->domain,
				      &driver_table->bo,
				      &driver_table->mc_address,
				      &driver_table->cpu_addr);
	if (ret) {
		pr_err("VRAM allocation for driver table failed!\n");
		if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
			amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
	}

1017
	return ret;
1018 1019
}

1020 1021 1022 1023
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
1024
	struct smu_table *driver_table = &(smu_table->driver_table);
1025

1026
	if (!tables)
1027
		return 0;
1028

1029 1030 1031 1032 1033 1034 1035 1036
	if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
		amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
				      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
				      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);

	amdgpu_bo_free_kernel(&driver_table->bo,
			      &driver_table->mc_address,
			      &driver_table->cpu_addr);
1037 1038 1039

	return 0;
}
1040

1041 1042
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
1043
{
1044
	struct amdgpu_device *adev = smu->adev;
1045 1046
	int ret;

1047 1048 1049 1050 1051
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

1052 1053 1054 1055 1056
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
1057

1058
	if (initialize) {
1059 1060
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1061 1062
		if (ret)
			return ret;
1063

1064
		ret = smu_setup_pptable(smu);
1065 1066
		if (ret)
			return ret;
1067

1068 1069 1070 1071
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1072 1073 1074 1075 1076 1077 1078
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1079

1080 1081 1082 1083 1084 1085
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1086

1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1095

1096 1097 1098 1099 1100 1101 1102 1103
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1104

1105 1106 1107 1108
	ret = smu_set_driver_table_location(smu);
	if (ret)
		return ret;

1109
	/* smu_dump_pptable(smu); */
1110 1111 1112 1113 1114 1115 1116 1117
	if (!amdgpu_sriov_vf(adev)) {
		/*
		 * Copy pptable bo in the vram to smc with SMU MSGs such as
		 * SetDriverDramAddr and TransferTableDram2Smu.
		 */
		ret = smu_write_pptable(smu);
		if (ret)
			return ret;
1118

1119 1120 1121 1122 1123 1124 1125
		/* issue Run*Btc msg */
		ret = smu_run_btc(smu);
		if (ret)
			return ret;
		ret = smu_feature_set_allowed_mask(smu);
		if (ret)
			return ret;
1126

1127 1128 1129
		ret = smu_system_features_control(smu, true);
		if (ret)
			return ret;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

		if (adev->asic_type == CHIP_NAVI10) {
			if ((adev->pdev->device == 0x731f && (adev->pdev->revision == 0xc2 ||
							      adev->pdev->revision == 0xc3 ||
							      adev->pdev->revision == 0xca ||
							      adev->pdev->revision == 0xcb)) ||
			    (adev->pdev->device == 0x66af && (adev->pdev->revision == 0xf3 ||
							      adev->pdev->revision == 0xf4 ||
							      adev->pdev->revision == 0xf5 ||
							      adev->pdev->revision == 0xf6))) {
				ret = smu_disable_umc_cdr_12gbps_workaround(smu);
				if (ret) {
					pr_err("Workaround failed to disable UMC CDR feature on 12Gbps SKU!\n");
					return ret;
				}
			}
		}
1147

1148
		if (smu->ppt_funcs->set_power_source) {
1149 1150 1151 1152
			/*
			 * For Navi1X, manually switch it to AC mode as PMFW
			 * may boot it with DC mode.
			 */
1153 1154 1155 1156
			if (adev->pm.ac_power)
				ret = smu_set_power_source(smu, SMU_POWER_SOURCE_AC);
			else
				ret = smu_set_power_source(smu, SMU_POWER_SOURCE_DC);
1157
			if (ret) {
1158
				pr_err("Failed to switch to %s mode!\n", adev->pm.ac_power ? "AC" : "DC");
1159 1160 1161
				return ret;
			}
		}
1162
	}
1163 1164 1165 1166
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1167

1168 1169 1170 1171 1172 1173 1174 1175
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1176

1177 1178 1179 1180 1181
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1182
	if (initialize) {
1183
		ret = smu_populate_smc_tables(smu);
1184 1185
		if (ret)
			return ret;
1186

1187 1188 1189 1190
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1191

1192 1193 1194 1195 1196 1197
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;
	}

1198
	ret = smu_set_default_od_settings(smu, initialize);
1199 1200 1201
	if (ret)
		return ret;

1202 1203 1204 1205
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1206

1207
		ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1208 1209 1210
		if (ret)
			return ret;
	}
1211

1212 1213 1214
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
1215 1216 1217
	if (!amdgpu_sriov_vf(adev)) {
		ret = smu_set_tool_table_location(smu);
	}
1218 1219 1220
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1221
	return ret;
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1267 1268
}

1269 1270 1271 1272 1273 1274
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
1275
		return 0;
1276 1277 1278 1279 1280 1281 1282

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

1283
	return 0;
1284
}
1285

1286
static int smu_start_smc_engine(struct smu_context *smu)
1287
{
1288 1289
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1290

1291 1292
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1293 1294
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1295 1296 1297
				if (ret)
					return ret;
			}
1298
		}
1299 1300
	}

1301 1302
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1303 1304 1305
		if (ret)
			pr_err("SMC is not ready\n");
	}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1317
	if (ret) {
1318
		pr_err("SMU is not ready yet!\n");
1319 1320 1321
		return ret;
	}

1322
	if (smu->is_apu) {
1323
		smu_powergate_sdma(&adev->smu, false);
1324
		smu_powergate_vcn(&adev->smu, false);
1325
		smu_powergate_jpeg(&adev->smu, false);
1326
		smu_set_gfx_cgpg(&adev->smu, true);
1327
	}
1328

1329 1330 1331
	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1332 1333 1334
	if (!smu->pm_enabled)
		return 0;

1335 1336 1337 1338
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1339
	ret = smu_smc_table_hw_init(smu, true);
1340 1341
	if (ret)
		goto failed;
1342

1343 1344 1345 1346
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1347 1348 1349 1350 1351 1352 1353 1354
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1355 1356 1357 1358
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1359 1360 1361 1362
	ret = smu_i2c_eeprom_init(smu, &adev->pm.smu_i2c);
	if (ret)
		goto failed;

1363 1364 1365
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1366
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1367

1368 1369 1370
	pr_info("SMU is initialized successfully!\n");

	return 0;
1371 1372 1373

failed:
	return ret;
1374 1375
}

1376 1377
static int smu_stop_dpms(struct smu_context *smu)
{
1378
	return smu_system_features_control(smu, false);
1379 1380
}

1381 1382 1383 1384
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1385
	struct smu_table_context *table_context = &smu->smu_table;
1386
	int ret = 0;
1387

1388 1389 1390
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1391
	if (smu->is_apu) {
1392
		smu_powergate_sdma(&adev->smu, true);
1393
		smu_powergate_vcn(&adev->smu, true);
1394
		smu_powergate_jpeg(&adev->smu, true);
1395
	}
1396

1397 1398 1399
	if (!smu->pm_enabled)
		return 0;

1400 1401
	smu_i2c_eeprom_fini(smu, &adev->pm.smu_i2c);

1402 1403
	if (!amdgpu_sriov_vf(adev)){
		ret = smu_stop_thermal_control(smu);
1404
		if (ret) {
1405
			pr_warn("Fail to stop thermal control!\n");
1406 1407
			return ret;
		}
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

		/*
		 * For custom pptable uploading, skip the DPM features
		 * disable process on Navi1x ASICs.
		 *   - As the gfx related features are under control of
		 *     RLC on those ASICs. RLC reinitialization will be
		 *     needed to reenable them. That will cost much more
		 *     efforts.
		 *
		 *   - SMU firmware can handle the DPM reenablement
		 *     properly.
		 */
		if (!smu->uploading_custom_pp_table ||
				!((adev->asic_type >= CHIP_NAVI10) &&
					(adev->asic_type <= CHIP_NAVI12))) {
			ret = smu_stop_dpms(smu);
			if (ret) {
				pr_warn("Fail to stop Dpms!\n");
				return ret;
			}
		}
1429 1430
	}

1431 1432
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1433

1434 1435
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1436

1437 1438
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1439

1440 1441 1442 1443
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1444 1445 1446 1447
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1448 1449 1450
	return 0;
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1467
static int smu_disable_dpm(struct smu_context *smu)
1468 1469 1470 1471
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t smu_version;
	int ret = 0;
1472 1473 1474 1475
	bool use_baco = !smu->is_apu &&
		((adev->in_gpu_reset &&
		  (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
		 (adev->in_runpm && amdgpu_asic_supports_baco(adev)));
1476 1477 1478 1479 1480 1481 1482 1483

	ret = smu_get_smc_version(smu, NULL, &smu_version);
	if (ret) {
		pr_err("Failed to get smu version.\n");
		return ret;
	}

	/*
1484 1485 1486 1487
	 * Disable all enabled SMU features.
	 * This should be handled in SMU FW, as a backup
	 * driver can issue call to SMU FW until sequence
	 * in SMU FW is operational.
1488 1489 1490 1491 1492 1493 1494
	 */
	ret = smu_system_features_control(smu, false);
	if (ret) {
		pr_err("Failed to disable smu features.\n");
		return ret;
	}

1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * Arcturus does not have BACO bit in disable feature mask.
	 * Enablement of BACO bit on Arcturus should be skipped.
	 */
	if (adev->asic_type == CHIP_ARCTURUS) {
		if (use_baco && (smu_version > 0x360e00))
			return 0;
	}

1504 1505
	/* For baco, need to leave BACO feature enabled */
	if (use_baco) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		/*
		 * Correct the way for checking whether SMU_FEATURE_BACO_BIT
		 * is supported.
		 *
		 * Since 'smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)' will
		 * always return false as the 'smu_system_features_control(smu, false)'
		 * was just issued above which disabled all SMU features.
		 *
		 * Thus 'smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT)' is used
		 * now for the checking.
		 */
		if (smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT) >= 0) {
1518 1519 1520 1521 1522
			ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
			if (ret) {
				pr_warn("set BACO feature enabled failed, return %d\n", ret);
				return ret;
			}
1523 1524 1525 1526 1527 1528
		}
	}

	return ret;
}

1529 1530 1531
static int smu_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1532
	struct smu_context *smu = &adev->smu;
1533
	int ret;
1534

1535 1536 1537
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1538 1539 1540
	if (!smu->pm_enabled)
		return 0;

1541 1542
	smu_i2c_eeprom_fini(smu, &adev->pm.smu_i2c);

1543
	if(!amdgpu_sriov_vf(adev)) {
1544
		ret = smu_disable_dpm(smu);
1545
		if (ret)
1546 1547 1548
			return ret;
	}

1549 1550
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1551 1552 1553
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1554 1555
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1566 1567 1568 1569 1570 1571
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	if (!smu->pm_enabled)
		return 0;

1572 1573
	pr_info("SMU is resuming...\n");

1574 1575 1576
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1577
		goto failed;
1578 1579
	}

1580
	ret = smu_smc_table_hw_init(smu, false);
1581 1582 1583
	if (ret)
		goto failed;

1584
	ret = smu_start_thermal_control(smu);
1585 1586
	if (ret)
		goto failed;
1587

1588 1589 1590 1591
	ret = smu_i2c_eeprom_init(smu, &adev->pm.smu_i2c);
	if (ret)
		goto failed;

1592 1593 1594
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1595 1596
	smu->disable_uclk_switch = 0;

1597 1598
	pr_info("SMU is resumed successfully!\n");

1599
	return 0;
1600

1601 1602
failed:
	return ret;
1603 1604
}

1605 1606 1607 1608 1609 1610
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1611
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1612 1613 1614 1615 1616 1617 1618
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1619 1620
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1621
				display_config->min_dcef_deep_sleep_set_clk / 100);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1740 1741

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1783 1784
	if (!smu->pm_enabled)
		return -EINVAL;
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
A
Alex Deucher 已提交
1801
		ret = smu_notify_smc_display_config(smu);
1802 1803 1804 1805 1806 1807 1808
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1809 1810
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
1811 1812
			pr_err("Failed to set performance level!");
			return ret;
1813
		}
1814 1815 1816

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1817 1818 1819 1820 1821 1822 1823 1824
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1825
			smu_set_power_profile_mode(smu, &workload, 0, false);
1826 1827 1828 1829 1830 1831 1832
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1833 1834
		    enum amd_pp_task task_id,
		    bool lock_needed)
1835 1836 1837
{
	int ret = 0;

1838 1839 1840
	if (lock_needed)
		mutex_lock(&smu->mutex);

1841 1842 1843 1844
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1845
			goto out;
1846 1847
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1848
			goto out;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1859 1860 1861 1862
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1863 1864 1865
	return ret;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1895
		smu_set_power_profile_mode(smu, &workload, 0, false);
1896 1897 1898 1899 1900 1901

	mutex_unlock(&smu->mutex);

	return 0;
}

1902 1903 1904
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1905
	enum amd_dpm_forced_level level;
1906

1907
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1908 1909 1910
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1911
	level = smu_dpm_ctx->dpm_level;
1912 1913
	mutex_unlock(&(smu->mutex));

1914
	return level;
1915 1916 1917 1918 1919
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1920
	int ret = 0;
1921

1922
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1923 1924
		return -EINVAL;

1925 1926
	mutex_lock(&smu->mutex);

1927
	ret = smu_enable_umd_pstate(smu, &level);
1928 1929
	if (ret) {
		mutex_unlock(&smu->mutex);
1930
		return ret;
1931
	}
1932

1933
	ret = smu_handle_task(smu, level,
1934 1935 1936 1937
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1938 1939 1940 1941

	return ret;
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1953 1954
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1955 1956
			 uint32_t mask,
			 bool lock_needed)
1957 1958 1959 1960 1961 1962 1963 1964 1965
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1966 1967 1968
	if (lock_needed)
		mutex_lock(&smu->mutex);

1969 1970 1971
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1972 1973 1974
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1975 1976 1977
	return ret;
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1992 1993
	mutex_lock(&smu->mutex);

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
2006
		mutex_unlock(&smu->mutex);
2007 2008 2009 2010
		return 0;
	}

	/* some asics may not support those messages */
2011 2012
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
2013
		return 0;
2014
	}
2015

2016
	ret = smu_send_smc_msg(smu, msg, NULL);
2017 2018 2019
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

2020 2021
	mutex_unlock(&smu->mutex);

2022 2023 2024
	return ret;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

2041 2042
	mutex_lock(&smu->mutex);

2043 2044 2045 2046
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

2047 2048
	mutex_unlock(&smu->mutex);

2049 2050 2051
	return ret;
}

2052 2053
int smu_write_watermarks_table(struct smu_context *smu)
{
2054
	void *watermarks_table = smu->smu_table.watermarks_table;
2055

2056
	if (!watermarks_table)
2057 2058
		return -EINVAL;

2059 2060 2061 2062
	return smu_update_table(smu,
				SMU_TABLE_WATERMARKS,
				0,
				watermarks_table,
2063 2064 2065 2066 2067 2068
				true);
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
2069
	void *table = smu->smu_table.watermarks_table;
2070

2071 2072
	if (!table)
		return -EINVAL;
2073

2074 2075
	mutex_lock(&smu->mutex);

2076 2077 2078 2079
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
2080 2081 2082 2083 2084

		if (!(smu->watermarks_bitmap & WATERMARKS_EXIST)) {
			smu->watermarks_bitmap |= WATERMARKS_EXIST;
			smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
		}
2085 2086
	}

2087 2088
	mutex_unlock(&smu->mutex);

2089
	return 0;
2090 2091
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
int smu_set_ac_dc(struct smu_context *smu)
{
	int ret = 0;

	/* controlled by firmware */
	if (smu->dc_controlled_by_gpio)
		return 0;

	mutex_lock(&smu->mutex);
	if (smu->ppt_funcs->set_power_source) {
		if (smu->adev->pm.ac_power)
			ret = smu_set_power_source(smu, SMU_POWER_SOURCE_AC);
		else
			ret = smu_set_power_source(smu, SMU_POWER_SOURCE_DC);
		if (ret)
			pr_err("Failed to switch to %s mode!\n",
			       smu->adev->pm.ac_power ? "AC" : "DC");
	}
	mutex_unlock(&smu->mutex);

	return ret;
}

2115 2116 2117
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
2118
	.late_init = smu_late_init,
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
2131
	.enable_umd_pstate = smu_enable_umd_pstate,
2132
};
2133 2134 2135 2136 2137 2138 2139 2140 2141

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2142 2143 2144 2145 2146 2147 2148 2149 2150

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2151 2152 2153 2154 2155 2156 2157

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2158 2159
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2172 2173
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2186 2187
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2200 2201
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2233 2234
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2355 2356
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2369 2370
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2397 2398
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2425 2426
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

2437 2438
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2451 2452
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2466 2467
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2514 2515
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2543 2544
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2558 2559
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2572 2573
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2586
	if (smu->ppt_funcs && smu->ppt_funcs->baco_is_support)
2587
		ret = smu->ppt_funcs->baco_is_support(smu);
2588 2589 2590 2591 2592 2593 2594 2595

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2596
	if (smu->ppt_funcs->baco_get_state)
2597 2598 2599
		return -EINVAL;

	mutex_lock(&smu->mutex);
2600
	*state = smu->ppt_funcs->baco_get_state(smu);
2601 2602 2603 2604 2605
	mutex_unlock(&smu->mutex);

	return 0;
}

2606
int smu_baco_enter(struct smu_context *smu)
2607 2608 2609 2610 2611
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (smu->ppt_funcs->baco_enter)
		ret = smu->ppt_funcs->baco_enter(smu);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_exit(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->baco_exit)
		ret = smu->ppt_funcs->baco_exit(smu);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2640 2641
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2655 2656
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
{
	uint32_t ret = 0;

	if (smu->ppt_funcs->get_pptable_power_limit)
		ret = smu->ppt_funcs->get_pptable_power_limit(smu);

	return ret;
}