amdgpu_smu.c 59.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24
#include <linux/pci.h>
25

26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "smu_v11_0.h"
30
#include "smu_v12_0.h"
31
#include "atom.h"
32 33 34 35
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
36

37 38 39 40 41 42 43 44
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
45
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
46
		return "unknown smu message";
47 48 49
	return __smu_message_names[type];
}

50 51 52 53 54 55 56 57
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
58
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
59
		return "unknown smu feature";
60 61 62
	return __smu_feature_names[feature];
}

63 64 65 66 67 68 69
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
70 71
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
72

73 74
	mutex_lock(&smu->mutex);

75 76 77 78 79 80 81 82 83 84 85
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
86 87 88 89 90
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
91 92
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
93 94 95
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
96
			       "enabled" : "disabled");
97 98 99
	}

failed:
100 101
	mutex_unlock(&smu->mutex);

102 103 104
	return size;
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
121
						  feature_low, NULL);
122 123 124
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
125
						  feature_high, NULL);
126 127 128 129
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
130
						  feature_low, NULL);
131 132 133
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
134
						  feature_high, NULL);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

151 152 153 154 155 156 157 158
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

159 160
	mutex_lock(&smu->mutex);

161 162
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
163
		goto out;
164 165 166 167 168 169 170 171 172

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
173
			goto out;
174 175 176 177
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
178
			goto out;
179 180
	}

181 182 183
out:
	mutex_unlock(&smu->mutex);

184 185 186
	return ret;
}

187 188 189 190 191 192 193 194
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
195
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion, if_version);
196 197 198 199 200
		if (ret)
			return ret;
	}

	if (smu_version) {
201
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion, smu_version);
202 203 204 205 206 207 208
		if (ret)
			return ret;
	}

	return ret;
}

209
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
210
			    uint32_t min, uint32_t max, bool lock_needed)
211
{
212
	int ret = 0;
213

214 215 216
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

217 218
	if (lock_needed)
		mutex_lock(&smu->mutex);
219
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
220 221 222
	if (lock_needed)
		mutex_unlock(&smu->mutex);

223 224 225
	return ret;
}

226 227 228 229 230 231 232 233 234
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

235 236 237
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

238 239 240 241 242 243 244
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
245
						  param, NULL);
246 247 248 249 250 251 252
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
253
						  param, NULL);
254 255 256 257 258 259 260 261
		if (ret)
			return ret;
	}


	return ret;
}

262
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
263
			   uint32_t *min, uint32_t *max, bool lock_needed)
264
{
265
	uint32_t clock_limit;
266
	int ret = 0;
267 268 269 270

	if (!min && !max)
		return -EINVAL;

271 272 273
	if (lock_needed)
		mutex_lock(&smu->mutex);

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
297 298 299 300 301 302
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
303
	}
304 305 306 307

	if (lock_needed)
		mutex_unlock(&smu->mutex);

308 309 310
	return ret;
}

311 312 313 314 315 316 317 318 319
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

320 321 322
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

323 324 325 326 327 328
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

329 330
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex,
					  param, &param);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
int smu_get_dpm_level_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *min_value, uint32_t *max_value)
{
	int ret = 0;
	uint32_t level_count = 0;

	if (!min_value && !max_value)
		return -EINVAL;

	if (min_value) {
		/* by default, level 0 clock value as min value */
		ret = smu_get_dpm_freq_by_index(smu, clk_type, 0, min_value);
		if (ret)
			return ret;
	}

	if (max_value) {
		ret = smu_get_dpm_level_count(smu, clk_type, &level_count);
		if (ret)
			return ret;

		ret = smu_get_dpm_freq_by_index(smu, clk_type, level_count - 1, max_value);
		if (ret)
			return ret;
	}

	return ret;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
417 418 419 420 421 422 423
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
424
		ret = smu_dpm_set_uvd_enable(smu, !gate);
425 426
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
427
		ret = smu_dpm_set_vce_enable(smu, !gate);
428
		break;
429 430 431
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
432 433 434
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
L
Leo Liu 已提交
435
	case AMD_IP_BLOCK_TYPE_JPEG:
436
		ret = smu_dpm_set_jpeg_enable(smu, !gate);
L
Leo Liu 已提交
437
		break;
438 439 440 441
	default:
		break;
	}

442
	return ret;
443 444
}

445 446 447 448 449 450 451 452
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
453 454
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
455 456 457 458

	return 0;
}

459 460 461
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
462 463
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
464 465
	int ret = 0;

466 467 468
	if(!data || !size)
		return -EINVAL;

469
	switch (sensor) {
470 471 472 473 474 475 476 477
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
478 479 480 481
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
482 483 484 485 486 487 488 489
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
490
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
491
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
492 493
		*size = 4;
		break;
494 495 496 497 498 499 500 501 502 503 504
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

505
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
506 507 508
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
509
	struct amdgpu_device *adev = smu->adev;
510
	struct smu_table *table = &smu_table->driver_table;
511
	int table_id = smu_table_get_index(smu, table_index);
512 513
	uint32_t table_size;
	int ret = 0;
514

515
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
516 517
		return -EINVAL;

518
	table_size = smu_table->tables[table_index].size;
519

520
	if (drv2smu) {
521
		memcpy(table->cpu_addr, table_data, table_size);
522 523 524 525 526 527
		/*
		 * Flush hdp cache: to guard the content seen by
		 * GPU is consitent with CPU.
		 */
		amdgpu_asic_flush_hdp(adev, NULL);
	}
528 529 530 531

	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
532 533
					  table_id | ((argument & 0xFFFF) << 16),
					  NULL);
534 535 536
	if (ret)
		return ret;

537 538
	if (!drv2smu) {
		amdgpu_asic_flush_hdp(adev, NULL);
539
		memcpy(table_data, table->cpu_addr, table_size);
540
	}
541 542 543 544

	return ret;
}

545 546
bool is_support_sw_smu(struct amdgpu_device *adev)
{
547 548
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
549
	else if (adev->asic_type >= CHIP_ARCTURUS) {
550
		if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
551 552 553 554
			return false;
		else
			return true;
	} else
555
		return false;
556 557
}

558 559
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
560
	if (!is_support_sw_smu(adev))
561 562 563 564 565 566 567 568
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

569 570 571
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
572
	uint32_t powerplay_table_size;
573 574 575 576

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

577 578
	mutex_lock(&smu->mutex);

579 580 581 582 583
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

584 585 586 587 588
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
589 590 591 592 593 594 595 596
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

597 598
	if (!smu->pm_enabled)
		return -EINVAL;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

616 617 618 619 620 621
	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

622 623 624 625
	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

626 627
	smu->uploading_custom_pp_table = false;

628 629 630 631 632
failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

633 634 635 636
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
637
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
638

639 640
	if (!smu->pm_enabled)
		return ret;
641
	mutex_lock(&feature->mutex);
642
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
643
	mutex_unlock(&feature->mutex);
644

645
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
646 647 648 649
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

650
	mutex_lock(&feature->mutex);
651 652
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
653
		      feature->feature_num);
654
	mutex_unlock(&feature->mutex);
655 656 657

	return ret;
}
658

659

660
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
661 662
{
	struct smu_feature *feature = &smu->smu_feature;
663
	int feature_id;
664 665
	int ret = 0;

666
	if (smu->is_apu)
667
		return 1;
668

669
	feature_id = smu_feature_get_index(smu, mask);
670 671
	if (feature_id < 0)
		return 0;
672

673
	WARN_ON(feature_id > feature->feature_num);
674 675 676 677 678 679

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
680 681
}

682 683
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
684 685
{
	struct smu_feature *feature = &smu->smu_feature;
686
	int feature_id;
687

688
	feature_id = smu_feature_get_index(smu, mask);
689 690
	if (feature_id < 0)
		return -EINVAL;
691

692
	WARN_ON(feature_id > feature->feature_num);
693

694 695 696
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
697 698
}

699
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
700 701
{
	struct smu_feature *feature = &smu->smu_feature;
702
	int feature_id;
703 704
	int ret = 0;

705
	feature_id = smu_feature_get_index(smu, mask);
706 707
	if (feature_id < 0)
		return 0;
708

709
	WARN_ON(feature_id > feature->feature_num);
710 711 712 713 714 715

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
716 717
}

718 719
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
720 721 722
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
723
	int feature_id;
724 725
	int ret = 0;

726
	feature_id = smu_feature_get_index(smu, mask);
727 728
	if (feature_id < 0)
		return -EINVAL;
729

730
	WARN_ON(feature_id > feature->feature_num);
731

732
	mutex_lock(&feature->mutex);
733 734 735 736
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
737 738 739
	mutex_unlock(&feature->mutex);

	return ret;
740 741
}

742 743
static int smu_set_funcs(struct amdgpu_device *adev)
{
744 745
	struct smu_context *smu = &adev->smu;

746 747 748
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

749 750
	switch (adev->asic_type) {
	case CHIP_VEGA20:
751
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
752 753
		vega20_set_ppt_funcs(smu);
		break;
754
	case CHIP_NAVI10:
755
	case CHIP_NAVI14:
756
	case CHIP_NAVI12:
757 758
		navi10_set_ppt_funcs(smu);
		break;
759
	case CHIP_ARCTURUS:
760
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
761
		arcturus_set_ppt_funcs(smu);
762 763
		/* OD is not supported on Arcturus */
		smu->od_enabled =false;
764
		break;
765
	case CHIP_RENOIR:
766
		renoir_set_ppt_funcs(smu);
767
		break;
768 769 770 771
	default:
		return -EINVAL;
	}

772 773 774 775 776 777 778 779 780
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
781
	smu->pm_enabled = !!amdgpu_dpm;
782
	smu->is_apu = false;
783 784
	mutex_init(&smu->mutex);

785
	return smu_set_funcs(adev);
786 787
}

788 789 790 791
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
792 793 794

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
795

796 797
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
798 799
			AMD_PP_TASK_COMPLETE_INIT,
			false);
800 801 802 803

	return 0;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

836 837 838 839 840 841 842 843 844 845
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

846 847 848 849 850 851 852 853 854 855
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

856 857 858
	return 0;
}

859 860 861 862 863 864 865 866 867 868 869 870 871
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

872 873 874 875 876 877
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

878
	smu->pool_size = adev->pm.smu_prv_buffer_size;
879
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
880
	mutex_init(&smu->smu_feature.mutex);
881 882 883
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
884 885 886 887 888

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

889
	mutex_init(&smu->sensor_lock);
890
	mutex_init(&smu->metrics_lock);
891
	mutex_init(&smu->message_lock);
892

893
	smu->watermarks_bitmap = 0;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
913
	smu->display_config = &adev->pm.pm_display_cfg;
914

915 916
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
917 918 919 920 921 922
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

923 924 925 926 927 928
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

929 930 931 932 933 934
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

935 936 937 938 939 940 941
	if (adev->smu.ppt_funcs->i2c_eeprom_init) {
		ret = smu_i2c_eeprom_init(smu, &adev->pm.smu_i2c);

		if (ret)
			return ret;
	}

942 943 944 945 946 947
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
948 949
	struct smu_context *smu = &adev->smu;
	int ret;
950

951 952 953
	if (adev->smu.ppt_funcs->i2c_eeprom_fini)
		smu_i2c_eeprom_fini(smu, &adev->pm.smu_i2c);

954 955 956
	kfree(smu->irq_source);
	smu->irq_source = NULL;

957 958 959 960 961 962
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

963 964 965 966 967 968
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

969 970 971
	return 0;
}

972 973
static int smu_init_fb_allocations(struct smu_context *smu)
{
974 975 976
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
977 978
	struct smu_table *driver_table = &(smu_table->driver_table);
	uint32_t max_table_size = 0;
979
	int ret, i;
980

981 982
	/* VRAM allocation for tool table */
	if (tables[SMU_TABLE_PMSTATUSLOG].size) {
983
		ret = amdgpu_bo_create_kernel(adev,
984 985 986 987 988 989 990 991 992 993
					      tables[SMU_TABLE_PMSTATUSLOG].size,
					      tables[SMU_TABLE_PMSTATUSLOG].align,
					      tables[SMU_TABLE_PMSTATUSLOG].domain,
					      &tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
		if (ret) {
			pr_err("VRAM allocation for tool table failed!\n");
			return ret;
		}
994 995
	}

996 997
	/* VRAM allocation for driver table */
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
998 999 1000
		if (tables[i].size == 0)
			continue;

1001 1002 1003 1004 1005
		if (i == SMU_TABLE_PMSTATUSLOG)
			continue;

		if (max_table_size < tables[i].size)
			max_table_size = tables[i].size;
1006
	}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	driver_table->size = max_table_size;
	driver_table->align = PAGE_SIZE;
	driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM;

	ret = amdgpu_bo_create_kernel(adev,
				      driver_table->size,
				      driver_table->align,
				      driver_table->domain,
				      &driver_table->bo,
				      &driver_table->mc_address,
				      &driver_table->cpu_addr);
	if (ret) {
		pr_err("VRAM allocation for driver table failed!\n");
		if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
			amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
					      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
					      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);
	}

1027
	return ret;
1028 1029
}

1030 1031 1032 1033
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
1034
	struct smu_table *driver_table = &(smu_table->driver_table);
1035

1036
	if (!tables)
1037
		return 0;
1038

1039 1040 1041 1042 1043 1044 1045 1046
	if (tables[SMU_TABLE_PMSTATUSLOG].mc_address)
		amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo,
				      &tables[SMU_TABLE_PMSTATUSLOG].mc_address,
				      &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr);

	amdgpu_bo_free_kernel(&driver_table->bo,
			      &driver_table->mc_address,
			      &driver_table->cpu_addr);
1047 1048 1049

	return 0;
}
1050

1051 1052
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
1053
{
1054
	struct amdgpu_device *adev = smu->adev;
1055 1056
	int ret;

1057 1058 1059 1060 1061
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

1062 1063 1064 1065 1066
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
1067

1068
	if (initialize) {
1069 1070
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1071 1072
		if (ret)
			return ret;
1073

1074
		ret = smu_setup_pptable(smu);
1075 1076
		if (ret)
			return ret;
1077

1078 1079 1080 1081
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1082 1083 1084 1085 1086 1087 1088
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1089

1090 1091 1092 1093 1094 1095
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1096

1097 1098 1099 1100 1101 1102 1103 1104
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1105

1106 1107 1108 1109 1110 1111 1112 1113
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1114

1115 1116 1117 1118
	ret = smu_set_driver_table_location(smu);
	if (ret)
		return ret;

1119
	/* smu_dump_pptable(smu); */
1120 1121 1122 1123 1124 1125 1126 1127
	if (!amdgpu_sriov_vf(adev)) {
		/*
		 * Copy pptable bo in the vram to smc with SMU MSGs such as
		 * SetDriverDramAddr and TransferTableDram2Smu.
		 */
		ret = smu_write_pptable(smu);
		if (ret)
			return ret;
1128

1129 1130 1131 1132 1133 1134 1135
		/* issue Run*Btc msg */
		ret = smu_run_btc(smu);
		if (ret)
			return ret;
		ret = smu_feature_set_allowed_mask(smu);
		if (ret)
			return ret;
1136

1137 1138 1139
		ret = smu_system_features_control(smu, true);
		if (ret)
			return ret;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

		if (adev->asic_type == CHIP_NAVI10) {
			if ((adev->pdev->device == 0x731f && (adev->pdev->revision == 0xc2 ||
							      adev->pdev->revision == 0xc3 ||
							      adev->pdev->revision == 0xca ||
							      adev->pdev->revision == 0xcb)) ||
			    (adev->pdev->device == 0x66af && (adev->pdev->revision == 0xf3 ||
							      adev->pdev->revision == 0xf4 ||
							      adev->pdev->revision == 0xf5 ||
							      adev->pdev->revision == 0xf6))) {
				ret = smu_disable_umc_cdr_12gbps_workaround(smu);
				if (ret) {
					pr_err("Workaround failed to disable UMC CDR feature on 12Gbps SKU!\n");
					return ret;
				}
			}
		}
1157
	}
1158 1159 1160 1161
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1162

1163 1164 1165 1166 1167 1168 1169 1170
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1171

1172 1173 1174 1175 1176
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1177
	if (initialize) {
1178
		ret = smu_populate_smc_tables(smu);
1179 1180
		if (ret)
			return ret;
1181

1182 1183 1184 1185
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1186

1187 1188 1189 1190 1191 1192
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;
	}

1193
	ret = smu_set_default_od_settings(smu, initialize);
1194 1195 1196
	if (ret)
		return ret;

1197 1198 1199 1200
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1201

1202
		ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1203 1204 1205
		if (ret)
			return ret;
	}
1206

1207 1208 1209
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
1210 1211 1212
	if (!amdgpu_sriov_vf(adev)) {
		ret = smu_set_tool_table_location(smu);
	}
1213 1214 1215
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1216
	return ret;
1217 1218
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1262 1263
}

1264 1265 1266 1267 1268 1269
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
1270
		return 0;
1271 1272 1273 1274 1275 1276 1277

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

1278
	return 0;
1279
}
1280

1281
static int smu_start_smc_engine(struct smu_context *smu)
1282
{
1283 1284
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1285

1286 1287
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1288 1289
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1290 1291 1292
				if (ret)
					return ret;
			}
1293
		}
1294 1295
	}

1296 1297
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1298 1299 1300
		if (ret)
			pr_err("SMC is not ready\n");
	}
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1312
	if (ret) {
1313
		pr_err("SMU is not ready yet!\n");
1314 1315 1316
		return ret;
	}

1317
	if (smu->is_apu) {
1318
		smu_powergate_sdma(&adev->smu, false);
1319
		smu_powergate_vcn(&adev->smu, false);
1320
		smu_powergate_jpeg(&adev->smu, false);
1321
		smu_set_gfx_cgpg(&adev->smu, true);
1322
	}
1323

1324 1325 1326
	if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1327 1328 1329
	if (!smu->pm_enabled)
		return 0;

1330 1331 1332 1333
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1334
	ret = smu_smc_table_hw_init(smu, true);
1335 1336
	if (ret)
		goto failed;
1337

1338 1339 1340 1341
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1350 1351 1352 1353
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1354 1355 1356
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1357
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1358

1359 1360 1361
	pr_info("SMU is initialized successfully!\n");

	return 0;
1362 1363 1364

failed:
	return ret;
1365 1366
}

1367 1368
static int smu_stop_dpms(struct smu_context *smu)
{
1369
	return smu_system_features_control(smu, false);
1370 1371
}

1372 1373 1374 1375
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1376
	struct smu_table_context *table_context = &smu->smu_table;
1377
	int ret = 0;
1378

1379 1380 1381
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1382
	if (smu->is_apu) {
1383
		smu_powergate_sdma(&adev->smu, true);
1384
		smu_powergate_vcn(&adev->smu, true);
1385
		smu_powergate_jpeg(&adev->smu, true);
1386
	}
1387

1388 1389 1390
	if (!smu->pm_enabled)
		return 0;

1391 1392
	if (!amdgpu_sriov_vf(adev)){
		ret = smu_stop_thermal_control(smu);
1393
		if (ret) {
1394
			pr_warn("Fail to stop thermal control!\n");
1395 1396
			return ret;
		}
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

		/*
		 * For custom pptable uploading, skip the DPM features
		 * disable process on Navi1x ASICs.
		 *   - As the gfx related features are under control of
		 *     RLC on those ASICs. RLC reinitialization will be
		 *     needed to reenable them. That will cost much more
		 *     efforts.
		 *
		 *   - SMU firmware can handle the DPM reenablement
		 *     properly.
		 */
		if (!smu->uploading_custom_pp_table ||
				!((adev->asic_type >= CHIP_NAVI10) &&
					(adev->asic_type <= CHIP_NAVI12))) {
			ret = smu_stop_dpms(smu);
			if (ret) {
				pr_warn("Fail to stop Dpms!\n");
				return ret;
			}
		}
1418 1419
	}

1420 1421
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1422

1423 1424
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1425

1426 1427
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1428

1429 1430 1431 1432
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1433 1434 1435 1436
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1437 1438 1439
	return 0;
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1456
static int smu_disable_dpm(struct smu_context *smu)
1457 1458 1459 1460
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t smu_version;
	int ret = 0;
1461 1462 1463 1464
	bool use_baco = !smu->is_apu &&
		((adev->in_gpu_reset &&
		  (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
		 (adev->in_runpm && amdgpu_asic_supports_baco(adev)));
1465 1466 1467 1468 1469 1470 1471 1472

	ret = smu_get_smc_version(smu, NULL, &smu_version);
	if (ret) {
		pr_err("Failed to get smu version.\n");
		return ret;
	}

	/*
1473 1474 1475 1476
	 * Disable all enabled SMU features.
	 * This should be handled in SMU FW, as a backup
	 * driver can issue call to SMU FW until sequence
	 * in SMU FW is operational.
1477 1478 1479 1480 1481 1482 1483
	 */
	ret = smu_system_features_control(smu, false);
	if (ret) {
		pr_err("Failed to disable smu features.\n");
		return ret;
	}

1484 1485 1486 1487 1488 1489 1490 1491 1492
	/*
	 * Arcturus does not have BACO bit in disable feature mask.
	 * Enablement of BACO bit on Arcturus should be skipped.
	 */
	if (adev->asic_type == CHIP_ARCTURUS) {
		if (use_baco && (smu_version > 0x360e00))
			return 0;
	}

1493 1494
	/* For baco, need to leave BACO feature enabled */
	if (use_baco) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		/*
		 * Correct the way for checking whether SMU_FEATURE_BACO_BIT
		 * is supported.
		 *
		 * Since 'smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)' will
		 * always return false as the 'smu_system_features_control(smu, false)'
		 * was just issued above which disabled all SMU features.
		 *
		 * Thus 'smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT)' is used
		 * now for the checking.
		 */
		if (smu_feature_get_index(smu, SMU_FEATURE_BACO_BIT) >= 0) {
1507 1508 1509 1510 1511
			ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
			if (ret) {
				pr_warn("set BACO feature enabled failed, return %d\n", ret);
				return ret;
			}
1512 1513 1514 1515 1516 1517
		}
	}

	return ret;
}

1518 1519 1520
static int smu_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1521
	struct smu_context *smu = &adev->smu;
1522
	int ret;
1523

1524 1525 1526
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

1527 1528 1529
	if (!smu->pm_enabled)
		return 0;

1530
	if(!amdgpu_sriov_vf(adev)) {
1531
		ret = smu_disable_dpm(smu);
1532
		if (ret)
1533 1534 1535
			return ret;
	}

1536 1537
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1538 1539 1540
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1541 1542
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1553 1554 1555 1556 1557 1558
	if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev))
		return 0;

	if (!smu->pm_enabled)
		return 0;

1559 1560
	pr_info("SMU is resuming...\n");

1561 1562 1563
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1564
		goto failed;
1565 1566
	}

1567
	ret = smu_smc_table_hw_init(smu, false);
1568 1569 1570
	if (ret)
		goto failed;

1571
	ret = smu_start_thermal_control(smu);
1572 1573
	if (ret)
		goto failed;
1574

1575 1576 1577
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1578 1579
	smu->disable_uclk_switch = 0;

1580 1581
	pr_info("SMU is resumed successfully!\n");

1582
	return 0;
1583

1584 1585
failed:
	return ret;
1586 1587
}

1588 1589 1590 1591 1592 1593
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1594
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1595 1596 1597 1598 1599 1600 1601
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1602 1603
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1604
				display_config->min_dcef_deep_sleep_set_clk / 100);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1723 1724

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1766 1767
	if (!smu->pm_enabled)
		return -EINVAL;
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
A
Alex Deucher 已提交
1784
		ret = smu_notify_smc_display_config(smu);
1785 1786 1787 1788 1789 1790 1791
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1792 1793
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
1794 1795
			pr_err("Failed to set performance level!");
			return ret;
1796
		}
1797 1798 1799

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1800 1801 1802 1803 1804 1805 1806 1807
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1808
			smu_set_power_profile_mode(smu, &workload, 0, false);
1809 1810 1811 1812 1813 1814 1815
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1816 1817
		    enum amd_pp_task task_id,
		    bool lock_needed)
1818 1819 1820
{
	int ret = 0;

1821 1822 1823
	if (lock_needed)
		mutex_lock(&smu->mutex);

1824 1825 1826 1827
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1828
			goto out;
1829 1830
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1831
			goto out;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1842 1843 1844 1845
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1846 1847 1848
	return ret;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1878
		smu_set_power_profile_mode(smu, &workload, 0, false);
1879 1880 1881 1882 1883 1884

	mutex_unlock(&smu->mutex);

	return 0;
}

1885 1886 1887
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1888
	enum amd_dpm_forced_level level;
1889

1890
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1891 1892 1893
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1894
	level = smu_dpm_ctx->dpm_level;
1895 1896
	mutex_unlock(&(smu->mutex));

1897
	return level;
1898 1899 1900 1901 1902
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1903
	int ret = 0;
1904

1905
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1906 1907
		return -EINVAL;

1908 1909
	mutex_lock(&smu->mutex);

1910
	ret = smu_enable_umd_pstate(smu, &level);
1911 1912
	if (ret) {
		mutex_unlock(&smu->mutex);
1913
		return ret;
1914
	}
1915

1916
	ret = smu_handle_task(smu, level,
1917 1918 1919 1920
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1921 1922 1923 1924

	return ret;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1936 1937
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1938 1939
			 uint32_t mask,
			 bool lock_needed)
1940 1941 1942 1943 1944 1945 1946 1947 1948
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1949 1950 1951
	if (lock_needed)
		mutex_lock(&smu->mutex);

1952 1953 1954
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1955 1956 1957
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1958 1959 1960
	return ret;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1975 1976
	mutex_lock(&smu->mutex);

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
1989
		mutex_unlock(&smu->mutex);
1990 1991 1992 1993
		return 0;
	}

	/* some asics may not support those messages */
1994 1995
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
1996
		return 0;
1997
	}
1998

1999
	ret = smu_send_smc_msg(smu, msg, NULL);
2000 2001 2002
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

2003 2004
	mutex_unlock(&smu->mutex);

2005 2006 2007
	return ret;
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

2024 2025
	mutex_lock(&smu->mutex);

2026 2027 2028 2029
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

2030 2031
	mutex_unlock(&smu->mutex);

2032 2033 2034
	return ret;
}

2035 2036
int smu_write_watermarks_table(struct smu_context *smu)
{
2037
	void *watermarks_table = smu->smu_table.watermarks_table;
2038

2039
	if (!watermarks_table)
2040 2041
		return -EINVAL;

2042 2043 2044 2045
	return smu_update_table(smu,
				SMU_TABLE_WATERMARKS,
				0,
				watermarks_table,
2046 2047 2048 2049 2050 2051
				true);
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
2052
	void *table = smu->smu_table.watermarks_table;
2053

2054 2055
	if (!table)
		return -EINVAL;
2056

2057 2058
	mutex_lock(&smu->mutex);

2059 2060 2061 2062
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
2063 2064 2065 2066 2067

		if (!(smu->watermarks_bitmap & WATERMARKS_EXIST)) {
			smu->watermarks_bitmap |= WATERMARKS_EXIST;
			smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
		}
2068 2069
	}

2070 2071
	mutex_unlock(&smu->mutex);

2072
	return 0;
2073 2074
}

2075 2076 2077
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
2078
	.late_init = smu_late_init,
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
2091
	.enable_umd_pstate = smu_enable_umd_pstate,
2092
};
2093 2094 2095 2096 2097 2098 2099 2100 2101

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2102 2103 2104 2105 2106 2107 2108 2109 2110

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2111 2112 2113 2114 2115 2116 2117

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2118 2119
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2132 2133
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2146 2147
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2160 2161
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2193 2194
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2315 2316
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2329 2330
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2357 2358
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2385 2386
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

2397 2398
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2411 2412
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2426 2427
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2474 2475
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2503 2504
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2518 2519
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2532 2533
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2546
	if (smu->ppt_funcs && smu->ppt_funcs->baco_is_support)
2547
		ret = smu->ppt_funcs->baco_is_support(smu);
2548 2549 2550 2551 2552 2553 2554 2555

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2556
	if (smu->ppt_funcs->baco_get_state)
2557 2558 2559
		return -EINVAL;

	mutex_lock(&smu->mutex);
2560
	*state = smu->ppt_funcs->baco_get_state(smu);
2561 2562 2563 2564 2565
	mutex_unlock(&smu->mutex);

	return 0;
}

2566
int smu_baco_enter(struct smu_context *smu)
2567 2568 2569 2570 2571
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	if (smu->ppt_funcs->baco_enter)
		ret = smu->ppt_funcs->baco_enter(smu);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_exit(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->baco_exit)
		ret = smu->ppt_funcs->baco_exit(smu);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2600 2601
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2615 2616
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
{
	uint32_t ret = 0;

	if (smu->ppt_funcs->get_pptable_power_limit)
		ret = smu->ppt_funcs->get_pptable_power_limit(smu);

	return ret;
}