amdgpu_smu.c 55.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24 25

#include "pp_debug.h"
26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "soc15_common.h"
30
#include "smu_v11_0.h"
31
#include "smu_v12_0.h"
32
#include "atom.h"
33
#include "amd_pcie.h"
34 35 36 37
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
38

39 40 41 42 43 44 45 46
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
47
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
48
		return "unknown smu message";
49 50 51
	return __smu_message_names[type];
}

52 53 54 55 56 57 58 59
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
60
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
61
		return "unknown smu feature";
62 63 64
	return __smu_feature_names[feature];
}

65 66 67 68 69 70 71
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
72 73
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
74

75 76
	mutex_lock(&smu->mutex);

77 78 79 80 81 82 83 84 85 86 87
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
88 89 90 91 92
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
93 94
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
95 96 97
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
98
			       "enabled" : "disabled");
99 100 101
	}

failed:
102 103
	mutex_unlock(&smu->mutex);

104 105 106
	return size;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

153 154 155 156 157 158 159 160
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

161 162
	mutex_lock(&smu->mutex);

163 164
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
165
		goto out;
166 167 168 169 170 171 172 173 174

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
175
			goto out;
176 177 178 179
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
180
			goto out;
181 182
	}

183 184 185
out:
	mutex_unlock(&smu->mutex);

186 187 188
	return ret;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, if_version);
		if (ret)
			return ret;
	}

	if (smu_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, smu_version);
		if (ret)
			return ret;
	}

	return ret;
}

219 220 221
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
222
	int ret = 0;
223 224 225 226

	if (min <= 0 && max <= 0)
		return -EINVAL;

227 228 229
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

230
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
231 232 233
	return ret;
}

234 235 236 237 238 239 240 241 242
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

243 244 245
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
						  param);
		if (ret)
			return ret;
	}


	return ret;
}

270
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
271
			   uint32_t *min, uint32_t *max, bool lock_needed)
272
{
273
	uint32_t clock_limit;
274
	int ret = 0;
275 276 277 278

	if (!min && !max)
		return -EINVAL;

279 280 281
	if (lock_needed)
		mutex_lock(&smu->mutex);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
305 306 307 308 309 310
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
311
	}
312 313 314 315

	if (lock_needed)
		mutex_unlock(&smu->mutex);

316 317 318
	return ret;
}

319 320 321 322 323 324 325 326 327
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

328 329 330
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

	ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
					  param);
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &param);
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
400 401 402 403 404 405 406 407 408 409 410 411
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
		ret = smu_dpm_set_uvd_enable(smu, gate);
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
		ret = smu_dpm_set_vce_enable(smu, gate);
		break;
412 413 414
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
415 416 417
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
418 419 420 421
	default:
		break;
	}

422
	return ret;
423 424
}

425 426 427 428 429 430 431 432
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
433 434
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
435 436 437 438

	return 0;
}

439 440 441
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
442 443
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
444 445
	int ret = 0;

446 447 448
	if(!data || !size)
		return -EINVAL;

449
	switch (sensor) {
450 451 452 453 454 455 456 457
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
458 459 460 461
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
462 463 464 465 466 467 468 469
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
470
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
471
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
472 473
		*size = 4;
		break;
474 475 476 477 478 479 480 481 482 483 484
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

485
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
486 487 488
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
489
	struct amdgpu_device *adev = smu->adev;
490 491
	struct smu_table *table = NULL;
	int ret = 0;
492
	int table_id = smu_table_get_index(smu, table_index);
493

494
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
495 496
		return -EINVAL;

497
	table = &smu_table->tables[table_index];
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

	if (drv2smu)
		memcpy(table->cpu_addr, table_data, table->size);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
					  upper_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
					  lower_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
513
					  table_id | ((argument & 0xFFFF) << 16));
514 515 516
	if (ret)
		return ret;

517
	/* flush hdp cache */
518
	adev->nbio.funcs->hdp_flush(adev, NULL);
519

520 521 522 523 524 525
	if (!drv2smu)
		memcpy(table_data, table->cpu_addr, table->size);

	return ret;
}

526 527
bool is_support_sw_smu(struct amdgpu_device *adev)
{
528 529
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
530
	else if (adev->asic_type >= CHIP_ARCTURUS)
531
		return true;
532 533
	else
		return false;
534 535
}

536 537
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
538
	if (!is_support_sw_smu(adev))
539 540 541 542 543 544 545 546
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

547 548 549
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
550
	uint32_t powerplay_table_size;
551 552 553 554

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

555 556
	mutex_lock(&smu->mutex);

557 558 559 560 561
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

562 563 564 565 566
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
567 568 569 570 571 572 573 574
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

575 576
	if (!smu->pm_enabled)
		return -EINVAL;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

603 604 605 606
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
607
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
608

609 610
	if (!smu->pm_enabled)
		return ret;
611
	mutex_lock(&feature->mutex);
612
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
613
	mutex_unlock(&feature->mutex);
614

615
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
616 617 618 619
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

620
	mutex_lock(&feature->mutex);
621 622
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
623
		      feature->feature_num);
624
	mutex_unlock(&feature->mutex);
625 626 627

	return ret;
}
628

629

630
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
631
{
632
	struct amdgpu_device *adev = smu->adev;
633
	struct smu_feature *feature = &smu->smu_feature;
634
	int feature_id;
635 636
	int ret = 0;

637
	if (adev->flags & AMD_IS_APU)
638
		return 1;
639

640
	feature_id = smu_feature_get_index(smu, mask);
641 642
	if (feature_id < 0)
		return 0;
643

644
	WARN_ON(feature_id > feature->feature_num);
645 646 647 648 649 650

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
651 652
}

653 654
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
655 656
{
	struct smu_feature *feature = &smu->smu_feature;
657
	int feature_id;
658

659
	feature_id = smu_feature_get_index(smu, mask);
660 661
	if (feature_id < 0)
		return -EINVAL;
662

663
	WARN_ON(feature_id > feature->feature_num);
664

665 666 667
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
668 669
}

670
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
671 672
{
	struct smu_feature *feature = &smu->smu_feature;
673
	int feature_id;
674 675
	int ret = 0;

676
	feature_id = smu_feature_get_index(smu, mask);
677 678
	if (feature_id < 0)
		return 0;
679

680
	WARN_ON(feature_id > feature->feature_num);
681 682 683 684 685 686

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
687 688
}

689 690
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
691 692 693
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
694
	int feature_id;
695 696
	int ret = 0;

697
	feature_id = smu_feature_get_index(smu, mask);
698 699
	if (feature_id < 0)
		return -EINVAL;
700

701
	WARN_ON(feature_id > feature->feature_num);
702

703
	mutex_lock(&feature->mutex);
704 705 706 707
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
708 709 710
	mutex_unlock(&feature->mutex);

	return ret;
711 712
}

713 714
static int smu_set_funcs(struct amdgpu_device *adev)
{
715 716 717 718
	struct smu_context *smu = &adev->smu;

	switch (adev->asic_type) {
	case CHIP_VEGA20:
719 720
		vega20_set_ppt_funcs(smu);
		break;
721
	case CHIP_NAVI10:
722
	case CHIP_NAVI14:
723
	case CHIP_NAVI12:
724 725
		navi10_set_ppt_funcs(smu);
		break;
726
	case CHIP_ARCTURUS:
727
		arcturus_set_ppt_funcs(smu);
728
		break;
729
	case CHIP_RENOIR:
730
		renoir_set_ppt_funcs(smu);
731
		break;
732 733 734 735
	default:
		return -EINVAL;
	}

736 737 738
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

739 740 741 742 743 744 745 746 747
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
748
	smu->pm_enabled = !!amdgpu_dpm;
749
	smu->is_apu = false;
750 751
	mutex_init(&smu->mutex);

752
	return smu_set_funcs(adev);
753 754
}

755 756 757 758
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
759 760 761

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
762

763 764
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
765 766
			AMD_PP_TASK_COMPLETE_INIT,
			false);
767 768 769 770

	return 0;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

803 804 805 806 807 808 809 810 811 812
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

813 814 815 816 817 818 819 820 821 822
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

823 824 825
	return 0;
}

826 827 828 829 830 831 832 833 834 835 836 837 838
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

839 840 841 842 843 844
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

845
	smu->pool_size = adev->pm.smu_prv_buffer_size;
846
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
847
	mutex_init(&smu->smu_feature.mutex);
848 849 850
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
851 852 853 854 855

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

856 857
	mutex_init(&smu->sensor_lock);

858
	smu->watermarks_bitmap = 0;
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
878
	smu->display_config = &adev->pm.pm_display_cfg;
879

880 881
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
882 883 884 885 886 887
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

888 889 890 891 892 893
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

894 895 896 897 898 899
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

900 901 902 903 904 905
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
906 907
	struct smu_context *smu = &adev->smu;
	int ret;
908

909 910 911
	kfree(smu->irq_source);
	smu->irq_source = NULL;

912 913 914 915 916 917
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

918 919 920 921 922 923
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

924 925 926
	return 0;
}

927 928
static int smu_init_fb_allocations(struct smu_context *smu)
{
929 930 931
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
932
	int ret, i;
933

934
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
935 936 937 938 939 940 941 942 943 944 945 946 947
		if (tables[i].size == 0)
			continue;
		ret = amdgpu_bo_create_kernel(adev,
					      tables[i].size,
					      tables[i].align,
					      tables[i].domain,
					      &tables[i].bo,
					      &tables[i].mc_address,
					      &tables[i].cpu_addr);
		if (ret)
			goto failed;
	}

948
	return 0;
949
failed:
950
	while (--i >= 0) {
951 952 953 954 955 956 957 958
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);

	}
	return ret;
959 960
}

961 962 963 964 965 966
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	uint32_t i = 0;

967
	if (!tables)
968
		return 0;
969

970
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
971 972 973 974 975 976 977 978 979
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);
	}

	return 0;
}
980

981 982
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
983
{
984
	struct amdgpu_device *adev = smu->adev;
985 986
	int ret;

987 988 989 990 991
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

992 993 994 995 996
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
997

998
	if (initialize) {
999 1000
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1001 1002
		if (ret)
			return ret;
1003

1004
		ret = smu_setup_pptable(smu);
1005 1006
		if (ret)
			return ret;
1007

1008 1009 1010 1011
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1012 1013 1014 1015 1016 1017 1018
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1019

1020 1021 1022 1023 1024 1025
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1026

1027 1028 1029 1030 1031 1032 1033 1034
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1035

1036 1037 1038 1039 1040 1041 1042 1043
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1044

1045 1046
	/* smu_dump_pptable(smu); */

1047 1048 1049 1050 1051 1052 1053 1054
	/*
	 * Copy pptable bo in the vram to smc with SMU MSGs such as
	 * SetDriverDramAddr and TransferTableDram2Smu.
	 */
	ret = smu_write_pptable(smu);
	if (ret)
		return ret;

1055 1056
	/* issue Run*Btc msg */
	ret = smu_run_btc(smu);
1057 1058 1059
	if (ret)
		return ret;

1060 1061 1062 1063
	ret = smu_feature_set_allowed_mask(smu);
	if (ret)
		return ret;

1064
	ret = smu_system_features_control(smu, true);
1065 1066 1067
	if (ret)
		return ret;

1068
	if (adev->asic_type != CHIP_ARCTURUS) {
1069 1070 1071 1072
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;

1073 1074 1075
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1076

1077 1078 1079 1080 1081 1082 1083 1084
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1085

1086 1087 1088 1089 1090
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1091
	if (initialize) {
1092
		ret = smu_populate_smc_tables(smu);
1093 1094
		if (ret)
			return ret;
1095

1096 1097 1098 1099
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1100

1101
	ret = smu_set_default_od_settings(smu, initialize);
1102 1103 1104
	if (ret)
		return ret;

1105 1106 1107 1108
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1109

1110
		ret = smu_get_power_limit(smu, &smu->default_power_limit, true, false);
1111 1112 1113
		if (ret)
			return ret;
	}
1114

1115 1116 1117 1118 1119
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
	ret = smu_set_tool_table_location(smu);

1120 1121 1122
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1123
	return ret;
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1169 1170
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

	return ret;
}
1188

1189
static int smu_start_smc_engine(struct smu_context *smu)
1190
{
1191 1192
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1193

1194 1195
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1196 1197
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1198 1199 1200
				if (ret)
					return ret;
			}
1201
		}
1202 1203
	}

1204 1205
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1206 1207 1208
		if (ret)
			pr_err("SMC is not ready\n");
	}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1220
	if (ret) {
1221
		pr_err("SMU is not ready yet!\n");
1222 1223 1224
		return ret;
	}

1225
	if (adev->flags & AMD_IS_APU) {
1226
		smu_powergate_sdma(&adev->smu, false);
1227
		smu_powergate_vcn(&adev->smu, false);
1228
		smu_set_gfx_cgpg(&adev->smu, true);
1229
	}
1230

1231 1232 1233
	if (!smu->pm_enabled)
		return 0;

1234 1235 1236 1237
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1238
	ret = smu_smc_table_hw_init(smu, true);
1239 1240
	if (ret)
		goto failed;
1241

1242 1243 1244 1245
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1254 1255 1256 1257
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1258 1259 1260
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1261
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1262

1263 1264 1265
	pr_info("SMU is initialized successfully!\n");

	return 0;
1266 1267 1268

failed:
	return ret;
1269 1270
}

1271 1272 1273 1274 1275
static int smu_stop_dpms(struct smu_context *smu)
{
	return smu_send_smc_msg(smu, SMU_MSG_DisableAllSmuFeatures);
}

1276 1277 1278 1279
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1280
	struct smu_table_context *table_context = &smu->smu_table;
1281
	int ret = 0;
1282

1283
	if (adev->flags & AMD_IS_APU) {
1284
		smu_powergate_sdma(&adev->smu, true);
1285 1286
		smu_powergate_vcn(&adev->smu, true);
	}
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	ret = smu_stop_thermal_control(smu);
	if (ret) {
		pr_warn("Fail to stop thermal control!\n");
		return ret;
	}

	ret = smu_stop_dpms(smu);
	if (ret) {
		pr_warn("Fail to stop Dpms!\n");
		return ret;
	}

1300 1301
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1302

1303 1304
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1305

1306 1307
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1308

1309 1310 1311 1312
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1313 1314 1315 1316
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1317 1318 1319
	return 0;
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1336 1337
static int smu_suspend(void *handle)
{
1338
	int ret;
1339
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1340
	struct smu_context *smu = &adev->smu;
1341 1342 1343 1344
	bool baco_feature_is_enabled = false;

	if(!(adev->flags & AMD_IS_APU))
		baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
1345

1346
	ret = smu_system_features_control(smu, false);
1347 1348 1349
	if (ret)
		return ret;

1350 1351 1352 1353 1354 1355 1356 1357
	if (adev->in_gpu_reset && baco_feature_is_enabled) {
		ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
		if (ret) {
			pr_warn("set BACO feature enabled failed, return %d\n", ret);
			return ret;
		}
	}

1358 1359
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1360 1361 1362
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1363 1364
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1375 1376
	pr_info("SMU is resuming...\n");

1377 1378 1379
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1380
		goto failed;
1381 1382
	}

1383
	ret = smu_smc_table_hw_init(smu, false);
1384 1385 1386
	if (ret)
		goto failed;

1387
	ret = smu_start_thermal_control(smu);
1388 1389
	if (ret)
		goto failed;
1390

1391 1392 1393
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1394 1395
	smu->disable_uclk_switch = 0;

1396 1397
	pr_info("SMU is resumed successfully!\n");

1398
	return 0;
1399

1400 1401
failed:
	return ret;
1402 1403
}

1404 1405 1406 1407 1408 1409
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1410
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1411 1412 1413 1414 1415 1416 1417
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1418 1419
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1420
				display_config->min_dcef_deep_sleep_set_clk / 100);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1539 1540

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
1598 1599 1600
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
1601 1602 1603 1604 1605 1606 1607 1608 1609
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1619 1620
	if (!smu->pm_enabled)
		return -EINVAL;
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
		ret = smu_notify_smc_dispaly_config(smu);
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1645 1646 1647
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
			ret = smu_default_set_performance_level(smu, level);
1648 1649 1650 1651
			if (ret) {
				pr_err("Failed to set performance level!");
				return ret;
			}
1652
		}
1653 1654 1655

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1656 1657 1658 1659 1660 1661 1662 1663
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1664
			smu_set_power_profile_mode(smu, &workload, 0, false);
1665 1666 1667 1668 1669 1670 1671
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1672 1673
		    enum amd_pp_task task_id,
		    bool lock_needed)
1674 1675 1676
{
	int ret = 0;

1677 1678 1679
	if (lock_needed)
		mutex_lock(&smu->mutex);

1680 1681 1682 1683
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1684
			goto out;
1685 1686
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1687
			goto out;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1698 1699 1700 1701
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1702 1703 1704
	return ret;
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1734
		smu_set_power_profile_mode(smu, &workload, 0, false);
1735 1736 1737 1738 1739 1740

	mutex_unlock(&smu->mutex);

	return 0;
}

1741 1742 1743
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1744
	enum amd_dpm_forced_level level;
1745

1746
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1747 1748 1749
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1750
	level = smu_dpm_ctx->dpm_level;
1751 1752
	mutex_unlock(&(smu->mutex));

1753
	return level;
1754 1755 1756 1757 1758
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1759
	int ret = 0;
1760

1761
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1762 1763
		return -EINVAL;

1764 1765
	mutex_lock(&smu->mutex);

1766
	ret = smu_enable_umd_pstate(smu, &level);
1767 1768
	if (ret) {
		mutex_unlock(&smu->mutex);
1769
		return ret;
1770
	}
1771

1772
	ret = smu_handle_task(smu, level,
1773 1774 1775 1776
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1777 1778 1779 1780

	return ret;
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1792 1793
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1794 1795
			 uint32_t mask,
			 bool lock_needed)
1796 1797 1798 1799 1800 1801 1802 1803 1804
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1805 1806 1807
	if (lock_needed)
		mutex_lock(&smu->mutex);

1808 1809 1810
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1811 1812 1813
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1814 1815 1816
	return ret;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1831 1832
	mutex_lock(&smu->mutex);

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
1845
		mutex_unlock(&smu->mutex);
1846 1847 1848 1849
		return 0;
	}

	/* some asics may not support those messages */
1850 1851
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
1852
		return 0;
1853
	}
1854 1855 1856 1857 1858

	ret = smu_send_smc_msg(smu, msg);
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

1859 1860
	mutex_unlock(&smu->mutex);

1861 1862 1863
	return ret;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

1880 1881
	mutex_lock(&smu->mutex);

1882 1883 1884 1885
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

1886 1887
	mutex_unlock(&smu->mutex);

1888 1889 1890
	return ret;
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
int smu_write_watermarks_table(struct smu_context *smu)
{
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
				true);

	return ret;
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
	int ret = 0;
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
	void *table = watermarks->cpu_addr;

1915 1916
	mutex_lock(&smu->mutex);

1917 1918 1919 1920 1921 1922 1923 1924
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

1925 1926
	mutex_unlock(&smu->mutex);

1927 1928 1929
	return ret;
}

1930 1931 1932
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
1933
	.late_init = smu_late_init,
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
1946
	.enable_umd_pstate = smu_enable_umd_pstate,
1947
};
1948 1949 1950 1951 1952 1953 1954 1955 1956

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1957 1958 1959 1960 1961 1962 1963 1964 1965

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1966 1967 1968 1969 1970 1971 1972

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

1973 1974
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

1987 1988
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2001 2002
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2015 2016
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2048 2049
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2170 2171
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2184 2185
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2212 2213
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2240 2241
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2254 2255
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2270 2271
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2285 2286
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2333 2334
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2362 2363
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2377 2378
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2391 2392
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2405 2406
	if (smu->ppt_funcs->baco_is_support)
		ret = smu->ppt_funcs->baco_is_support(smu);
2407 2408 2409 2410 2411 2412 2413 2414

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2415
	if (smu->ppt_funcs->baco_get_state)
2416 2417 2418
		return -EINVAL;

	mutex_lock(&smu->mutex);
2419
	*state = smu->ppt_funcs->baco_get_state(smu);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	mutex_unlock(&smu->mutex);

	return 0;
}

int smu_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2431 2432
	if (smu->ppt_funcs->baco_reset)
		ret = smu->ppt_funcs->baco_reset(smu);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2445 2446
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2460 2461
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}