amdgpu_smu.c 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24 25

#include "pp_debug.h"
26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "soc15_common.h"
30
#include "smu_v11_0.h"
31
#include "smu_v12_0.h"
32
#include "atom.h"
33
#include "amd_pcie.h"
34 35 36 37
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
38

39 40 41 42 43 44 45 46
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
47
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
48
		return "unknown smu message";
49 50 51
	return __smu_message_names[type];
}

52 53 54 55 56 57 58 59
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
60
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
61
		return "unknown smu feature";
62 63 64
	return __smu_feature_names[feature];
}

65 66 67 68 69 70 71
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
72 73
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
74

75 76
	mutex_lock(&smu->mutex);

77 78 79 80 81 82 83 84 85 86 87
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
88 89 90 91 92
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
93 94
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
95 96 97
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
98
			       "enabled" : "disabled");
99 100 101
	}

failed:
102 103
	mutex_unlock(&smu->mutex);

104 105 106
	return size;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

153 154 155 156 157 158 159 160
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

161 162
	mutex_lock(&smu->mutex);

163 164
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
165
		goto out;
166 167 168 169 170 171 172 173 174

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
175
			goto out;
176 177 178 179
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
180
			goto out;
181 182
	}

183 184 185
out:
	mutex_unlock(&smu->mutex);

186 187 188
	return ret;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, if_version);
		if (ret)
			return ret;
	}

	if (smu_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, smu_version);
		if (ret)
			return ret;
	}

	return ret;
}

219 220 221
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
222
	int ret = 0;
223 224 225 226

	if (min <= 0 && max <= 0)
		return -EINVAL;

227 228 229
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

230
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
231 232 233
	return ret;
}

234 235 236 237 238 239 240 241 242
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

243 244 245
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
						  param);
		if (ret)
			return ret;
	}


	return ret;
}

270
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
271
			   uint32_t *min, uint32_t *max, bool lock_needed)
272
{
273
	uint32_t clock_limit;
274
	int ret = 0;
275 276 277 278

	if (!min && !max)
		return -EINVAL;

279 280 281
	if (lock_needed)
		mutex_lock(&smu->mutex);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
305 306 307 308 309 310
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
311
	}
312 313 314 315

	if (lock_needed)
		mutex_unlock(&smu->mutex);

316 317 318
	return ret;
}

319 320 321 322 323 324 325 326 327
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

328 329 330
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

	ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
					  param);
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &param);
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
400 401 402 403 404 405 406 407 408 409 410 411
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
		ret = smu_dpm_set_uvd_enable(smu, gate);
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
		ret = smu_dpm_set_vce_enable(smu, gate);
		break;
412 413 414
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
415 416 417
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
L
Leo Liu 已提交
418 419 420
	case AMD_IP_BLOCK_TYPE_JPEG:
		ret = smu_dpm_set_jpeg_enable(smu, gate);
		break;
421 422 423 424
	default:
		break;
	}

425
	return ret;
426 427
}

428 429 430 431 432 433 434 435
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
436 437
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
438 439 440 441

	return 0;
}

442 443 444
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
445 446
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
447 448
	int ret = 0;

449 450 451
	if(!data || !size)
		return -EINVAL;

452
	switch (sensor) {
453 454 455 456 457 458 459 460
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
461 462 463 464
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
465 466 467 468 469 470 471 472
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
473
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
474
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
475 476
		*size = 4;
		break;
477 478 479 480 481 482 483 484 485 486 487
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

488
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
489 490 491
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
492
	struct amdgpu_device *adev = smu->adev;
493 494
	struct smu_table *table = NULL;
	int ret = 0;
495
	int table_id = smu_table_get_index(smu, table_index);
496

497
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
498 499
		return -EINVAL;

500
	table = &smu_table->tables[table_index];
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	if (drv2smu)
		memcpy(table->cpu_addr, table_data, table->size);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
					  upper_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
					  lower_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
516
					  table_id | ((argument & 0xFFFF) << 16));
517 518 519
	if (ret)
		return ret;

520
	/* flush hdp cache */
521
	adev->nbio.funcs->hdp_flush(adev, NULL);
522

523 524 525 526 527 528
	if (!drv2smu)
		memcpy(table_data, table->cpu_addr, table->size);

	return ret;
}

529 530
bool is_support_sw_smu(struct amdgpu_device *adev)
{
531 532
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
533
	else if (adev->asic_type >= CHIP_ARCTURUS)
534
		return true;
535 536
	else
		return false;
537 538
}

539 540
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
541
	if (!is_support_sw_smu(adev))
542 543 544 545 546 547 548 549
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

550 551 552
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
553
	uint32_t powerplay_table_size;
554 555 556 557

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

558 559
	mutex_lock(&smu->mutex);

560 561 562 563 564
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

565 566 567 568 569
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
570 571 572 573 574 575 576 577
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

578 579
	if (!smu->pm_enabled)
		return -EINVAL;
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

597 598 599 600 601 602
	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

603 604 605 606
	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

607 608
	smu->uploading_custom_pp_table = false;

609 610 611 612 613
failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

614 615 616 617
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
618
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
619

620 621
	if (!smu->pm_enabled)
		return ret;
622
	mutex_lock(&feature->mutex);
623
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
624
	mutex_unlock(&feature->mutex);
625

626
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
627 628 629 630
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

631
	mutex_lock(&feature->mutex);
632 633
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
634
		      feature->feature_num);
635
	mutex_unlock(&feature->mutex);
636 637 638

	return ret;
}
639

640

641
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
642
{
643
	struct amdgpu_device *adev = smu->adev;
644
	struct smu_feature *feature = &smu->smu_feature;
645
	int feature_id;
646 647
	int ret = 0;

648
	if (adev->flags & AMD_IS_APU)
649
		return 1;
650

651
	feature_id = smu_feature_get_index(smu, mask);
652 653
	if (feature_id < 0)
		return 0;
654

655
	WARN_ON(feature_id > feature->feature_num);
656 657 658 659 660 661

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
662 663
}

664 665
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
666 667
{
	struct smu_feature *feature = &smu->smu_feature;
668
	int feature_id;
669

670
	feature_id = smu_feature_get_index(smu, mask);
671 672
	if (feature_id < 0)
		return -EINVAL;
673

674
	WARN_ON(feature_id > feature->feature_num);
675

676 677 678
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
679 680
}

681
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
682 683
{
	struct smu_feature *feature = &smu->smu_feature;
684
	int feature_id;
685 686
	int ret = 0;

687
	feature_id = smu_feature_get_index(smu, mask);
688 689
	if (feature_id < 0)
		return 0;
690

691
	WARN_ON(feature_id > feature->feature_num);
692 693 694 695 696 697

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
698 699
}

700 701
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
702 703 704
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
705
	int feature_id;
706 707
	int ret = 0;

708
	feature_id = smu_feature_get_index(smu, mask);
709 710
	if (feature_id < 0)
		return -EINVAL;
711

712
	WARN_ON(feature_id > feature->feature_num);
713

714
	mutex_lock(&feature->mutex);
715 716 717 718
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
719 720 721
	mutex_unlock(&feature->mutex);

	return ret;
722 723
}

724 725
static int smu_set_funcs(struct amdgpu_device *adev)
{
726 727
	struct smu_context *smu = &adev->smu;

728 729 730
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

731 732
	switch (adev->asic_type) {
	case CHIP_VEGA20:
733
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
734 735
		vega20_set_ppt_funcs(smu);
		break;
736
	case CHIP_NAVI10:
737
	case CHIP_NAVI14:
738
	case CHIP_NAVI12:
739 740
		navi10_set_ppt_funcs(smu);
		break;
741
	case CHIP_ARCTURUS:
742
		adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
743
		arcturus_set_ppt_funcs(smu);
744 745
		/* OD is not supported on Arcturus */
		smu->od_enabled =false;
746
		break;
747
	case CHIP_RENOIR:
748
		renoir_set_ppt_funcs(smu);
749
		break;
750 751 752 753
	default:
		return -EINVAL;
	}

754 755 756 757 758 759 760 761 762
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
763
	smu->pm_enabled = !!amdgpu_dpm;
764
	smu->is_apu = false;
765 766
	mutex_init(&smu->mutex);

767
	return smu_set_funcs(adev);
768 769
}

770 771 772 773
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
774 775 776

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
777

778 779
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
780 781
			AMD_PP_TASK_COMPLETE_INIT,
			false);
782 783 784 785

	return 0;
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

818 819 820 821 822 823 824 825 826 827
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

828 829 830 831 832 833 834 835 836 837
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

838 839 840
	return 0;
}

841 842 843 844 845 846 847 848 849 850 851 852 853
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

854 855 856 857 858 859
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

860
	smu->pool_size = adev->pm.smu_prv_buffer_size;
861
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
862
	mutex_init(&smu->smu_feature.mutex);
863 864 865
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
866 867 868 869 870

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

871 872
	mutex_init(&smu->sensor_lock);

873
	smu->watermarks_bitmap = 0;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
893
	smu->display_config = &adev->pm.pm_display_cfg;
894

895 896
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
897 898 899 900 901 902
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

903 904 905 906 907 908
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

909 910 911 912 913 914
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

915 916 917 918 919 920
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
921 922
	struct smu_context *smu = &adev->smu;
	int ret;
923

924 925 926
	kfree(smu->irq_source);
	smu->irq_source = NULL;

927 928 929 930 931 932
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

933 934 935 936 937 938
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

939 940 941
	return 0;
}

942 943
static int smu_init_fb_allocations(struct smu_context *smu)
{
944 945 946
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
947
	int ret, i;
948

949
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
950 951 952 953 954 955 956 957 958 959 960 961 962
		if (tables[i].size == 0)
			continue;
		ret = amdgpu_bo_create_kernel(adev,
					      tables[i].size,
					      tables[i].align,
					      tables[i].domain,
					      &tables[i].bo,
					      &tables[i].mc_address,
					      &tables[i].cpu_addr);
		if (ret)
			goto failed;
	}

963
	return 0;
964
failed:
965
	while (--i >= 0) {
966 967 968 969 970 971 972 973
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);

	}
	return ret;
974 975
}

976 977 978 979 980 981
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	uint32_t i = 0;

982
	if (!tables)
983
		return 0;
984

985
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
986 987 988 989 990 991 992 993 994
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);
	}

	return 0;
}
995

996 997
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
998
{
999
	struct amdgpu_device *adev = smu->adev;
1000 1001
	int ret;

1002 1003 1004 1005 1006
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

1007 1008 1009 1010 1011
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
1012

1013
	if (initialize) {
1014 1015
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1016 1017
		if (ret)
			return ret;
1018

1019
		ret = smu_setup_pptable(smu);
1020 1021
		if (ret)
			return ret;
1022

1023 1024 1025 1026
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1027 1028 1029 1030 1031 1032 1033
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1034

1035 1036 1037 1038 1039 1040
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1041

1042 1043 1044 1045 1046 1047 1048 1049
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1050

1051 1052 1053 1054 1055 1056 1057 1058
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1059

1060 1061
	/* smu_dump_pptable(smu); */

1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * Copy pptable bo in the vram to smc with SMU MSGs such as
	 * SetDriverDramAddr and TransferTableDram2Smu.
	 */
	ret = smu_write_pptable(smu);
	if (ret)
		return ret;

1070 1071
	/* issue Run*Btc msg */
	ret = smu_run_btc(smu);
1072 1073 1074
	if (ret)
		return ret;

1075 1076 1077 1078
	ret = smu_feature_set_allowed_mask(smu);
	if (ret)
		return ret;

1079
	ret = smu_system_features_control(smu, true);
1080 1081 1082
	if (ret)
		return ret;

1083 1084 1085 1086
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1087

1088 1089 1090 1091 1092 1093 1094 1095
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1096

1097 1098 1099 1100 1101
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1102
	if (initialize) {
1103
		ret = smu_populate_smc_tables(smu);
1104 1105
		if (ret)
			return ret;
1106

1107 1108 1109 1110
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1111

1112 1113 1114 1115 1116 1117
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;
	}

1118
	ret = smu_set_default_od_settings(smu, initialize);
1119 1120 1121
	if (ret)
		return ret;

1122 1123 1124 1125
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1126

1127
		ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1128 1129 1130
		if (ret)
			return ret;
	}
1131

1132 1133 1134 1135 1136
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
	ret = smu_set_tool_table_location(smu);

1137 1138 1139
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1140
	return ret;
1141 1142
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1186 1187
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

	return ret;
}
1205

1206
static int smu_start_smc_engine(struct smu_context *smu)
1207
{
1208 1209
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1210

1211 1212
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1213 1214
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1215 1216 1217
				if (ret)
					return ret;
			}
1218
		}
1219 1220
	}

1221 1222
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1223 1224 1225
		if (ret)
			pr_err("SMC is not ready\n");
	}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1237
	if (ret) {
1238
		pr_err("SMU is not ready yet!\n");
1239 1240 1241
		return ret;
	}

1242
	if (adev->flags & AMD_IS_APU) {
1243
		smu_powergate_sdma(&adev->smu, false);
1244
		smu_powergate_vcn(&adev->smu, false);
1245
		smu_powergate_jpeg(&adev->smu, false);
1246
		smu_set_gfx_cgpg(&adev->smu, true);
1247
	}
1248

1249 1250 1251
	if (!smu->pm_enabled)
		return 0;

1252 1253 1254 1255
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1256
	ret = smu_smc_table_hw_init(smu, true);
1257 1258
	if (ret)
		goto failed;
1259

1260 1261 1262 1263
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1272 1273 1274 1275
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1276 1277 1278
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1279
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1280

1281 1282 1283
	pr_info("SMU is initialized successfully!\n");

	return 0;
1284 1285 1286

failed:
	return ret;
1287 1288
}

1289 1290 1291 1292 1293
static int smu_stop_dpms(struct smu_context *smu)
{
	return smu_send_smc_msg(smu, SMU_MSG_DisableAllSmuFeatures);
}

1294 1295 1296 1297
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1298
	struct smu_table_context *table_context = &smu->smu_table;
1299
	int ret = 0;
1300

1301
	if (adev->flags & AMD_IS_APU) {
1302
		smu_powergate_sdma(&adev->smu, true);
1303
		smu_powergate_vcn(&adev->smu, true);
1304
		smu_powergate_jpeg(&adev->smu, true);
1305
	}
1306

1307 1308 1309 1310 1311 1312
	ret = smu_stop_thermal_control(smu);
	if (ret) {
		pr_warn("Fail to stop thermal control!\n");
		return ret;
	}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * For custom pptable uploading, skip the DPM features
	 * disable process on Navi1x ASICs.
	 *   - As the gfx related features are under control of
	 *     RLC on those ASICs. RLC reinitialization will be
	 *     needed to reenable them. That will cost much more
	 *     efforts.
	 *
	 *   - SMU firmware can handle the DPM reenablement
	 *     properly.
	 */
	if (!smu->uploading_custom_pp_table ||
	    !((adev->asic_type >= CHIP_NAVI10) &&
	      (adev->asic_type <= CHIP_NAVI12))) {
		ret = smu_stop_dpms(smu);
		if (ret) {
			pr_warn("Fail to stop Dpms!\n");
			return ret;
		}
1332 1333
	}

1334 1335
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1336

1337 1338
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1339

1340 1341
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1342

1343 1344 1345 1346
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1347 1348 1349 1350
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1351 1352 1353
	return 0;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1370 1371
static int smu_suspend(void *handle)
{
1372
	int ret;
1373
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1374
	struct smu_context *smu = &adev->smu;
1375 1376 1377 1378
	bool baco_feature_is_enabled = false;

	if(!(adev->flags & AMD_IS_APU))
		baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
1379

1380
	ret = smu_system_features_control(smu, false);
1381 1382 1383
	if (ret)
		return ret;

1384 1385 1386 1387 1388 1389 1390 1391
	if (adev->in_gpu_reset && baco_feature_is_enabled) {
		ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
		if (ret) {
			pr_warn("set BACO feature enabled failed, return %d\n", ret);
			return ret;
		}
	}

1392 1393
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1394 1395 1396
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1397 1398
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1409 1410
	pr_info("SMU is resuming...\n");

1411 1412 1413
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1414
		goto failed;
1415 1416
	}

1417
	ret = smu_smc_table_hw_init(smu, false);
1418 1419 1420
	if (ret)
		goto failed;

1421
	ret = smu_start_thermal_control(smu);
1422 1423
	if (ret)
		goto failed;
1424

1425 1426 1427
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1428 1429
	smu->disable_uclk_switch = 0;

1430 1431
	pr_info("SMU is resumed successfully!\n");

1432
	return 0;
1433

1434 1435
failed:
	return ret;
1436 1437
}

1438 1439 1440 1441 1442 1443
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1444
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1445 1446 1447 1448 1449 1450 1451
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1452 1453
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1454
				display_config->min_dcef_deep_sleep_set_clk / 100);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1573 1574

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
1632 1633 1634
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
1635 1636 1637 1638 1639 1640 1641 1642 1643
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1644 1645 1646 1647 1648 1649 1650 1651 1652
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1653 1654
	if (!smu->pm_enabled)
		return -EINVAL;
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
		ret = smu_notify_smc_dispaly_config(smu);
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1679 1680 1681
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
			ret = smu_default_set_performance_level(smu, level);
1682 1683 1684 1685
			if (ret) {
				pr_err("Failed to set performance level!");
				return ret;
			}
1686
		}
1687 1688 1689

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1690 1691 1692 1693 1694 1695 1696 1697
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1698
			smu_set_power_profile_mode(smu, &workload, 0, false);
1699 1700 1701 1702 1703 1704 1705
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1706 1707
		    enum amd_pp_task task_id,
		    bool lock_needed)
1708 1709 1710
{
	int ret = 0;

1711 1712 1713
	if (lock_needed)
		mutex_lock(&smu->mutex);

1714 1715 1716 1717
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1718
			goto out;
1719 1720
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1721
			goto out;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1732 1733 1734 1735
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1736 1737 1738
	return ret;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1768
		smu_set_power_profile_mode(smu, &workload, 0, false);
1769 1770 1771 1772 1773 1774

	mutex_unlock(&smu->mutex);

	return 0;
}

1775 1776 1777
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1778
	enum amd_dpm_forced_level level;
1779

1780
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1781 1782 1783
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1784
	level = smu_dpm_ctx->dpm_level;
1785 1786
	mutex_unlock(&(smu->mutex));

1787
	return level;
1788 1789 1790 1791 1792
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1793
	int ret = 0;
1794

1795
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1796 1797
		return -EINVAL;

1798 1799
	mutex_lock(&smu->mutex);

1800
	ret = smu_enable_umd_pstate(smu, &level);
1801 1802
	if (ret) {
		mutex_unlock(&smu->mutex);
1803
		return ret;
1804
	}
1805

1806
	ret = smu_handle_task(smu, level,
1807 1808 1809 1810
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1811 1812 1813 1814

	return ret;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1826 1827
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1828 1829
			 uint32_t mask,
			 bool lock_needed)
1830 1831 1832 1833 1834 1835 1836 1837 1838
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1839 1840 1841
	if (lock_needed)
		mutex_lock(&smu->mutex);

1842 1843 1844
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1845 1846 1847
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1848 1849 1850
	return ret;
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1865 1866
	mutex_lock(&smu->mutex);

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
1879
		mutex_unlock(&smu->mutex);
1880 1881 1882 1883
		return 0;
	}

	/* some asics may not support those messages */
1884 1885
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
1886
		return 0;
1887
	}
1888 1889 1890 1891 1892

	ret = smu_send_smc_msg(smu, msg);
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

1893 1894
	mutex_unlock(&smu->mutex);

1895 1896 1897
	return ret;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

1914 1915
	mutex_lock(&smu->mutex);

1916 1917 1918 1919
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

1920 1921
	mutex_unlock(&smu->mutex);

1922 1923 1924
	return ret;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
int smu_write_watermarks_table(struct smu_context *smu)
{
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
				true);

	return ret;
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
	int ret = 0;
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
	void *table = watermarks->cpu_addr;

1949 1950
	mutex_lock(&smu->mutex);

1951 1952 1953 1954 1955 1956 1957 1958
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

1959 1960
	mutex_unlock(&smu->mutex);

1961 1962 1963
	return ret;
}

1964 1965 1966
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
1967
	.late_init = smu_late_init,
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
1980
	.enable_umd_pstate = smu_enable_umd_pstate,
1981
};
1982 1983 1984 1985 1986 1987 1988 1989 1990

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1991 1992 1993 1994 1995 1996 1997 1998 1999

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
2000 2001 2002 2003 2004 2005 2006

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2007 2008
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2021 2022
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2035 2036
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2049 2050
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2082 2083
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2204 2205
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2218 2219
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2246 2247
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2274 2275
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2288 2289
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2304 2305
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2319 2320
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2367 2368
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2396 2397
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2411 2412
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2425 2426
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2439 2440
	if (smu->ppt_funcs->baco_is_support)
		ret = smu->ppt_funcs->baco_is_support(smu);
2441 2442 2443 2444 2445 2446 2447 2448

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2449
	if (smu->ppt_funcs->baco_get_state)
2450 2451 2452
		return -EINVAL;

	mutex_lock(&smu->mutex);
2453
	*state = smu->ppt_funcs->baco_get_state(smu);
2454 2455 2456 2457 2458
	mutex_unlock(&smu->mutex);

	return 0;
}

2459
int smu_baco_enter(struct smu_context *smu)
2460 2461 2462 2463 2464
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	if (smu->ppt_funcs->baco_enter)
		ret = smu->ppt_funcs->baco_enter(smu);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_exit(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->baco_exit)
		ret = smu->ppt_funcs->baco_exit(smu);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2493 2494
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2508 2509
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
{
	uint32_t ret = 0;

	if (smu->ppt_funcs->get_pptable_power_limit)
		ret = smu->ppt_funcs->get_pptable_power_limit(smu);

	return ret;
}