amdgpu_smu.c 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24 25

#include "pp_debug.h"
26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "soc15_common.h"
30
#include "smu_v11_0.h"
31
#include "smu_v12_0.h"
32
#include "atom.h"
33
#include "amd_pcie.h"
34 35 36 37
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
38

39 40 41 42 43 44 45 46
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
47
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
48
		return "unknown smu message";
49 50 51
	return __smu_message_names[type];
}

52 53 54 55 56 57 58 59
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
60
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
61
		return "unknown smu feature";
62 63 64
	return __smu_feature_names[feature];
}

65 66 67 68 69 70 71
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
72 73
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
74

75 76
	mutex_lock(&smu->mutex);

77 78 79 80 81 82 83 84 85 86 87
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
88 89 90 91 92
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
93 94
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
95 96 97
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
98
			       "enabled" : "disabled");
99 100 101
	}

failed:
102 103
	mutex_unlock(&smu->mutex);

104 105 106
	return size;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

153 154 155 156 157 158 159 160
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

161 162
	mutex_lock(&smu->mutex);

163 164
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
165
		goto out;
166 167 168 169 170 171 172 173 174

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
175
			goto out;
176 177 178 179
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
180
			goto out;
181 182
	}

183 184 185
out:
	mutex_unlock(&smu->mutex);

186 187 188
	return ret;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, if_version);
		if (ret)
			return ret;
	}

	if (smu_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, smu_version);
		if (ret)
			return ret;
	}

	return ret;
}

219 220 221
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
222
	int ret = 0;
223 224 225 226

	if (min <= 0 && max <= 0)
		return -EINVAL;

227 228 229
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

230
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
231 232 233
	return ret;
}

234 235 236 237 238 239 240 241 242
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

243 244 245
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
						  param);
		if (ret)
			return ret;
	}


	return ret;
}

270
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
271
			   uint32_t *min, uint32_t *max, bool lock_needed)
272
{
273
	uint32_t clock_limit;
274
	int ret = 0;
275 276 277 278

	if (!min && !max)
		return -EINVAL;

279 280 281
	if (lock_needed)
		mutex_lock(&smu->mutex);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
305 306 307 308 309 310
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
311
	}
312 313 314 315

	if (lock_needed)
		mutex_unlock(&smu->mutex);

316 317 318
	return ret;
}

319 320 321 322 323 324 325 326 327
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

328 329 330
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

	ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
					  param);
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &param);
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}


387 388 389 390 391
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

392 393
	mutex_lock(&smu->mutex);

394 395 396 397 398 399 400
	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
		ret = smu_dpm_set_uvd_enable(smu, gate);
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
		ret = smu_dpm_set_vce_enable(smu, gate);
		break;
401 402 403
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
404 405 406
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
407 408 409 410
	default:
		break;
	}

411
	mutex_unlock(&smu->mutex);
412

413
	return ret;
414 415
}

416 417 418 419 420 421 422 423
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
424 425
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
426 427 428 429

	return 0;
}

430 431 432
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
433 434
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
435 436
	int ret = 0;

437 438 439
	if(!data || !size)
		return -EINVAL;

440
	switch (sensor) {
441 442 443 444 445 446 447 448
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
449 450 451 452
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
453 454 455 456 457 458 459 460
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
461
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
462
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
463 464
		*size = 4;
		break;
465 466 467 468 469 470 471 472 473 474 475
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

476
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
477 478 479
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
480
	struct amdgpu_device *adev = smu->adev;
481 482
	struct smu_table *table = NULL;
	int ret = 0;
483
	int table_id = smu_table_get_index(smu, table_index);
484

485
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
486 487
		return -EINVAL;

488
	table = &smu_table->tables[table_index];
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	if (drv2smu)
		memcpy(table->cpu_addr, table_data, table->size);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
					  upper_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
					  lower_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
504
					  table_id | ((argument & 0xFFFF) << 16));
505 506 507
	if (ret)
		return ret;

508
	/* flush hdp cache */
509
	adev->nbio.funcs->hdp_flush(adev, NULL);
510

511 512 513 514 515 516
	if (!drv2smu)
		memcpy(table_data, table->cpu_addr, table->size);

	return ret;
}

517 518
bool is_support_sw_smu(struct amdgpu_device *adev)
{
519 520
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
521
	else if (adev->asic_type >= CHIP_ARCTURUS)
522
		return true;
523 524
	else
		return false;
525 526
}

527 528 529 530 531 532 533 534 535 536 537
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
	if (amdgpu_dpm != 1)
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

538 539 540
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
541
	uint32_t powerplay_table_size;
542 543 544 545

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

546 547
	mutex_lock(&smu->mutex);

548 549 550 551 552
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

553 554 555 556 557
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
558 559 560 561 562 563 564 565
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

566 567
	if (!smu->pm_enabled)
		return -EINVAL;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

594 595 596 597
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
598
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
599

600 601
	if (!smu->pm_enabled)
		return ret;
602
	mutex_lock(&feature->mutex);
603
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
604
	mutex_unlock(&feature->mutex);
605

606
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
607 608 609 610
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

611
	mutex_lock(&feature->mutex);
612 613
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
614
		      feature->feature_num);
615
	mutex_unlock(&feature->mutex);
616 617 618

	return ret;
}
619

620

621
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
622
{
623
	struct amdgpu_device *adev = smu->adev;
624
	struct smu_feature *feature = &smu->smu_feature;
625
	int feature_id;
626 627
	int ret = 0;

628
	if (adev->flags & AMD_IS_APU)
629
		return 1;
630

631
	feature_id = smu_feature_get_index(smu, mask);
632 633
	if (feature_id < 0)
		return 0;
634

635
	WARN_ON(feature_id > feature->feature_num);
636 637 638 639 640 641

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
642 643
}

644 645
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
646 647
{
	struct smu_feature *feature = &smu->smu_feature;
648
	int feature_id;
649

650
	feature_id = smu_feature_get_index(smu, mask);
651 652
	if (feature_id < 0)
		return -EINVAL;
653

654
	WARN_ON(feature_id > feature->feature_num);
655

656 657 658
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
659 660
}

661
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
662 663
{
	struct smu_feature *feature = &smu->smu_feature;
664
	int feature_id;
665 666
	int ret = 0;

667
	feature_id = smu_feature_get_index(smu, mask);
668 669
	if (feature_id < 0)
		return 0;
670

671
	WARN_ON(feature_id > feature->feature_num);
672 673 674 675 676 677

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
678 679
}

680 681
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
682 683 684
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
685
	int feature_id;
686 687
	int ret = 0;

688
	feature_id = smu_feature_get_index(smu, mask);
689 690
	if (feature_id < 0)
		return -EINVAL;
691

692
	WARN_ON(feature_id > feature->feature_num);
693

694
	mutex_lock(&feature->mutex);
695 696 697 698
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
699 700 701
	mutex_unlock(&feature->mutex);

	return ret;
702 703
}

704 705
static int smu_set_funcs(struct amdgpu_device *adev)
{
706 707 708 709
	struct smu_context *smu = &adev->smu;

	switch (adev->asic_type) {
	case CHIP_VEGA20:
710 711
		vega20_set_ppt_funcs(smu);
		break;
712
	case CHIP_NAVI10:
713
	case CHIP_NAVI14:
714
	case CHIP_NAVI12:
715 716
		navi10_set_ppt_funcs(smu);
		break;
717
	case CHIP_ARCTURUS:
718
		arcturus_set_ppt_funcs(smu);
719
		break;
720
	case CHIP_RENOIR:
721
		renoir_set_ppt_funcs(smu);
722
		break;
723 724 725 726
	default:
		return -EINVAL;
	}

727 728 729
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

730 731 732 733 734 735 736 737 738
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
739
	smu->pm_enabled = !!amdgpu_dpm;
740
	smu->is_apu = false;
741 742
	mutex_init(&smu->mutex);

743
	return smu_set_funcs(adev);
744 745
}

746 747 748 749
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
750 751 752

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
753

754 755
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
756 757
			AMD_PP_TASK_COMPLETE_INIT,
			false);
758 759 760 761

	return 0;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

794 795 796 797 798 799 800 801 802 803
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

804 805 806 807 808 809 810 811 812 813
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

814 815 816
	return 0;
}

817 818 819 820 821 822 823 824 825 826 827 828 829
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

830 831 832 833 834 835
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

836
	smu->pool_size = adev->pm.smu_prv_buffer_size;
837
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
838
	mutex_init(&smu->smu_feature.mutex);
839 840 841
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
842 843 844 845 846

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

847 848
	mutex_init(&smu->sensor_lock);

849
	smu->watermarks_bitmap = 0;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
869
	smu->display_config = &adev->pm.pm_display_cfg;
870

871 872
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
873 874 875 876 877 878
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

879 880 881 882 883 884
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

885 886 887 888 889 890
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

891 892 893 894 895 896
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
897 898
	struct smu_context *smu = &adev->smu;
	int ret;
899

900 901 902
	kfree(smu->irq_source);
	smu->irq_source = NULL;

903 904 905 906 907 908
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

909 910 911 912 913 914
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

915 916 917
	return 0;
}

918 919
static int smu_init_fb_allocations(struct smu_context *smu)
{
920 921 922
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
923
	int ret, i;
924

925
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
926 927 928 929 930 931 932 933 934 935 936 937 938
		if (tables[i].size == 0)
			continue;
		ret = amdgpu_bo_create_kernel(adev,
					      tables[i].size,
					      tables[i].align,
					      tables[i].domain,
					      &tables[i].bo,
					      &tables[i].mc_address,
					      &tables[i].cpu_addr);
		if (ret)
			goto failed;
	}

939
	return 0;
940
failed:
941
	while (--i >= 0) {
942 943 944 945 946 947 948 949
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);

	}
	return ret;
950 951
}

952 953 954 955 956 957
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	uint32_t i = 0;

958
	if (!tables)
959
		return 0;
960

961
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
962 963 964 965 966 967 968 969 970
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);
	}

	return 0;
}
971

972 973
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
974
{
975
	struct amdgpu_device *adev = smu->adev;
976 977
	int ret;

978 979 980 981 982
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

983 984 985 986 987
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
988

989
	if (initialize) {
990 991
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
992 993
		if (ret)
			return ret;
994

995
		ret = smu_setup_pptable(smu);
996 997
		if (ret)
			return ret;
998

999 1000 1001 1002
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1003 1004 1005 1006 1007 1008 1009
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1010

1011 1012 1013 1014 1015 1016
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1017

1018 1019 1020 1021 1022 1023 1024 1025
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1026

1027 1028 1029 1030 1031 1032 1033 1034
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1035

1036 1037
	/* smu_dump_pptable(smu); */

1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * Copy pptable bo in the vram to smc with SMU MSGs such as
	 * SetDriverDramAddr and TransferTableDram2Smu.
	 */
	ret = smu_write_pptable(smu);
	if (ret)
		return ret;

1046 1047
	/* issue Run*Btc msg */
	ret = smu_run_btc(smu);
1048 1049 1050
	if (ret)
		return ret;

1051 1052 1053 1054
	ret = smu_feature_set_allowed_mask(smu);
	if (ret)
		return ret;

1055
	ret = smu_system_features_control(smu, true);
1056 1057 1058
	if (ret)
		return ret;

1059
	if (adev->asic_type != CHIP_ARCTURUS) {
1060 1061 1062 1063
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;

1064 1065 1066
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1067

1068 1069 1070 1071 1072 1073 1074 1075
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1076

1077 1078 1079 1080 1081
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1082
	if (initialize) {
1083
		ret = smu_populate_smc_tables(smu);
1084 1085
		if (ret)
			return ret;
1086

1087 1088 1089 1090
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1091

1092
	ret = smu_set_default_od_settings(smu, initialize);
1093 1094 1095
	if (ret)
		return ret;

1096 1097 1098 1099
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1100

1101
		ret = smu_get_power_limit(smu, &smu->default_power_limit, true, false);
1102 1103 1104
		if (ret)
			return ret;
	}
1105

1106 1107 1108 1109 1110
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
	ret = smu_set_tool_table_location(smu);

1111 1112 1113
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1114
	return ret;
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

	return ret;
}
1179

1180
static int smu_start_smc_engine(struct smu_context *smu)
1181
{
1182 1183
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1184

1185 1186
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1187 1188
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1189 1190 1191
				if (ret)
					return ret;
			}
1192
		}
1193 1194
	}

1195 1196
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1197 1198 1199
		if (ret)
			pr_err("SMC is not ready\n");
	}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1211
	if (ret) {
1212
		pr_err("SMU is not ready yet!\n");
1213 1214 1215
		return ret;
	}

1216
	if (adev->flags & AMD_IS_APU) {
1217
		smu_powergate_sdma(&adev->smu, false);
1218
		smu_powergate_vcn(&adev->smu, false);
1219
		smu_set_gfx_cgpg(&adev->smu, true);
1220
	}
1221

1222 1223 1224
	if (!smu->pm_enabled)
		return 0;

1225 1226 1227 1228
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1229
	ret = smu_smc_table_hw_init(smu, true);
1230 1231
	if (ret)
		goto failed;
1232

1233 1234 1235 1236
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1237 1238 1239 1240 1241 1242 1243 1244
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1245 1246 1247 1248
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1249 1250 1251
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1252
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1253

1254 1255 1256
	pr_info("SMU is initialized successfully!\n");

	return 0;
1257 1258 1259

failed:
	return ret;
1260 1261
}

1262 1263 1264 1265 1266
static int smu_stop_dpms(struct smu_context *smu)
{
	return smu_send_smc_msg(smu, SMU_MSG_DisableAllSmuFeatures);
}

1267 1268 1269 1270
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1271
	struct smu_table_context *table_context = &smu->smu_table;
1272
	int ret = 0;
1273

1274
	if (adev->flags & AMD_IS_APU) {
1275
		smu_powergate_sdma(&adev->smu, true);
1276 1277
		smu_powergate_vcn(&adev->smu, true);
	}
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	ret = smu_stop_thermal_control(smu);
	if (ret) {
		pr_warn("Fail to stop thermal control!\n");
		return ret;
	}

	ret = smu_stop_dpms(smu);
	if (ret) {
		pr_warn("Fail to stop Dpms!\n");
		return ret;
	}

1291 1292
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1293

1294 1295
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1296

1297 1298
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1299

1300 1301 1302 1303
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1304 1305 1306 1307
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1308 1309 1310
	return 0;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1327 1328
static int smu_suspend(void *handle)
{
1329
	int ret;
1330
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1331
	struct smu_context *smu = &adev->smu;
1332 1333 1334 1335
	bool baco_feature_is_enabled = false;

	if(!(adev->flags & AMD_IS_APU))
		baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
1336

1337
	ret = smu_system_features_control(smu, false);
1338 1339 1340
	if (ret)
		return ret;

1341 1342 1343 1344 1345 1346 1347 1348
	if (adev->in_gpu_reset && baco_feature_is_enabled) {
		ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
		if (ret) {
			pr_warn("set BACO feature enabled failed, return %d\n", ret);
			return ret;
		}
	}

1349 1350
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1351 1352 1353 1354
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);

1355 1356 1357 1358 1359 1360 1361 1362 1363
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1364 1365
	pr_info("SMU is resuming...\n");

1366 1367 1368
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1369
		goto failed;
1370 1371
	}

1372
	ret = smu_smc_table_hw_init(smu, false);
1373 1374 1375
	if (ret)
		goto failed;

1376
	ret = smu_start_thermal_control(smu);
1377 1378
	if (ret)
		goto failed;
1379

1380 1381 1382
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1383 1384
	smu->disable_uclk_switch = 0;

1385 1386
	pr_info("SMU is resumed successfully!\n");

1387
	return 0;
1388

1389 1390
failed:
	return ret;
1391 1392
}

1393 1394 1395 1396 1397 1398
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1399
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1400 1401 1402 1403 1404 1405 1406
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1407 1408
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1409
				display_config->min_dcef_deep_sleep_set_clk / 100);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1528 1529

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
1587 1588 1589
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
1590 1591 1592 1593 1594 1595 1596 1597 1598
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1608 1609
	if (!smu->pm_enabled)
		return -EINVAL;
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
		ret = smu_notify_smc_dispaly_config(smu);
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1634 1635 1636
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
			ret = smu_default_set_performance_level(smu, level);
1637 1638 1639 1640
			if (ret) {
				pr_err("Failed to set performance level!");
				return ret;
			}
1641
		}
1642 1643 1644

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1645 1646 1647 1648 1649 1650 1651 1652
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1653
			smu_set_power_profile_mode(smu, &workload, 0, false);
1654 1655 1656 1657 1658 1659 1660
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1661 1662
		    enum amd_pp_task task_id,
		    bool lock_needed)
1663 1664 1665
{
	int ret = 0;

1666 1667 1668
	if (lock_needed)
		mutex_lock(&smu->mutex);

1669 1670 1671 1672
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1673
			goto out;
1674 1675
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1676
			goto out;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1687 1688 1689 1690
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1691 1692 1693
	return ret;
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1723
		smu_set_power_profile_mode(smu, &workload, 0, false);
1724 1725 1726 1727 1728 1729

	mutex_unlock(&smu->mutex);

	return 0;
}

1730 1731 1732
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1733
	enum amd_dpm_forced_level level;
1734

1735
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1736 1737 1738
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1739
	level = smu_dpm_ctx->dpm_level;
1740 1741
	mutex_unlock(&(smu->mutex));

1742
	return level;
1743 1744 1745 1746 1747
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1748
	int ret = 0;
1749

1750
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1751 1752
		return -EINVAL;

1753 1754
	mutex_lock(&smu->mutex);

1755
	ret = smu_enable_umd_pstate(smu, &level);
1756 1757
	if (ret) {
		mutex_unlock(&smu->mutex);
1758
		return ret;
1759
	}
1760

1761
	ret = smu_handle_task(smu, level,
1762 1763 1764 1765
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1766 1767 1768 1769

	return ret;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1781 1782
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1783 1784
			 uint32_t mask,
			 bool lock_needed)
1785 1786 1787 1788 1789 1790 1791 1792 1793
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1794 1795 1796
	if (lock_needed)
		mutex_lock(&smu->mutex);

1797 1798 1799
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1800 1801 1802
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1803 1804 1805
	return ret;
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1820 1821
	mutex_lock(&smu->mutex);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
1834
		mutex_unlock(&smu->mutex);
1835 1836 1837 1838
		return 0;
	}

	/* some asics may not support those messages */
1839 1840
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
1841
		return 0;
1842
	}
1843 1844 1845 1846 1847

	ret = smu_send_smc_msg(smu, msg);
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

1848 1849
	mutex_unlock(&smu->mutex);

1850 1851 1852
	return ret;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

1869 1870
	mutex_lock(&smu->mutex);

1871 1872 1873 1874
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

1875 1876
	mutex_unlock(&smu->mutex);

1877 1878 1879
	return ret;
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
int smu_write_watermarks_table(struct smu_context *smu)
{
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
				true);

	return ret;
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
	int ret = 0;
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
	void *table = watermarks->cpu_addr;

1904 1905
	mutex_lock(&smu->mutex);

1906 1907 1908 1909 1910 1911 1912 1913
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

1914 1915
	mutex_unlock(&smu->mutex);

1916 1917 1918
	return ret;
}

1919 1920 1921
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
1922
	.late_init = smu_late_init,
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
1935
	.enable_umd_pstate = smu_enable_umd_pstate,
1936
};
1937 1938 1939 1940 1941 1942 1943 1944 1945

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1946 1947 1948 1949 1950 1951 1952 1953 1954

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1955 1956 1957 1958 1959 1960 1961

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

1962 1963
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

1976 1977
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

1990 1991
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2004 2005
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2037 2038
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2159 2160
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2173 2174
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2201 2202
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2229 2230
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2243 2244
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2259 2260
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2274 2275
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2322 2323
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2351 2352
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2366 2367
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2380 2381
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2394 2395
	if (smu->ppt_funcs->baco_is_support)
		ret = smu->ppt_funcs->baco_is_support(smu);
2396 2397 2398 2399 2400 2401 2402 2403

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2404
	if (smu->ppt_funcs->baco_get_state)
2405 2406 2407
		return -EINVAL;

	mutex_lock(&smu->mutex);
2408
	*state = smu->ppt_funcs->baco_get_state(smu);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	mutex_unlock(&smu->mutex);

	return 0;
}

int smu_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2420 2421
	if (smu->ppt_funcs->baco_reset)
		ret = smu->ppt_funcs->baco_reset(smu);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2434 2435
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2449 2450
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}