intel_lrc.c 146.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136

#include "i915_drv.h"
137
#include "i915_perf.h"
138
#include "i915_trace.h"
139
#include "i915_vgpu.h"
140
#include "intel_context.h"
141
#include "intel_engine_pm.h"
142
#include "intel_gt.h"
143
#include "intel_gt_pm.h"
144
#include "intel_gt_requests.h"
145
#include "intel_lrc_reg.h"
146
#include "intel_mocs.h"
147
#include "intel_reset.h"
148
#include "intel_ring.h"
149
#include "intel_workarounds.h"
150

151 152 153 154 155 156 157 158 159 160 161 162 163
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
164

165
#define GEN8_CTX_STATUS_COMPLETED_MASK \
166
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
167

168 169
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

170 171 172 173 174 175 176
#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
#define GEN12_IDLE_CTX_ID		0x7FF
#define GEN12_CSB_CTX_VALID(csb_dw) \
	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)

177 178
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

205 206 207 208 209 210 211 212 213 214 215 216
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

217 218 219 220 221 222 223 224 225 226 227
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

228 229 230
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine);

231
static void execlists_init_reg_state(u32 *reg_state,
232 233 234 235
				     const struct intel_context *ce,
				     const struct intel_engine_cs *engine,
				     const struct intel_ring *ring,
				     bool close);
236 237
static void
__execlists_update_reg_state(const struct intel_context *ce,
238 239
			     const struct intel_engine_cs *engine,
			     u32 head);
240

241 242
static void mark_eio(struct i915_request *rq)
{
243 244 245 246 247 248
	if (i915_request_completed(rq))
		return;

	GEM_BUG_ON(i915_request_signaled(rq));

	dma_fence_set_error(&rq->fence, -EIO);
249 250 251
	i915_request_mark_complete(rq);
}

252 253
static struct i915_request *
active_request(const struct intel_timeline * const tl, struct i915_request *rq)
254
{
255
	struct i915_request *active = rq;
256 257

	rcu_read_lock();
258
	list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
259 260 261 262 263 264 265 266 267 268
		if (i915_request_completed(rq))
			break;

		active = rq;
	}
	rcu_read_unlock();

	return active;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
285 286
	if (state)
		wmb();
287 288
}

289 290 291 292 293 294 295
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
296
	return rq->sched.attr.priority;
297 298
}

299 300
static int effective_prio(const struct i915_request *rq)
{
301 302
	int prio = rq_prio(rq);

303 304 305 306 307 308 309 310 311 312 313
	/*
	 * If this request is special and must not be interrupted at any
	 * cost, so be it. Note we are only checking the most recent request
	 * in the context and so may be masking an earlier vip request. It
	 * is hoped that under the conditions where nopreempt is used, this
	 * will not matter (i.e. all requests to that context will be
	 * nopreempt for as long as desired).
	 */
	if (i915_request_has_nopreempt(rq))
		prio = I915_PRIORITY_UNPREEMPTABLE;

314 315
	/*
	 * On unwinding the active request, we give it a priority bump
316 317 318
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
319
	 */
320 321
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
322

323
	/* Restrict mere WAIT boosts from triggering preemption */
324
	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
325
	return prio | __NO_PREEMPTION;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

345
static inline bool need_preempt(const struct intel_engine_cs *engine,
346 347
				const struct i915_request *rq,
				struct rb_node *rb)
348
{
349
	int last_prio;
350

351 352 353
	if (!intel_engine_has_semaphores(engine))
		return false;

354 355 356 357 358 359 360 361 362 363 364
	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
365 366 367 368 369 370
	 *
	 * More naturally we would write
	 *      prio >= max(0, last);
	 * except that we wish to prevent triggering preemption at the same
	 * priority level: the task that is running should remain running
	 * to preserve FIFO ordering of dependencies.
371
	 */
372 373
	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
	if (engine->execlists.queue_priority_hint <= last_prio)
374 375 376 377 378 379
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
380 381
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
382 383
		return true;

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
417
assert_priority_queue(const struct i915_request *prev,
418
		      const struct i915_request *next)
419
{
420 421 422 423 424 425 426
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
427
	if (i915_request_is_active(prev))
428 429 430
		return true;

	return rq_prio(prev) >= rq_prio(next);
431 432
}

433
/*
434 435 436 437 438
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
439 440
 * This is what a descriptor looks like, from LSB to MSB::
 *
441
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
442
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
443
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
444 445
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
446 447 448 449 450 451 452 453 454 455 456 457
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
458
 */
459 460
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
461
{
462
	u64 desc;
463

464 465 466 467 468 469 470 471
	desc = INTEL_LEGACY_32B_CONTEXT;
	if (i915_vm_is_4lvl(ce->vm))
		desc = INTEL_LEGACY_64B_CONTEXT;
	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;

	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
	if (IS_GEN(engine->i915, 8))
		desc |= GEN8_CTX_L3LLC_COHERENT;
472

473
	desc |= i915_ggtt_offset(ce->state); /* bits 12-31 */
474 475 476 477 478
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
479
	if (INTEL_GEN(engine->i915) >= 11) {
480 481 482 483 484 485
		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	}
486

487
	return desc;
488 489
}

490 491 492 493 494 495
static inline unsigned int dword_in_page(void *addr)
{
	return offset_in_page(addr) / sizeof(u32);
}

static void set_offsets(u32 *regs,
496
			const u8 *data,
497 498
			const struct intel_engine_cs *engine,
			bool clear)
499
#define NOP(x) (BIT(7) | (x))
500
#define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
501 502 503 504 505
#define POSTED BIT(0)
#define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
#define REG16(x) \
	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
	(((x) >> 2) & 0x7f)
506
#define END(x) 0, (x)
507 508 509 510 511 512 513
{
	const u32 base = engine->mmio_base;

	while (*data) {
		u8 count, flags;

		if (*data & BIT(7)) { /* skip */
514 515 516 517
			count = *data++ & ~BIT(7);
			if (clear)
				memset32(regs, MI_NOOP, count);
			regs += count;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
			continue;
		}

		count = *data & 0x3f;
		flags = *data >> 6;
		data++;

		*regs = MI_LOAD_REGISTER_IMM(count);
		if (flags & POSTED)
			*regs |= MI_LRI_FORCE_POSTED;
		if (INTEL_GEN(engine->i915) >= 11)
			*regs |= MI_LRI_CS_MMIO;
		regs++;

		GEM_BUG_ON(!count);
		do {
			u32 offset = 0;
			u8 v;

			do {
				v = *data++;
				offset <<= 7;
				offset |= v & ~BIT(7);
			} while (v & BIT(7));

543 544 545
			regs[0] = base + (offset << 2);
			if (clear)
				regs[1] = 0;
546 547 548 549
			regs += 2;
		} while (--count);
	}

550 551 552 553 554 555 556 557 558 559 560 561
	if (clear) {
		u8 count = *++data;

		/* Clear past the tail for HW access */
		GEM_BUG_ON(dword_in_page(regs) > count);
		memset32(regs, MI_NOOP, count - dword_in_page(regs));

		/* Close the batch; used mainly by live_lrc_layout() */
		*regs = MI_BATCH_BUFFER_END;
		if (INTEL_GEN(engine->i915) >= 10)
			*regs |= BIT(0);
	}
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
}

static const u8 gen8_xcs_offsets[] = {
	NOP(1),
	LRI(11, 0),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),

	NOP(9),
	LRI(9, 0),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(2, 0),
	REG16(0x200),
	REG(0x028),

596
	END(80)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
};

static const u8 gen9_xcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, POSTED),
	REG16(0x200),

	NOP(13),
	LRI(44, POSTED),
	REG(0x028),
	REG(0x09c),
	REG(0x0c0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x068),

680
	END(176)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
};

static const u8 gen12_xcs_offsets[] = {
	NOP(1),
	LRI(13, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),
	REG16(0x2b4),

	NOP(5),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

712
	END(80)
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
};

static const u8 gen8_rcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, 0),
	REG(0x0c8),

749
	END(80)
750 751
};

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static const u8 gen9_rcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x34),
	REG(0x30),
	REG(0x38),
	REG(0x3c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, 0),
	REG(0xc8),

	NOP(13),
	LRI(44, POSTED),
	REG(0x28),
	REG(0x9c),
	REG(0xc0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x68),

833
	END(176)
834 835
};

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static const u8 gen11_rcs_offsets[] = {
	NOP(1),
	LRI(15, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),

	NOP(1),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	LRI(1, POSTED),
	REG(0x1b0),

	NOP(10),
	LRI(1, 0),
	REG(0x0c8),

874
	END(80)
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
};

static const u8 gen12_rcs_offsets[] = {
	NOP(1),
	LRI(13, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),
	REG16(0x2b4),

	NOP(5),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	LRI(3, POSTED),
	REG(0x1b0),
	REG16(0x5a8),
	REG16(0x5ac),

	NOP(6),
	LRI(1, 0),
	REG(0x0c8),

915
	END(80)
916 917 918 919 920 921 922 923 924 925
};

#undef END
#undef REG16
#undef REG
#undef LRI
#undef NOP

static const u8 *reg_offsets(const struct intel_engine_cs *engine)
{
926 927 928 929 930 931 932 933 934
	/*
	 * The gen12+ lists only have the registers we program in the basic
	 * default state. We rely on the context image using relative
	 * addressing to automatic fixup the register state between the
	 * physical engines for virtual engine.
	 */
	GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
		   !intel_engine_has_relative_mmio(engine));

935 936 937 938 939
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 12)
			return gen12_rcs_offsets;
		else if (INTEL_GEN(engine->i915) >= 11)
			return gen11_rcs_offsets;
940 941
		else if (INTEL_GEN(engine->i915) >= 9)
			return gen9_rcs_offsets;
942 943 944 945 946 947 948 949 950 951 952 953
		else
			return gen8_rcs_offsets;
	} else {
		if (INTEL_GEN(engine->i915) >= 12)
			return gen12_xcs_offsets;
		else if (INTEL_GEN(engine->i915) >= 9)
			return gen9_xcs_offsets;
		else
			return gen8_xcs_offsets;
	}
}

954
static struct i915_request *
955
__unwind_incomplete_requests(struct intel_engine_cs *engine)
956
{
957
	struct i915_request *rq, *rn, *active = NULL;
958
	struct list_head *uninitialized_var(pl);
959
	int prio = I915_PRIORITY_INVALID;
960

961
	lockdep_assert_held(&engine->active.lock);
962 963

	list_for_each_entry_safe_reverse(rq, rn,
964 965
					 &engine->active.requests,
					 sched.link) {
966
		if (i915_request_completed(rq))
967
			continue; /* XXX */
968

969
		__i915_request_unsubmit(rq);
970

971 972 973 974 975 976 977
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
978
		if (likely(rq->execution_mask == engine->mask)) {
979 980 981 982 983 984
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
985

986
			list_move(&rq->sched.link, pl);
987 988
			set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

989 990
			active = rq;
		} else {
991
			struct intel_engine_cs *owner = rq->context->engine;
992

993 994 995 996 997 998 999 1000 1001
			/*
			 * Decouple the virtual breadcrumb before moving it
			 * back to the virtual engine -- we don't want the
			 * request to complete in the background and try
			 * and cancel the breadcrumb on the virtual engine
			 * (instead of the old engine where it is linked)!
			 */
			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
				     &rq->fence.flags)) {
1002 1003
				spin_lock_nested(&rq->lock,
						 SINGLE_DEPTH_NESTING);
1004 1005 1006
				i915_request_cancel_breadcrumb(rq);
				spin_unlock(&rq->lock);
			}
1007 1008 1009 1010
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
1011 1012
	}

1013
	return active;
1014 1015
}

1016
struct i915_request *
1017 1018 1019 1020 1021
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

1022
	return __unwind_incomplete_requests(engine);
1023 1024
}

1025
static inline void
1026
execlists_context_status_change(struct i915_request *rq, unsigned long status)
1027
{
1028 1029 1030 1031 1032 1033
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
1034

1035 1036
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	write_seqlock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		if (engine->stats.active++ == 0)
			engine->stats.start = ktime_get();
		GEM_BUG_ON(engine->stats.active == 0);
	}

	write_sequnlock_irqrestore(&engine->stats.lock, flags);
}

static void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	write_seqlock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		ktime_t last;

		if (engine->stats.active && --engine->stats.active == 0) {
			/*
			 * Decrement the active context count and in case GPU
			 * is now idle add up to the running total.
			 */
			last = ktime_sub(ktime_get(), engine->stats.start);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		} else if (engine->stats.active == 0) {
			/*
			 * After turning on engine stats, context out might be
			 * the first event in which case we account from the
			 * time stats gathering was turned on.
			 */
			last = ktime_sub(ktime_get(), engine->stats.enabled_at);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		}
	}

	write_sequnlock_irqrestore(&engine->stats.lock, flags);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
{
	if (INTEL_GEN(engine->i915) >= 12)
		return 0x60;
	else if (INTEL_GEN(engine->i915) >= 9)
		return 0x54;
	else if (engine->class == RENDER_CLASS)
		return 0x58;
	else
		return -1;
}

static void
execlists_check_context(const struct intel_context *ce,
			const struct intel_engine_cs *engine)
{
	const struct intel_ring *ring = ce->ring;
	u32 *regs = ce->lrc_reg_state;
	bool valid = true;
	int x;

	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
		       engine->name,
		       regs[CTX_RING_START],
		       i915_ggtt_offset(ring->vma));
		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
		valid = false;
	}

	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
		       engine->name,
		       regs[CTX_RING_CTL],
		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
		valid = false;
	}

	x = lrc_ring_mi_mode(engine);
	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
		       engine->name, regs[x + 1]);
		regs[x + 1] &= ~STOP_RING;
		regs[x + 1] |= STOP_RING << 16;
		valid = false;
	}

	WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void restore_default_state(struct intel_context *ce,
				  struct intel_engine_cs *engine)
{
	u32 *regs = ce->lrc_reg_state;

	if (engine->pinned_default_state)
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);

	execlists_init_reg_state(regs, ce, engine, ce->ring, false);
}

static void reset_active(struct i915_request *rq,
			 struct intel_engine_cs *engine)
{
1162
	struct intel_context * const ce = rq->context;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	u32 head;

	/*
	 * The executing context has been cancelled. We want to prevent
	 * further execution along this context and propagate the error on
	 * to anything depending on its results.
	 *
	 * In __i915_request_submit(), we apply the -EIO and remove the
	 * requests' payloads for any banned requests. But first, we must
	 * rewind the context back to the start of the incomplete request so
	 * that we do not jump back into the middle of the batch.
	 *
	 * We preserve the breadcrumbs and semaphores of the incomplete
	 * requests so that inter-timeline dependencies (i.e other timelines)
	 * remain correctly ordered. And we defer to __i915_request_submit()
	 * so that all asynchronous waits are correctly handled.
	 */
1180 1181
	ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
		     rq->fence.context, rq->fence.seqno);
1182 1183 1184 1185 1186 1187

	/* On resubmission of the active request, payload will be scrubbed */
	if (i915_request_completed(rq))
		head = rq->tail;
	else
		head = active_request(ce->timeline, rq)->head;
1188
	head = intel_ring_wrap(ce->ring, head);
1189 1190 1191

	/* Scrub the context image to prevent replaying the previous batch */
	restore_default_state(ce, engine);
1192
	__execlists_update_reg_state(ce, engine, head);
1193 1194 1195 1196 1197

	/* We've switched away, so this should be a no-op, but intent matters */
	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static u32 intel_context_get_runtime(const struct intel_context *ce)
{
	/*
	 * We can use either ppHWSP[16] which is recorded before the context
	 * switch (and so excludes the cost of context switches) or use the
	 * value from the context image itself, which is saved/restored earlier
	 * and so includes the cost of the save.
	 */
	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
}

1209 1210 1211 1212 1213 1214 1215 1216
static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
{
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
	ce->runtime.num_underflow += dt < 0;
	ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
#endif
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static void intel_context_update_runtime(struct intel_context *ce)
{
	u32 old;
	s32 dt;

	if (intel_context_is_barrier(ce))
		return;

	old = ce->runtime.last;
	ce->runtime.last = intel_context_get_runtime(ce);
	dt = ce->runtime.last - old;

	if (unlikely(dt <= 0)) {
		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
			 old, ce->runtime.last, dt);
1232
		st_update_runtime_underflow(ce, dt);
1233 1234 1235 1236 1237 1238 1239
		return;
	}

	ewma_runtime_add(&ce->runtime.avg, dt);
	ce->runtime.total += dt;
}

1240 1241 1242 1243
static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request *rq)
{
	struct intel_engine_cs * const engine = rq->engine;
1244
	struct intel_context * const ce = rq->context;
1245 1246 1247

	intel_context_get(ce);

1248
	if (unlikely(intel_context_is_banned(ce)))
1249 1250
		reset_active(rq, engine);

1251
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1252
		execlists_check_context(ce, engine);
1253

1254
	ce->lrc_desc &= ~GENMASK_ULL(47, 37);
C
Chris Wilson 已提交
1255 1256 1257 1258 1259 1260
	if (ce->tag) {
		/* Use a fixed tag for OA and friends */
		ce->lrc_desc |= (u64)ce->tag << 32;
	} else {
		/* We don't need a strict matching tag, just different values */
		ce->lrc_desc |=
1261
			(u64)(++engine->context_tag % NUM_CONTEXT_TAG) <<
C
Chris Wilson 已提交
1262 1263 1264 1265
			GEN11_SW_CTX_ID_SHIFT;
		BUILD_BUG_ON(NUM_CONTEXT_TAG > GEN12_MAX_CONTEXT_HW_ID);
	}

1266
	__intel_gt_pm_get(engine->gt);
1267 1268 1269 1270 1271 1272
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
	intel_engine_context_in(engine);

	return engine;
}

1273 1274
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
1275
{
1276
	struct intel_context * const ce = rq->context;
1277
	struct intel_engine_cs *old;
1278

1279
	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1280
	trace_i915_request_in(rq, idx);
1281

1282 1283 1284 1285 1286 1287 1288
	old = READ_ONCE(ce->inflight);
	do {
		if (!old) {
			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
			break;
		}
	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1289 1290 1291

	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
	return i915_request_get(rq);
1292 1293
}

1294
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1295
{
1296
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1297 1298 1299 1300 1301 1302
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

1303
static inline void
1304 1305
__execlists_schedule_out(struct i915_request *rq,
			 struct intel_engine_cs * const engine)
1306
{
1307
	struct intel_context * const ce = rq->context;
1308

1309 1310 1311 1312 1313 1314
	/*
	 * NB process_csb() is not under the engine->active.lock and hence
	 * schedule_out can race with schedule_in meaning that we should
	 * refrain from doing non-trivial work here.
	 */

1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * If we have just completed this context, the engine may now be
	 * idle and we want to re-enter powersaving.
	 */
	if (list_is_last(&rq->link, &ce->timeline->requests) &&
	    i915_request_completed(rq))
		intel_engine_add_retire(engine, ce->timeline);

1323
	intel_context_update_runtime(ce);
1324 1325
	intel_engine_context_out(engine);
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1326
	intel_gt_pm_put_async(engine->gt);
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * If this is part of a virtual engine, its next request may
	 * have been blocked waiting for access to the active context.
	 * We have to kick all the siblings again in case we need to
	 * switch (e.g. the next request is not runnable on this
	 * engine). Hopefully, we will already have submitted the next
	 * request before the tasklet runs and do not need to rebuild
	 * each virtual tree and kick everyone again.
	 */
	if (ce->engine != engine)
		kick_siblings(rq, ce);
1339

1340 1341
	intel_context_put(ce);
}
1342

1343 1344 1345
static inline void
execlists_schedule_out(struct i915_request *rq)
{
1346
	struct intel_context * const ce = rq->context;
1347
	struct intel_engine_cs *cur, *old;
1348

1349 1350 1351 1352 1353 1354 1355 1356
	trace_i915_request_out(rq);

	old = READ_ONCE(ce->inflight);
	do
		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
	while (!try_cmpxchg(&ce->inflight, &old, cur));
	if (!cur)
		__execlists_schedule_out(rq, old);
1357 1358

	i915_request_put(rq);
1359 1360
}

1361
static u64 execlists_update_context(struct i915_request *rq)
1362
{
1363
	struct intel_context *ce = rq->context;
1364
	u64 desc = ce->lrc_desc;
1365
	u32 tail, prev;
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * WaIdleLiteRestore:bdw,skl
	 *
	 * We should never submit the context with the same RING_TAIL twice
	 * just in case we submit an empty ring, which confuses the HW.
	 *
	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
	 * the normal request to be able to always advance the RING_TAIL on
	 * subsequent resubmissions (for lite restore). Should that fail us,
	 * and we try and submit the same tail again, force the context
	 * reload.
1378 1379 1380 1381 1382
	 *
	 * If we need to return to a preempted context, we need to skip the
	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
	 * HW has a tendency to ignore us rewinding the TAIL to the end of
	 * an earlier request.
1383 1384
	 */
	tail = intel_ring_set_tail(rq->ring, rq->tail);
1385 1386
	prev = ce->lrc_reg_state[CTX_RING_TAIL];
	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1387 1388 1389
		desc |= CTX_DESC_FORCE_RESTORE;
	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
	rq->tail = rq->wa_tail;
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
	 */
1401
	wmb();
1402

1403
	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
1404
	return desc;
1405 1406
}

1407
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
1408
{
1409 1410 1411 1412 1413 1414 1415
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

1426 1427 1428
	if (!ports[0])
		return;

1429 1430 1431 1432 1433 1434 1435 1436
	ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg,
		     ports[0]->fence.context,
		     ports[0]->fence.seqno,
		     i915_request_completed(ports[0]) ? "!" :
		     i915_request_started(ports[0]) ? "*" :
		     "",
		     ports[1] ? ports[1]->fence.context : 0,
		     ports[1] ? ports[1]->fence.seqno : 0);
1437 1438
}

1439 1440 1441 1442 1443 1444
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1445 1446 1447 1448 1449 1450 1451 1452 1453
static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;

	trace_ports(execlists, msg, execlists->pending);

1454 1455 1456 1457
	/* We may be messing around with the lists during reset, lalala */
	if (reset_in_progress(execlists))
		return true;

1458 1459
	if (!execlists->pending[0]) {
		GEM_TRACE_ERR("Nothing pending for promotion!\n");
1460
		return false;
1461
	}
1462

1463 1464 1465
	if (execlists->pending[execlists_num_ports(execlists)]) {
		GEM_TRACE_ERR("Excess pending[%d] for promotion!\n",
			      execlists_num_ports(execlists));
1466
		return false;
1467
	}
1468 1469

	for (port = execlists->pending; (rq = *port); port++) {
1470 1471 1472
		unsigned long flags;
		bool ok = true;

1473 1474 1475
		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
		GEM_BUG_ON(!i915_request_is_active(rq));

1476
		if (ce == rq->context) {
1477 1478
			GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1479
				      port - execlists->pending);
1480
			return false;
1481
		}
1482
		ce = rq->context;
1483 1484

		/* Hold tightly onto the lock to prevent concurrent retires! */
1485 1486
		if (!spin_trylock_irqsave(&rq->lock, flags))
			continue;
1487

1488
		if (i915_request_completed(rq))
1489
			goto unlock;
1490

1491 1492
		if (i915_active_is_idle(&ce->active) &&
		    !intel_context_is_barrier(ce)) {
1493 1494
			GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1495
				      port - execlists->pending);
1496 1497
			ok = false;
			goto unlock;
1498 1499 1500
		}

		if (!i915_vma_is_pinned(ce->state)) {
1501 1502
			GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1503
				      port - execlists->pending);
1504 1505
			ok = false;
			goto unlock;
1506
		}
1507

1508
		if (!i915_vma_is_pinned(ce->ring->vma)) {
1509 1510
			GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n",
				      ce->timeline->fence_context,
1511
				      port - execlists->pending);
1512 1513
			ok = false;
			goto unlock;
1514
		}
1515 1516 1517 1518 1519

unlock:
		spin_unlock_irqrestore(&rq->lock, flags);
		if (!ok)
			return false;
1520 1521 1522 1523 1524
	}

	return ce;
}

1525
static void execlists_submit_ports(struct intel_engine_cs *engine)
1526
{
1527
	struct intel_engine_execlists *execlists = &engine->execlists;
1528
	unsigned int n;
1529

1530 1531
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

1532 1533 1534 1535 1536 1537 1538 1539
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
1540
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1541

1542 1543 1544 1545 1546 1547 1548
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
1549
		struct i915_request *rq = execlists->pending[n];
1550

1551 1552 1553
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
1554
	}
1555 1556 1557 1558

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1559 1560
}

1561
static bool ctx_single_port_submission(const struct intel_context *ce)
1562
{
1563
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1564
		intel_context_force_single_submission(ce));
1565
}
1566

1567 1568
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
1569 1570 1571
{
	if (prev != next)
		return false;
1572

1573 1574
	if (ctx_single_port_submission(prev))
		return false;
1575

1576
	return true;
1577 1578
}

1579 1580 1581
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
1582
	GEM_BUG_ON(prev == next);
1583 1584
	GEM_BUG_ON(!assert_priority_queue(prev, next));

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * We do not submit known completed requests. Therefore if the next
	 * request is already completed, we can pretend to merge it in
	 * with the previous context (and we will skip updating the ELSP
	 * and tracking). Thus hopefully keeping the ELSP full with active
	 * contexts, despite the best efforts of preempt-to-busy to confuse
	 * us.
	 */
	if (i915_request_completed(next))
		return true;

1596
	if (unlikely((prev->fence.flags ^ next->fence.flags) &
1597 1598
		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
		      BIT(I915_FENCE_FLAG_SENTINEL))))
1599 1600
		return false;

1601
	if (!can_merge_ctx(prev->context, next->context))
1602 1603 1604 1605 1606
		return false;

	return true;
}

1607 1608 1609
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
1610
	set_offsets(regs, reg_offsets(engine), engine, false);
1611 1612 1613 1614 1615 1616
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
1617
	const struct intel_engine_cs *inflight;
1618

1619 1620 1621
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
1631
	inflight = intel_context_inflight(&ve->context);
1632
	if (inflight && inflight != engine)
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
1649
		intel_engine_signal_breadcrumbs(engine);
1650 1651 1652 1653
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

1654 1655 1656
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
1657
	struct i915_request * const *last = READ_ONCE(execlists->active);
1658 1659 1660 1661 1662 1663 1664

	while (*last && i915_request_completed(*last))
		last++;

	return *last;
}

1665 1666 1667 1668 1669
#define for_each_waiter(p__, rq__) \
	list_for_each_entry_lockless(p__, \
				     &(rq__)->sched.waiters_list, \
				     wait_link)

1670 1671 1672 1673 1674
#define for_each_signaler(p__, rq__) \
	list_for_each_entry_lockless(p__, \
				     &(rq__)->sched.signalers_list, \
				     signal_link)

1675
static void defer_request(struct i915_request *rq, struct list_head * const pl)
1676
{
1677
	LIST_HEAD(list);
1678 1679 1680 1681 1682 1683 1684 1685

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
1686 1687
	do {
		struct i915_dependency *p;
1688

1689 1690
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
1691

1692
		for_each_waiter(p, rq) {
1693 1694
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
1695

1696 1697 1698
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
1699

1700 1701 1702
			/* No waiter should start before its signaler */
			GEM_BUG_ON(i915_request_started(w) &&
				   !i915_request_completed(rq));
1703

1704
			GEM_BUG_ON(i915_request_is_active(w));
1705 1706
			if (!i915_request_is_ready(w))
				continue;
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	int hint;

1735
	if (!intel_engine_has_timeslices(engine))
1736 1737
		return false;

1738 1739 1740 1741 1742 1743
	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return false;

	hint = max(rq_prio(list_next_entry(rq, sched.link)),
		   engine->execlists.queue_priority_hint);

1744
	return hint >= effective_prio(rq);
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755
static int
switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return INT_MIN;

	return rq_prio(list_next_entry(rq, sched.link));
}

1756 1757 1758 1759 1760 1761 1762 1763
static inline unsigned long
timeslice(const struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->props.timeslice_duration_ms);
}

static unsigned long
active_timeslice(const struct intel_engine_cs *engine)
1764
{
1765
	const struct i915_request *rq = *engine->execlists.active;
1766

1767
	if (!rq || i915_request_completed(rq))
1768
		return 0;
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (engine->execlists.switch_priority_hint < effective_prio(rq))
		return 0;

	return timeslice(engine);
}

static void set_timeslice(struct intel_engine_cs *engine)
{
	if (!intel_engine_has_timeslices(engine))
		return;

	set_timer_ms(&engine->execlists.timer, active_timeslice(engine));
1782 1783
}

1784 1785 1786 1787 1788
static void record_preemption(struct intel_engine_execlists *execlists)
{
	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}

1789 1790 1791 1792 1793 1794 1795 1796
static unsigned long active_preempt_timeout(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = last_active(&engine->execlists);
	if (!rq)
		return 0;

1797
	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1798
	if (unlikely(intel_context_is_banned(rq->context)))
1799 1800
		return 1;

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	return READ_ONCE(engine->props.preempt_timeout_ms);
}

static void set_preempt_timeout(struct intel_engine_cs *engine)
{
	if (!intel_engine_has_preempt_reset(engine))
		return;

	set_timer_ms(&engine->execlists.preempt,
		     active_preempt_timeout(engine));
}

1813 1814 1815 1816 1817
static inline void clear_ports(struct i915_request **ports, int count)
{
	memset_p((void **)ports, NULL, count);
}

1818
static void execlists_dequeue(struct intel_engine_cs *engine)
1819
{
1820
	struct intel_engine_execlists * const execlists = &engine->execlists;
1821 1822 1823
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
	struct i915_request *last;
1824
	struct rb_node *rb;
1825 1826
	bool submit = false;

1827 1828
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
1847
	 */
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

1869 1870 1871 1872 1873 1874 1875 1876 1877
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
	last = last_active(execlists);
C
Chris Wilson 已提交
1878
	if (last) {
1879
		if (need_preempt(engine, last, rb)) {
1880 1881 1882 1883 1884 1885
			ENGINE_TRACE(engine,
				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
				     last->fence.context,
				     last->fence.seqno,
				     last->sched.attr.priority,
				     execlists->queue_priority_hint);
1886 1887
			record_preemption(execlists);

1888 1889 1890 1891 1892 1893
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
1894

1895 1896 1897 1898 1899 1900 1901 1902
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
1903

1904
			last = NULL;
1905
		} else if (need_timeslice(engine, last) &&
1906
			   timer_expired(&engine->execlists.timer)) {
1907 1908 1909 1910 1911 1912
			ENGINE_TRACE(engine,
				     "expired last=%llx:%lld, prio=%d, hint=%d\n",
				     last->fence.context,
				     last->fence.seqno,
				     last->sched.attr.priority,
				     execlists->queue_priority_hint);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
1942 1943 1944 1945 1946 1947 1948
					  &engine->active.requests)) {
				/*
				 * Even if ELSP[1] is occupied and not worthy
				 * of timeslices, our queue might be.
				 */
				if (!execlists->timer.expires &&
				    need_timeslice(engine, last))
1949 1950 1951
					set_timer_ms(&execlists->timer,
						     timeslice(engine));

1952
				return;
1953
			}
1954
		}
C
Chris Wilson 已提交
1955 1956
	}

1957 1958 1959 1960 1961
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

1962
		spin_lock(&ve->base.active.lock);
1963 1964 1965

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
1966
			spin_unlock(&ve->base.active.lock);
1967 1968 1969 1970 1971 1972 1973 1974
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
1975
		GEM_BUG_ON(rq->context != &ve->context);
1976 1977 1978

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
1979
				spin_unlock(&ve->base.active.lock);
1980 1981 1982 1983 1984
				rb = rb_next(rb);
				continue;
			}

			if (last && !can_merge_rq(last, rq)) {
1985
				spin_unlock(&ve->base.active.lock);
1986
				return; /* leave this for another */
1987 1988
			}

1989 1990 1991 1992 1993 1994 1995 1996
			ENGINE_TRACE(engine,
				     "virtual rq=%llx:%lld%s, new engine? %s\n",
				     rq->fence.context,
				     rq->fence.seqno,
				     i915_request_completed(rq) ? "!" :
				     i915_request_started(rq) ? "*" :
				     "",
				     yesno(engine != ve->siblings[0]));
1997 1998 1999 2000 2001 2002

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

2003
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
2004 2005 2006 2007 2008 2009
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

2010
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
2011 2012 2013 2014

				if (!intel_engine_has_relative_mmio(engine))
					virtual_update_register_offsets(regs,
									engine);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

2037
			if (__i915_request_submit(rq)) {
2038 2039 2040
				submit = true;
				last = rq;
			}
2041
			i915_request_put(rq);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

			/*
			 * Hmm, we have a bunch of virtual engine requests,
			 * but the first one was already completed (thanks
			 * preempt-to-busy!). Keep looking at the veng queue
			 * until we have no more relevant requests (i.e.
			 * the normal submit queue has higher priority).
			 */
			if (!submit) {
				spin_unlock(&ve->base.active.lock);
				rb = rb_first_cached(&execlists->virtual);
				continue;
			}
2055 2056
		}

2057
		spin_unlock(&ve->base.active.lock);
2058 2059 2060
		break;
	}

2061
	while ((rb = rb_first_cached(&execlists->queue))) {
2062
		struct i915_priolist *p = to_priolist(rb);
2063
		struct i915_request *rq, *rn;
2064
		int i;
2065

2066
		priolist_for_each_request_consume(rq, rn, p, i) {
2067
			bool merge = true;
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
2079
			 */
2080
			if (last && !can_merge_rq(last, rq)) {
2081 2082 2083 2084 2085
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
2086
				if (port == last_port)
2087 2088
					goto done;

2089 2090 2091 2092 2093
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
2094
				if (last->context == rq->context)
2095 2096
					goto done;

2097 2098 2099
				if (i915_request_has_sentinel(last))
					goto done;

2100 2101 2102 2103 2104 2105 2106
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
2107 2108
				if (ctx_single_port_submission(last->context) ||
				    ctx_single_port_submission(rq->context))
2109 2110
					goto done;

2111
				merge = false;
2112
			}
2113

2114 2115 2116 2117 2118 2119 2120 2121
			if (__i915_request_submit(rq)) {
				if (!merge) {
					*port = execlists_schedule_in(last, port - execlists->pending);
					port++;
					last = NULL;
				}

				GEM_BUG_ON(last &&
2122 2123
					   !can_merge_ctx(last->context,
							  rq->context));
2124 2125 2126 2127

				submit = true;
				last = rq;
			}
2128
		}
2129

2130
		rb_erase_cached(&p->node, &execlists->queue);
2131
		i915_priolist_free(p);
2132
	}
2133

2134
done:
2135 2136 2137
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
2138
	 * We choose the priority hint such that if we add a request of greater
2139 2140 2141
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
2142
	 * HW. We derive the priority hint then as the first "hole" in
2143 2144 2145 2146
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
2147
	 * user, see queue_request(), the priority hint is bumped to that
2148 2149 2150
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
2151
	execlists->queue_priority_hint = queue_prio(execlists);
2152

2153
	if (submit) {
2154
		*port = execlists_schedule_in(last, port - execlists->pending);
2155 2156
		execlists->switch_priority_hint =
			switch_prio(engine, *execlists->pending);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

		/*
		 * Skip if we ended up with exactly the same set of requests,
		 * e.g. trying to timeslice a pair of ordered contexts
		 */
		if (!memcmp(execlists->active, execlists->pending,
			    (port - execlists->pending + 1) * sizeof(*port))) {
			do
				execlists_schedule_out(fetch_and_zero(port));
			while (port-- != execlists->pending);

			goto skip_submit;
		}
2170
		clear_ports(port + 1, last_port - port);
2171

2172
		execlists_submit_ports(engine);
2173
		set_preempt_timeout(engine);
2174
	} else {
2175
skip_submit:
2176
		ring_set_paused(engine, 0);
2177
	}
2178 2179
}

2180 2181
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
2182
{
2183
	struct i915_request * const *port;
2184

2185 2186
	for (port = execlists->pending; *port; port++)
		execlists_schedule_out(*port);
2187
	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2188

2189
	/* Mark the end of active before we overwrite *active */
2190 2191
	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
		execlists_schedule_out(*port);
2192 2193 2194
	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));

	WRITE_ONCE(execlists->active, execlists->inflight);
2195 2196
}

2197 2198 2199 2200 2201 2202 2203
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/*
 * Starting with Gen12, the status has a new format:
 *
 *     bit  0:     switched to new queue
 *     bit  1:     reserved
 *     bit  2:     semaphore wait mode (poll or signal), only valid when
 *                 switch detail is set to "wait on semaphore"
 *     bits 3-5:   engine class
 *     bits 6-11:  engine instance
 *     bits 12-14: reserved
 *     bits 15-25: sw context id of the lrc the GT switched to
 *     bits 26-31: sw counter of the lrc the GT switched to
 *     bits 32-35: context switch detail
 *                  - 0: ctx complete
 *                  - 1: wait on sync flip
 *                  - 2: wait on vblank
 *                  - 3: wait on scanline
 *                  - 4: wait on semaphore
 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
 *                       WAIT_FOR_EVENT)
 *     bit  36:    reserved
 *     bits 37-43: wait detail (for switch detail 1 to 4)
 *     bits 44-46: reserved
 *     bits 47-57: sw context id of the lrc the GT switched away from
 *     bits 58-63: sw counter of the lrc the GT switched away from
 */
2230
static inline bool
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
	u32 lower_dw = csb[0];
	u32 upper_dw = csb[1];
	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;

	/*
	 * The context switch detail is not guaranteed to be 5 when a preemption
	 * occurs, so we can't just check for that. The check below works for
	 * all the cases we care about, including preemptions of WAIT
	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
	 * would require some extra handling, but we don't support that.
	 */
2246 2247
	if (!ctx_away_valid || new_queue) {
		GEM_BUG_ON(!ctx_to_valid);
2248
		return true;
2249
	}
2250 2251 2252 2253 2254 2255 2256

	/*
	 * switch detail = 5 is covered by the case above and we do not expect a
	 * context switch on an unsuccessful wait instruction since we always
	 * use polling mode.
	 */
	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
2257
	return false;
2258 2259
}

2260
static inline bool
2261
gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2262
{
2263
	return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
2264 2265
}

2266
static void process_csb(struct intel_engine_cs *engine)
2267
{
2268
	struct intel_engine_execlists * const execlists = &engine->execlists;
2269
	const u32 * const buf = execlists->csb_status;
2270
	const u8 num_entries = execlists->csb_size;
2271
	u8 head, tail;
2272

2273 2274 2275 2276 2277 2278 2279
	/*
	 * As we modify our execlists state tracking we require exclusive
	 * access. Either we are inside the tasklet, or the tasklet is disabled
	 * and we assume that is only inside the reset paths and so serialised.
	 */
	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
		   !reset_in_progress(execlists));
2280
	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	if (unlikely(head == tail))
		return;
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
2306

2307
	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
2308
	do {
2309
		bool promote;
2310

2311
		if (++head == num_entries)
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

2332 2333
		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
			     head, buf[2 * head + 0], buf[2 * head + 1]);
2334

2335
		if (INTEL_GEN(engine->i915) >= 12)
2336
			promote = gen12_csb_parse(execlists, buf + 2 * head);
2337
		else
2338 2339
			promote = gen8_csb_parse(execlists, buf + 2 * head);
		if (promote) {
2340 2341
			struct i915_request * const *old = execlists->active;

2342 2343 2344 2345
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));

			ring_set_paused(engine, 0);

2346 2347 2348
			/* Point active to the new ELSP; prevent overwriting */
			WRITE_ONCE(execlists->active, execlists->pending);

2349
			/* cancel old inflight, prepare for switch */
2350 2351 2352
			trace_ports(execlists, "preempted", old);
			while (*old)
				execlists_schedule_out(*old++);
2353

2354
			/* switch pending to inflight */
2355 2356 2357 2358 2359
			WRITE_ONCE(execlists->active,
				   memcpy(execlists->inflight,
					  execlists->pending,
					  execlists_num_ports(execlists) *
					  sizeof(*execlists->pending)));
2360

2361
			WRITE_ONCE(execlists->pending[0], NULL);
2362 2363
		} else {
			GEM_BUG_ON(!*execlists->active);
2364

2365
			/* port0 completed, advanced to port1 */
2366
			trace_ports(execlists, "completed", execlists->active);
2367

2368 2369 2370 2371 2372 2373
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
2374 2375 2376
			if (GEM_SHOW_DEBUG() &&
			    !i915_request_completed(*execlists->active) &&
			    !reset_in_progress(execlists)) {
2377 2378 2379 2380
				struct i915_request *rq __maybe_unused =
					*execlists->active;
				const u32 *regs __maybe_unused =
					rq->context->lrc_reg_state;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

				ENGINE_TRACE(engine,
					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
					     ENGINE_READ(engine, RING_START),
					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
					     ENGINE_READ(engine, RING_CTL),
					     ENGINE_READ(engine, RING_MI_MODE));
				ENGINE_TRACE(engine,
					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
					     i915_ggtt_offset(rq->ring->vma),
					     rq->head, rq->tail,
					     rq->fence.context,
					     lower_32_bits(rq->fence.seqno),
					     hwsp_seqno(rq));
				ENGINE_TRACE(engine,
					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
					     regs[CTX_RING_START],
					     regs[CTX_RING_HEAD],
					     regs[CTX_RING_TAIL]);

				GEM_BUG_ON("context completed before request");
			}

2405
			execlists_schedule_out(*execlists->active++);
C
Chris Wilson 已提交
2406

2407 2408
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
2409
		}
2410
	} while (head != tail);
2411

2412
	execlists->csb_head = head;
2413
	set_timeslice(engine);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
2426
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2427
}
2428

2429
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2430
{
2431
	lockdep_assert_held(&engine->active.lock);
2432
	if (!READ_ONCE(engine->execlists.pending[0])) {
2433
		rcu_read_lock(); /* protect peeking at execlists->active */
2434
		execlists_dequeue(engine);
2435 2436
		rcu_read_unlock();
	}
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static void __execlists_hold(struct i915_request *rq)
{
	LIST_HEAD(list);

	do {
		struct i915_dependency *p;

		if (i915_request_is_active(rq))
			__i915_request_unsubmit(rq);

		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
		i915_request_set_hold(rq);
2452
		RQ_TRACE(rq, "on hold\n");
2453

2454
		for_each_waiter(p, rq) {
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);

			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;

			if (!i915_request_is_ready(w))
				continue;

			if (i915_request_completed(w))
				continue;

2468
			if (i915_request_on_hold(w))
2469 2470 2471 2472 2473 2474 2475 2476 2477
				continue;

			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
}

2478
static bool execlists_hold(struct intel_engine_cs *engine,
2479 2480 2481 2482
			   struct i915_request *rq)
{
	spin_lock_irq(&engine->active.lock);

2483 2484 2485 2486 2487
	if (i915_request_completed(rq)) { /* too late! */
		rq = NULL;
		goto unlock;
	}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	if (rq->engine != engine) { /* preempted virtual engine */
		struct virtual_engine *ve = to_virtual_engine(rq->engine);

		/*
		 * intel_context_inflight() is only protected by virtue
		 * of process_csb() being called only by the tasklet (or
		 * directly from inside reset while the tasklet is suspended).
		 * Assert that neither of those are allowed to run while we
		 * poke at the request queues.
		 */
		GEM_BUG_ON(!reset_in_progress(&engine->execlists));

		/*
		 * An unsubmitted request along a virtual engine will
		 * remain on the active (this) engine until we are able
		 * to process the context switch away (and so mark the
		 * context as no longer in flight). That cannot have happened
		 * yet, otherwise we would not be hanging!
		 */
		spin_lock(&ve->base.active.lock);
		GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
		GEM_BUG_ON(ve->request != rq);
		ve->request = NULL;
		spin_unlock(&ve->base.active.lock);
		i915_request_put(rq);

		rq->engine = engine;
	}

2517 2518 2519 2520 2521 2522 2523 2524 2525
	/*
	 * Transfer this request onto the hold queue to prevent it
	 * being resumbitted to HW (and potentially completed) before we have
	 * released it. Since we may have already submitted following
	 * requests, we need to remove those as well.
	 */
	GEM_BUG_ON(i915_request_on_hold(rq));
	GEM_BUG_ON(rq->engine != engine);
	__execlists_hold(rq);
2526
	GEM_BUG_ON(list_empty(&engine->active.hold));
2527

2528
unlock:
2529
	spin_unlock_irq(&engine->active.lock);
2530
	return rq;
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
}

static bool hold_request(const struct i915_request *rq)
{
	struct i915_dependency *p;

	/*
	 * If one of our ancestors is on hold, we must also be on hold,
	 * otherwise we will bypass it and execute before it.
	 */
2541
	for_each_signaler(p, rq) {
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
		const struct i915_request *s =
			container_of(p->signaler, typeof(*s), sched);

		if (s->engine != rq->engine)
			continue;

		if (i915_request_on_hold(s))
			return true;
	}

	return false;
}

static void __execlists_unhold(struct i915_request *rq)
{
	LIST_HEAD(list);

	do {
		struct i915_dependency *p;

2562 2563
		RQ_TRACE(rq, "hold release\n");

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		GEM_BUG_ON(!i915_request_on_hold(rq));
		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));

		i915_request_clear_hold(rq);
		list_move_tail(&rq->sched.link,
			       i915_sched_lookup_priolist(rq->engine,
							  rq_prio(rq)));
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

		/* Also release any children on this engine that are ready */
2574
		for_each_waiter(p, rq) {
2575 2576 2577 2578 2579 2580
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);

			if (w->engine != rq->engine)
				continue;

2581
			if (!i915_request_on_hold(w))
2582 2583 2584
				continue;

			/* Check that no other parents are also on hold */
2585
			if (hold_request(w))
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
				continue;

			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
}

static void execlists_unhold(struct intel_engine_cs *engine,
			     struct i915_request *rq)
{
	spin_lock_irq(&engine->active.lock);

	/*
	 * Move this request back to the priority queue, and all of its
	 * children and grandchildren that were suspended along with it.
	 */
	__execlists_unhold(rq);

	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = rq_prio(rq);
		tasklet_hi_schedule(&engine->execlists.tasklet);
	}

	spin_unlock_irq(&engine->active.lock);
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
struct execlists_capture {
	struct work_struct work;
	struct i915_request *rq;
	struct i915_gpu_coredump *error;
};

static void execlists_capture_work(struct work_struct *work)
{
	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
	struct intel_engine_cs *engine = cap->rq->engine;
	struct intel_gt_coredump *gt = cap->error->gt;
	struct intel_engine_capture_vma *vma;

	/* Compress all the objects attached to the request, slow! */
	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
	if (vma) {
		struct i915_vma_compress *compress =
			i915_vma_capture_prepare(gt);

		intel_engine_coredump_add_vma(gt->engine, vma, compress);
		i915_vma_capture_finish(gt, compress);
	}

	gt->simulated = gt->engine->simulated;
	cap->error->simulated = gt->simulated;

	/* Publish the error state, and announce it to the world */
	i915_error_state_store(cap->error);
	i915_gpu_coredump_put(cap->error);

	/* Return this request and all that depend upon it for signaling */
	execlists_unhold(engine, cap->rq);
2647
	i915_request_put(cap->rq);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

	kfree(cap);
}

static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
{
	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
	struct execlists_capture *cap;

	cap = kmalloc(sizeof(*cap), gfp);
	if (!cap)
		return NULL;

	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
	if (!cap->error)
		goto err_cap;

	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
	if (!cap->error->gt)
		goto err_gpu;

	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
	if (!cap->error->gt->engine)
		goto err_gt;

	return cap;

err_gt:
	kfree(cap->error->gt);
err_gpu:
	kfree(cap->error);
err_cap:
	kfree(cap);
	return NULL;
}

2684
static bool execlists_capture(struct intel_engine_cs *engine)
2685 2686 2687 2688
{
	struct execlists_capture *cap;

	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2689
		return true;
2690 2691 2692 2693 2694 2695 2696 2697

	/*
	 * We need to _quickly_ capture the engine state before we reset.
	 * We are inside an atomic section (softirq) here and we are delaying
	 * the forced preemption event.
	 */
	cap = capture_regs(engine);
	if (!cap)
2698
		return true;
2699

2700
	spin_lock_irq(&engine->active.lock);
2701
	cap->rq = execlists_active(&engine->execlists);
2702 2703 2704 2705 2706
	if (cap->rq) {
		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
		cap->rq = i915_request_get_rcu(cap->rq);
	}
	spin_unlock_irq(&engine->active.lock);
2707 2708
	if (!cap->rq)
		goto err_free;
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	/*
	 * Remove the request from the execlists queue, and take ownership
	 * of the request. We pass it to our worker who will _slowly_ compress
	 * all the pages the _user_ requested for debugging their batch, after
	 * which we return it to the queue for signaling.
	 *
	 * By removing them from the execlists queue, we also remove the
	 * requests from being processed by __unwind_incomplete_requests()
	 * during the intel_engine_reset(), and so they will *not* be replayed
	 * afterwards.
	 *
	 * Note that because we have not yet reset the engine at this point,
	 * it is possible for the request that we have identified as being
	 * guilty, did in fact complete and we will then hit an arbitration
	 * point allowing the outstanding preemption to succeed. The likelihood
	 * of that is very low (as capturing of the engine registers should be
	 * fast enough to run inside an irq-off atomic section!), so we will
	 * simply hold that request accountable for being non-preemptible
	 * long enough to force the reset.
	 */
2730 2731
	if (!execlists_hold(engine, cap->rq))
		goto err_rq;
2732 2733 2734

	INIT_WORK(&cap->work, execlists_capture_work);
	schedule_work(&cap->work);
2735 2736 2737 2738 2739 2740 2741 2742
	return true;

err_rq:
	i915_request_put(cap->rq);
err_free:
	i915_gpu_coredump_put(cap->error);
	kfree(cap);
	return false;
2743 2744
}

2745
static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2746 2747 2748 2749
{
	const unsigned int bit = I915_RESET_ENGINE + engine->id;
	unsigned long *lock = &engine->gt->reset.flags;

2750
	if (!intel_has_reset_engine(engine->gt))
2751 2752 2753 2754 2755
		return;

	if (test_and_set_bit(bit, lock))
		return;

2756 2757
	ENGINE_TRACE(engine, "reset for %s\n", msg);

2758 2759 2760
	/* Mark this tasklet as disabled to avoid waiting for it to complete */
	tasklet_disable_nosync(&engine->execlists.tasklet);

2761
	ring_set_paused(engine, 1); /* Freeze the current request in place */
2762
	if (execlists_capture(engine))
2763
		intel_engine_reset(engine, msg);
2764 2765
	else
		ring_set_paused(engine, 0);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

	tasklet_enable(&engine->execlists.tasklet);
	clear_and_wake_up_bit(bit, lock);
}

static bool preempt_timeout(const struct intel_engine_cs *const engine)
{
	const struct timer_list *t = &engine->execlists.preempt;

	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
		return false;

	if (!timer_expired(t))
		return false;

	return READ_ONCE(engine->execlists.pending[0]);
}

2784 2785 2786 2787 2788 2789 2790
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
2791
	bool timeout = preempt_timeout(engine);
2792

2793
	process_csb(engine);
2794 2795 2796 2797 2798 2799 2800

	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
		engine->execlists.error_interrupt = 0;
		if (ENGINE_READ(engine, RING_ESR)) /* confirm the error */
			execlists_reset(engine, "CS error");
	}

2801 2802 2803
	if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
		unsigned long flags;

2804 2805 2806
		spin_lock_irqsave(&engine->active.lock, flags);
		__execlists_submission_tasklet(engine);
		spin_unlock_irqrestore(&engine->active.lock, flags);
2807 2808

		/* Recheck after serialising with direct-submission */
2809 2810
		if (unlikely(timeout && preempt_timeout(engine)))
			execlists_reset(engine, "preemption time out");
2811
	}
2812 2813
}

2814
static void __execlists_kick(struct intel_engine_execlists *execlists)
2815 2816
{
	/* Kick the tasklet for some interrupt coalescing and reset handling */
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	tasklet_hi_schedule(&execlists->tasklet);
}

#define execlists_kick(t, member) \
	__execlists_kick(container_of(t, struct intel_engine_execlists, member))

static void execlists_timeslice(struct timer_list *timer)
{
	execlists_kick(timer, timer);
}

static void execlists_preempt(struct timer_list *timer)
{
	execlists_kick(timer, preempt);
2831 2832
}

2833
static void queue_request(struct intel_engine_cs *engine,
2834
			  struct i915_request *rq)
2835
{
2836 2837 2838 2839
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
2853 2854
}

2855 2856
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
2857
{
2858 2859 2860 2861 2862 2863 2864
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
2865 2866
}

2867 2868 2869 2870 2871 2872 2873
static bool ancestor_on_hold(const struct intel_engine_cs *engine,
			     const struct i915_request *rq)
{
	GEM_BUG_ON(i915_request_on_hold(rq));
	return !list_empty(&engine->active.hold) && hold_request(rq);
}

2874
static void execlists_submit_request(struct i915_request *request)
2875
{
2876
	struct intel_engine_cs *engine = request->engine;
2877
	unsigned long flags;
2878

2879
	/* Will be called from irq-context when using foreign fences. */
2880
	spin_lock_irqsave(&engine->active.lock, flags);
2881

2882
	if (unlikely(ancestor_on_hold(engine, request))) {
2883
		RQ_TRACE(request, "ancestor on hold\n");
2884 2885 2886 2887
		list_add_tail(&request->sched.link, &engine->active.hold);
		i915_request_set_hold(request);
	} else {
		queue_request(engine, request);
2888

2889 2890
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
		GEM_BUG_ON(list_empty(&request->sched.link));
2891

2892 2893
		submit_queue(engine, request);
	}
2894

2895
	spin_unlock_irqrestore(&engine->active.lock, flags);
2896 2897
}

2898
static void __execlists_context_fini(struct intel_context *ce)
2899
{
2900
	intel_ring_put(ce->ring);
2901
	i915_vma_put(ce->state);
2902 2903
}

2904
static void execlists_context_destroy(struct kref *kref)
2905
{
2906 2907
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

2908
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
2909
	GEM_BUG_ON(intel_context_is_pinned(ce));
2910 2911 2912 2913

	if (ce->state)
		__execlists_context_fini(ce);

2914
	intel_context_fini(ce);
2915 2916 2917
	intel_context_free(ce);
}

2918 2919 2920 2921 2922 2923 2924 2925
static void
set_redzone(void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += engine->context_size;

2926
	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
}

static void
check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += engine->context_size;

2937
	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
2938 2939 2940 2941 2942
		dev_err_once(engine->i915->drm.dev,
			     "%s context redzone overwritten!\n",
			     engine->name);
}

2943
static void execlists_context_unpin(struct intel_context *ce)
2944
{
2945 2946 2947
	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
		      ce->engine);

2948
	i915_gem_object_unpin_map(ce->state->obj);
2949 2950
}

2951
static void
2952
__execlists_update_reg_state(const struct intel_context *ce,
2953 2954
			     const struct intel_engine_cs *engine,
			     u32 head)
2955 2956
{
	struct intel_ring *ring = ce->ring;
2957 2958
	u32 *regs = ce->lrc_reg_state;

2959
	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
2960
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
2961

2962
	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
2963
	regs[CTX_RING_HEAD] = head;
2964
	regs[CTX_RING_TAIL] = ring->tail;
2965 2966

	/* RPCS */
2967
	if (engine->class == RENDER_CLASS) {
2968
		regs[CTX_R_PWR_CLK_STATE] =
2969
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
2970

2971
		i915_oa_init_reg_state(ce, engine);
2972
	}
2973 2974
}

2975 2976 2977
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
2978
{
2979
	void *vaddr;
2980

2981
	GEM_BUG_ON(!ce->state);
2982
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2983

2984
	vaddr = i915_gem_object_pin_map(ce->state->obj,
2985
					i915_coherent_map_type(engine->i915) |
2986
					I915_MAP_OVERRIDE);
2987 2988
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);
2989

2990
	ce->lrc_desc = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
2991
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2992
	__execlists_update_reg_state(ce, engine, ce->ring->tail);
2993

2994
	return 0;
2995 2996
}

2997
static int execlists_context_pin(struct intel_context *ce)
2998
{
2999
	return __execlists_context_pin(ce, ce->engine);
3000 3001
}

3002 3003 3004 3005 3006
static int execlists_context_alloc(struct intel_context *ce)
{
	return __execlists_context_alloc(ce, ce->engine);
}

3007 3008
static void execlists_context_reset(struct intel_context *ce)
{
3009 3010 3011 3012 3013 3014 3015 3016
	CE_TRACE(ce, "reset\n");
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	intel_ring_reset(ce->ring, ce->ring->emit);

	/* Scrub away the garbage */
	execlists_init_reg_state(ce->lrc_reg_state,
				 ce, ce->engine, ce->ring, true);
3017
	__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
3018 3019

	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
3020 3021
}

3022
static const struct intel_context_ops execlists_context_ops = {
3023 3024
	.alloc = execlists_context_alloc,

3025
	.pin = execlists_context_pin,
3026
	.unpin = execlists_context_unpin,
3027

3028 3029 3030
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

3031
	.reset = execlists_context_reset,
3032 3033 3034
	.destroy = execlists_context_destroy,
};

3035 3036 3037 3038
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

3039 3040
	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
		return 0;
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
3056
	*cs++ = i915_request_timeline(rq)->hwsp_offset;
3057 3058 3059 3060
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
3061 3062 3063 3064

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

3065 3066 3067
	return 0;
}

3068
static int execlists_request_alloc(struct i915_request *request)
3069
{
3070
	int ret;
3071

3072
	GEM_BUG_ON(!intel_context_is_pinned(request->context));
3073

3074 3075
	/*
	 * Flush enough space to reduce the likelihood of waiting after
3076 3077 3078 3079 3080
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

3081 3082
	/*
	 * Note that after this point, we have committed to using
3083 3084 3085 3086 3087 3088
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

3089
	/* Unconditionally invalidate GPU caches and TLBs. */
3090
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3091 3092 3093
	if (ret)
		return ret;

3094 3095 3096 3097
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
3114 3115
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3116
{
3117
	/* NB no one else is allowed to scribble over scratch + 256! */
3118 3119
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3120 3121
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3122 3123 3124 3125 3126 3127
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

3128 3129 3130 3131
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
3132 3133 3134

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3135 3136
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3137 3138 3139
	*batch++ = 0;

	return batch;
3140 3141
}

3142 3143 3144 3145 3146 3147
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
3148
 *
3149 3150
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
3151
 *
3152 3153 3154 3155
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
3156
 */
3157
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3158
{
3159
	/* WaDisableCtxRestoreArbitration:bdw,chv */
3160
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3161

3162
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3163 3164
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3165

3166 3167
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
3168 3169
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
3170
				       PIPE_CONTROL_STORE_DATA_INDEX |
3171 3172
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
3173
				       LRC_PPHWSP_SCRATCH_ADDR);
3174

C
Chris Wilson 已提交
3175 3176
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3177
	/* Pad to end of cacheline */
3178 3179
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
3180 3181 3182 3183 3184 3185 3186

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

3187
	return batch;
3188 3189
}

3190 3191 3192 3193 3194 3195
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3196
{
3197
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
3198

3199 3200 3201 3202 3203 3204
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
3205

3206 3207
	return batch;
}
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
3233

3234
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3235

3236 3237
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3238

3239 3240 3241 3242 3243 3244 3245 3246
	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_STORE_DATA_INDEX |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       LRC_PPHWSP_SCRATCH_ADDR);

3247
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3248

3249
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
3264 3265 3266 3267 3268 3269
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
3270 3271
	}

C
Chris Wilson 已提交
3272 3273
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3274
	/* Pad to end of cacheline */
3275 3276
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
3277

3278
	return batch;
3279 3280
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

3315 3316 3317
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3318
{
3319 3320 3321
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
3322

3323
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3324 3325
	if (IS_ERR(obj))
		return PTR_ERR(obj);
3326

3327
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3328 3329 3330
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
3331 3332
	}

3333
	err = i915_ggtt_pin(vma, 0, PIN_HIGH);
3334 3335 3336 3337
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
3338
	return 0;
3339 3340 3341 3342

err:
	i915_gem_object_put(obj);
	return err;
3343 3344
}

3345
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3346
{
3347
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3348 3349
}

3350 3351
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

3352
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3353
{
3354
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3355 3356 3357
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
3358
	struct page *page;
3359 3360
	void *batch, *batch_ptr;
	unsigned int i;
3361
	int ret;
3362

3363 3364
	if (engine->class != RENDER_CLASS)
		return 0;
3365

3366
	switch (INTEL_GEN(engine->i915)) {
3367
	case 12:
3368 3369
	case 11:
		return 0;
3370
	case 10:
3371 3372 3373
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
3374 3375
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
3376
		wa_bb_fn[1] = NULL;
3377 3378 3379
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
3380
		wa_bb_fn[1] = NULL;
3381 3382 3383
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
3384
		return 0;
3385
	}
3386

3387
	ret = lrc_setup_wa_ctx(engine);
3388 3389 3390 3391 3392
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

3393
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
3394
	batch = batch_ptr = kmap_atomic(page);
3395

3396 3397 3398 3399 3400 3401 3402
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
3403 3404
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
3405 3406 3407
			ret = -EINVAL;
			break;
		}
3408 3409
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
3410
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
3411 3412
	}

3413 3414
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

3415 3416
	kunmap_atomic(batch);
	if (ret)
3417
		lrc_destroy_wa_ctx(engine);
3418 3419 3420 3421

	return ret;
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static void enable_error_interrupt(struct intel_engine_cs *engine)
{
	u32 status;

	engine->execlists.error_interrupt = 0;
	ENGINE_WRITE(engine, RING_EMR, ~0u);
	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */

	status = ENGINE_READ(engine, RING_ESR);
	if (unlikely(status)) {
		dev_err(engine->i915->drm.dev,
			"engine '%s' resumed still in error: %08x\n",
			engine->name, status);
		__intel_gt_reset(engine->gt, engine->mask);
	}

	/*
	 * On current gen8+, we have 2 signals to play with
	 *
	 * - I915_ERROR_INSTUCTION (bit 0)
	 *
	 *    Generate an error if the command parser encounters an invalid
	 *    instruction
	 *
	 *    This is a fatal error.
	 *
	 * - CP_PRIV (bit 2)
	 *
	 *    Generate an error on privilege violation (where the CP replaces
	 *    the instruction with a no-op). This also fires for writes into
	 *    read-only scratch pages.
	 *
	 *    This is a non-fatal error, parsing continues.
	 *
	 * * there are a few others defined for odd HW that we do not use
	 *
	 * Since CP_PRIV fires for cases where we have chosen to ignore the
	 * error (as the HW is validating and suppressing the mistakes), we
	 * only unmask the instruction error bit.
	 */
	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
}

3465
static void enable_execlists(struct intel_engine_cs *engine)
3466
{
3467 3468 3469 3470
	u32 mode;

	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

3471
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3472

3473
	if (INTEL_GEN(engine->i915) >= 11)
3474
		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
3475
	else
3476 3477
		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
3478

3479
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3480

3481 3482 3483
	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
3484
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
3485

3486 3487
	enable_error_interrupt(engine);

3488
	engine->context_tag = 0;
3489 3490
}

3491 3492 3493 3494
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

3495
	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
3496 3497 3498 3499 3500 3501 3502
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

3503
static int execlists_resume(struct intel_engine_cs *engine)
3504
{
3505
	intel_mocs_init_engine(engine);
3506

3507
	intel_engine_reset_breadcrumbs(engine);
3508

3509 3510 3511 3512 3513 3514
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

3515
	enable_execlists(engine);
3516

3517
	return 0;
3518 3519
}

3520
static void execlists_reset_prepare(struct intel_engine_cs *engine)
3521 3522
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
3523
	unsigned long flags;
3524

3525 3526
	ENGINE_TRACE(engine, "depth<-%d\n",
		     atomic_read(&execlists->tasklet.count));
3527 3528 3529 3530 3531 3532

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
3533
	 * calling engine->resume() and also writing the ELSP.
3534 3535 3536 3537
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
3538
	GEM_BUG_ON(!reset_in_progress(execlists));
3539

3540
	/* And flush any current direct submission. */
3541 3542
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
	intel_engine_stop_cs(engine);
3557 3558
}

3559
static void reset_csb_pointers(struct intel_engine_cs *engine)
3560
{
3561
	struct intel_engine_execlists * const execlists = &engine->execlists;
3562 3563
	const unsigned int reset_value = execlists->csb_size - 1;

3564 3565
	ring_set_paused(engine, 0);

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
3577
	wmb(); /* Make sure this is visible to HW (paranoia?) */
3578

3579 3580 3581 3582 3583 3584 3585 3586
	/*
	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
	 * Bludgeon them with a mmio update to be sure.
	 */
	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
		     reset_value << 8 | reset_value);
	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);

3587 3588 3589 3590
	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

3591
static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
3592
{
3593
	int x;
3594

3595 3596 3597 3598
	x = lrc_ring_mi_mode(engine);
	if (x != -1) {
		regs[x + 1] &= ~STOP_RING;
		regs[x + 1] |= STOP_RING << 16;
3599 3600 3601
	}
}

3602 3603 3604 3605 3606 3607 3608 3609
static void __execlists_reset_reg_state(const struct intel_context *ce,
					const struct intel_engine_cs *engine)
{
	u32 *regs = ce->lrc_reg_state;

	__reset_stop_ring(regs, engine);
}

3610
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
3611
{
3612
	struct intel_engine_execlists * const execlists = &engine->execlists;
3613
	struct intel_context *ce;
3614
	struct i915_request *rq;
3615
	u32 head;
3616

3617 3618 3619 3620
	mb(); /* paranoia: read the CSB pointers from after the reset */
	clflush(execlists->csb_write);
	mb();

3621 3622 3623
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
3624
	reset_csb_pointers(engine);
3625 3626 3627 3628 3629 3630

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
3631 3632
	rq = execlists_active(execlists);
	if (!rq)
3633
		goto unwind;
3634

3635 3636 3637
	/* We still have requests in-flight; the engine should be active */
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));

3638
	ce = rq->context;
3639
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3640

3641
	if (i915_request_completed(rq)) {
3642
		/* Idle context; tidy up the ring so we can restart afresh */
3643
		head = intel_ring_wrap(ce->ring, rq->tail);
3644
		goto out_replay;
3645 3646
	}

3647 3648
	/* Context has requests still in-flight; it should not be idle! */
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3649
	rq = active_request(ce->timeline, rq);
3650 3651
	head = intel_ring_wrap(ce->ring, rq->head);
	GEM_BUG_ON(head == ce->ring->tail);
3652

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
3665
	if (!i915_request_started(rq))
3666
		goto out_replay;
3667

3668 3669
	/*
	 * If the request was innocent, we leave the request in the ELSP
3670 3671 3672 3673 3674 3675 3676 3677 3678
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
3679
	__i915_request_reset(rq, stalled);
3680
	if (!stalled)
3681
		goto out_replay;
3682

3683 3684
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
3685 3686 3687 3688 3689 3690
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
3691
	GEM_BUG_ON(!intel_context_is_pinned(ce));
3692
	restore_default_state(ce, engine);
3693

3694
out_replay:
3695
	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3696
		     head, ce->ring->tail);
3697
	__execlists_reset_reg_state(ce, engine);
3698
	__execlists_update_reg_state(ce, engine, head);
3699
	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
3700

3701
unwind:
3702
	/* Push back any incomplete requests for replay after the reset. */
3703
	cancel_port_requests(execlists);
3704
	__unwind_incomplete_requests(engine);
3705
}
3706

3707
static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3708 3709 3710
{
	unsigned long flags;

3711
	ENGINE_TRACE(engine, "\n");
3712

3713
	spin_lock_irqsave(&engine->active.lock, flags);
3714 3715 3716

	__execlists_reset(engine, stalled);

3717
	spin_unlock_irqrestore(&engine->active.lock, flags);
3718 3719 3720 3721 3722 3723 3724
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

3725
static void execlists_reset_cancel(struct intel_engine_cs *engine)
3726 3727 3728 3729 3730 3731
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

3732
	ENGINE_TRACE(engine, "\n");
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
3748
	spin_lock_irqsave(&engine->active.lock, flags);
3749 3750 3751 3752

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
3753 3754
	list_for_each_entry(rq, &engine->active.requests, sched.link)
		mark_eio(rq);
3755 3756 3757 3758 3759 3760 3761

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
3762
			mark_eio(rq);
3763 3764 3765 3766 3767 3768 3769
			__i915_request_submit(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

3770 3771 3772 3773
	/* On-hold requests will be flushed to timeline upon their release */
	list_for_each_entry(rq, &engine->active.hold, sched.link)
		mark_eio(rq);

3774 3775 3776 3777 3778 3779 3780 3781
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

3782
		spin_lock(&ve->base.active.lock);
3783 3784 3785 3786 3787 3788
		rq = fetch_and_zero(&ve->request);
		if (rq) {
			mark_eio(rq);

			rq->engine = engine;
			__i915_request_submit(rq);
3789
			i915_request_put(rq);
3790

3791 3792
			ve->base.execlists.queue_priority_hint = INT_MIN;
		}
3793
		spin_unlock(&ve->base.active.lock);
3794 3795
	}

3796 3797 3798 3799 3800 3801 3802
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
3803

3804
	spin_unlock_irqrestore(&engine->active.lock, flags);
3805 3806
}

3807 3808
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
3809 3810
	struct intel_engine_execlists * const execlists = &engine->execlists;

3811
	/*
3812 3813 3814
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
3815
	 */
3816
	GEM_BUG_ON(!reset_in_progress(execlists));
3817 3818
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
3819

3820 3821 3822
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
3823 3824
	ENGINE_TRACE(engine, "depth->%d\n",
		     atomic_read(&execlists->tasklet.count));
3825 3826
}

3827 3828 3829
static int gen8_emit_bb_start_noarb(struct i915_request *rq,
				    u64 offset, u32 len,
				    const unsigned int flags)
3830
{
3831
	u32 *cs;
3832

3833
	cs = intel_ring_begin(rq, 4);
3834 3835
	if (IS_ERR(cs))
		return PTR_ERR(cs);
3836

3837 3838 3839 3840 3841 3842 3843
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
3844 3845 3846 3847 3848
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
3849
	 */
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

3863
static int gen8_emit_bb_start(struct i915_request *rq,
3864 3865 3866 3867 3868 3869 3870 3871 3872
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

3873 3874
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3875
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
3876
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
3877 3878
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
3879 3880 3881

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
3882

3883
	intel_ring_advance(rq, cs);
3884 3885 3886 3887

	return 0;
}

3888
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3889
{
3890 3891 3892
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
3893 3894
}

3895
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3896
{
3897
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3898 3899
}

3900
static int gen8_emit_flush(struct i915_request *request, u32 mode)
3901
{
3902
	u32 cmd, *cs;
3903

3904 3905 3906
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
3907 3908 3909

	cmd = MI_FLUSH_DW + 1;

3910 3911 3912 3913 3914 3915 3916
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

3917
	if (mode & EMIT_INVALIDATE) {
3918
		cmd |= MI_INVALIDATE_TLB;
3919
		if (request->engine->class == VIDEO_DECODE_CLASS)
3920
			cmd |= MI_INVALIDATE_BSD;
3921 3922
	}

3923
	*cs++ = cmd;
3924
	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
3925 3926 3927
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
3928 3929 3930 3931

	return 0;
}

3932
static int gen8_emit_flush_render(struct i915_request *request,
3933
				  u32 mode)
3934
{
M
Mika Kuoppala 已提交
3935
	bool vf_flush_wa = false, dc_flush_wa = false;
3936
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
3937
	int len;
3938 3939 3940

	flags |= PIPE_CONTROL_CS_STALL;

3941
	if (mode & EMIT_FLUSH) {
3942 3943
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3944
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
3945
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3946 3947
	}

3948
	if (mode & EMIT_INVALIDATE) {
3949 3950 3951 3952 3953 3954 3955
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
3956
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
3957

3958 3959 3960 3961
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
3962
		if (IS_GEN(request->i915, 9))
3963
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
3964 3965 3966 3967

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
3968
	}
3969

M
Mika Kuoppala 已提交
3970 3971 3972 3973 3974 3975 3976 3977
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

3978 3979 3980
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
3981

3982 3983
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
3984

3985 3986 3987
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
3988

3989
	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
M
Mika Kuoppala 已提交
3990

3991 3992
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
3993

3994
	intel_ring_advance(request, cs);
3995 3996 3997 3998

	return 0;
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
static int gen11_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_QW_WRITE;
4014
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4015 4016 4017 4018 4019

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4020
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4021 4022 4023 4024 4025 4026 4027 4028 4029
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

4030
		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4031 4032 4033 4034 4035 4036 4037
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
4038
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4039 4040 4041 4042 4043

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4044
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4045 4046 4047 4048 4049 4050
		intel_ring_advance(request, cs);
	}

	return 0;
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
static u32 preparser_disable(bool state)
{
	return MI_ARB_CHECK | 1 << 8 | state;
}

static int gen12_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
M
Mika Kuoppala 已提交
4066 4067
		/* Wa_1409600907:tgl */
		flags |= PIPE_CONTROL_DEPTH_STALL;
4068 4069
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4070
		flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
4071

4072
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4073 4074 4075 4076 4077 4078 4079 4080
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4081
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4096
		flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE;
4097

4098
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(request, 8);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		/*
		 * Prevent the pre-parser from skipping past the TLB
		 * invalidate and loading a stale page for the batch
		 * buffer / request payload.
		 */
		*cs++ = preparser_disable(true);

4114
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4115 4116 4117

		*cs++ = preparser_disable(false);
		intel_ring_advance(request, cs);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137

		/*
		 * Wa_1604544889:tgl
		 */
		if (IS_TGL_REVID(request->i915, TGL_REVID_A0, TGL_REVID_A0)) {
			flags = 0;
			flags |= PIPE_CONTROL_CS_STALL;
			flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;

			flags |= PIPE_CONTROL_STORE_DATA_INDEX;
			flags |= PIPE_CONTROL_QW_WRITE;

			cs = intel_ring_begin(request, 6);
			if (IS_ERR(cs))
				return PTR_ERR(cs);

			cs = gen8_emit_pipe_control(cs, flags,
						    LRC_PPHWSP_SCRATCH_ADDR);
			intel_ring_advance(request, cs);
		}
4138 4139 4140 4141 4142
	}

	return 0;
}

4143 4144 4145 4146 4147
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
4148
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4149
{
C
Chris Wilson 已提交
4150 4151
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
4152 4153
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
4154 4155

	return cs;
C
Chris Wilson 已提交
4156
}
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

4171 4172 4173
static __always_inline u32*
gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
				 u32 *cs)
C
Chris Wilson 已提交
4174
{
4175
	*cs++ = MI_USER_INTERRUPT;
4176

4177
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4178 4179
	if (intel_engine_has_semaphores(request->engine))
		cs = emit_preempt_busywait(request, cs);
4180

4181
	request->tail = intel_ring_offset(request, cs);
4182
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
4183

4184
	return gen8_emit_wa_tail(request, cs);
4185
}
4186

4187 4188 4189 4190
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
4191
				  i915_request_active_timeline(request)->hwsp_offset,
4192 4193 4194 4195 4196
				  0);

	return gen8_emit_fini_breadcrumb_footer(request, cs);
}

4197
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4198
{
4199 4200 4201 4202 4203 4204 4205
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				    PIPE_CONTROL_DC_FLUSH_ENABLE,
				    0);

	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4206
	cs = gen8_emit_ggtt_write_rcs(cs,
4207
				      request->fence.seqno,
4208
				      i915_request_active_timeline(request)->hwsp_offset,
4209 4210
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);
4211

4212 4213
	return gen8_emit_fini_breadcrumb_footer(request, cs);
}
4214

4215 4216 4217 4218 4219
static u32 *
gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      request->fence.seqno,
4220
				      i915_request_active_timeline(request)->hwsp_offset,
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE);

	return gen8_emit_fini_breadcrumb_footer(request, cs);
}

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
/*
 * Note that the CS instruction pre-parser will not stall on the breadcrumb
 * flush and will continue pre-fetching the instructions after it before the
 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
 * of the next request before the memory has been flushed, we're guaranteed that
 * we won't access the batch itself too early.
 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
 * so, if the current request is modifying an instruction in the next request on
 * the same intel_context, we might pre-fetch and then execute the pre-update
 * instruction. To avoid this, the users of self-modifying code should either
 * disable the parser around the code emitting the memory writes, via a new flag
 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
 * the in-kernel use-cases we've opted to use a separate context, see
 * reloc_gpu() as an example.
 * All the above applies only to the instructions themselves. Non-inline data
 * used by the instructions is not pre-fetched.
 */
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;

	return cs;
}

static __always_inline u32*
gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_USER_INTERRUPT;

	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	if (intel_engine_has_semaphores(request->engine))
		cs = gen12_emit_preempt_busywait(request, cs);

	request->tail = intel_ring_offset(request, cs);
	assert_ring_tail_valid(request->ring, request->tail);

	return gen8_emit_wa_tail(request, cs);
}

static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
4284
				  i915_request_active_timeline(request)->hwsp_offset,
4285 4286 4287 4288 4289 4290 4291
				  0);

	return gen12_emit_fini_breadcrumb_footer(request, cs);
}

static u32 *
gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4292 4293 4294
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      request->fence.seqno,
4295
				      i915_request_active_timeline(request)->hwsp_offset,
4296 4297 4298 4299
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
M
Mika Kuoppala 已提交
4300 4301
				      /* Wa_1409600907:tgl */
				      PIPE_CONTROL_DEPTH_STALL |
4302
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
4303 4304
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_HDC_PIPELINE_FLUSH);
C
Chris Wilson 已提交
4305

4306
	return gen12_emit_fini_breadcrumb_footer(request, cs);
4307
}
4308

4309 4310
static void execlists_park(struct intel_engine_cs *engine)
{
4311
	cancel_timer(&engine->execlists.timer);
4312
	cancel_timer(&engine->execlists.preempt);
4313 4314
}

4315
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
4316
{
4317
	engine->submit_request = execlists_submit_request;
4318
	engine->schedule = i915_schedule;
4319
	engine->execlists.tasklet.func = execlists_submission_tasklet;
4320

4321
	engine->reset.prepare = execlists_reset_prepare;
4322 4323
	engine->reset.rewind = execlists_reset_rewind;
	engine->reset.cancel = execlists_reset_cancel;
4324
	engine->reset.finish = execlists_reset_finish;
4325

4326
	engine->park = execlists_park;
4327
	engine->unpark = NULL;
4328 4329

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4330
	if (!intel_vgpu_active(engine->i915)) {
4331
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4332 4333 4334
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
	}
4335

4336
	if (INTEL_GEN(engine->i915) >= 12)
4337
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
4338 4339 4340 4341 4342

	if (intel_engine_has_preemption(engine))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen8_emit_bb_start_noarb;
4343 4344
}

4345 4346 4347 4348 4349 4350 4351 4352
static void execlists_shutdown(struct intel_engine_cs *engine)
{
	/* Synchronise with residual timers and any softirq they raise */
	del_timer_sync(&engine->execlists.timer);
	del_timer_sync(&engine->execlists.preempt);
	tasklet_kill(&engine->execlists.tasklet);
}

4353
static void execlists_release(struct intel_engine_cs *engine)
4354
{
4355 4356
	execlists_shutdown(engine);

4357 4358 4359 4360
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
}

4361
static void
4362
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
4363 4364
{
	/* Default vfuncs which can be overriden by each engine. */
4365

4366
	engine->resume = execlists_resume;
4367

4368
	engine->cops = &execlists_context_ops;
4369 4370
	engine->request_alloc = execlists_request_alloc;

4371
	engine->emit_flush = gen8_emit_flush;
4372 4373
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
4374 4375
	if (INTEL_GEN(engine->i915) >= 12)
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
4376

4377
	engine->set_default_submission = intel_execlists_set_default_submission;
4378

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
4390 4391
}

4392
static inline void
4393
logical_ring_default_irqs(struct intel_engine_cs *engine)
4394
{
4395 4396 4397 4398
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
4399 4400 4401 4402 4403
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
4404 4405 4406 4407 4408
		};

		shift = irq_shifts[engine->id];
	}

4409 4410
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
4411
	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
4412 4413
}

4414 4415 4416 4417
static void rcs_submission_override(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 12:
4418
		engine->emit_flush = gen12_emit_flush_render;
4419 4420
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
	case 11:
		engine->emit_flush = gen11_emit_flush_render;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
	}
}

4432
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
4433
{
4434 4435 4436 4437 4438
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
	u32 base = engine->mmio_base;

4439 4440
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
4441 4442
	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
4443 4444 4445

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
4446

4447 4448
	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);
4449 4450 4451 4452 4453 4454 4455 4456

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
4457

4458
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
4459
		execlists->submit_reg = uncore->regs +
4460
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
4461
		execlists->ctrl_reg = uncore->regs +
4462
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
4463
	} else {
4464
		execlists->submit_reg = uncore->regs +
4465
			i915_mmio_reg_offset(RING_ELSP(base));
4466
	}
4467

4468
	execlists->csb_status =
4469
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
4470

4471
	execlists->csb_write =
4472
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
4473

4474
	if (INTEL_GEN(i915) < 11)
4475 4476 4477
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
4478

4479
	reset_csb_pointers(engine);
4480

4481 4482 4483
	/* Finally, take ownership and responsibility for cleanup! */
	engine->release = execlists_release;

4484 4485 4486
	return 0;
}

4487
static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine)
4488 4489 4490
{
	u32 indirect_ctx_offset;

4491
	switch (INTEL_GEN(engine->i915)) {
4492
	default:
4493
		MISSING_CASE(INTEL_GEN(engine->i915));
4494
		/* fall through */
4495 4496 4497 4498
	case 12:
		indirect_ctx_offset =
			GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
4499 4500 4501 4502
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
4503 4504 4505 4506
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

4520

4521
static void init_common_reg_state(u32 * const regs,
4522
				  const struct intel_engine_cs *engine,
4523 4524
				  const struct intel_ring *ring,
				  bool inhibit)
4525
{
4526 4527 4528 4529 4530 4531
	u32 ctl;

	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
	if (inhibit)
		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
4532
	if (INTEL_GEN(engine->i915) < 11)
4533 4534 4535
		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					   CTX_CTRL_RS_CTX_ENABLE);
	regs[CTX_CONTEXT_CONTROL] = ctl;
4536

4537
	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
4538
}
4539

4540
static void init_wa_bb_reg_state(u32 * const regs,
4541
				 const struct intel_engine_cs *engine,
4542 4543
				 u32 pos_bb_per_ctx)
{
4544 4545 4546 4547 4548 4549 4550 4551
	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;

	if (wa_ctx->per_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);

		regs[pos_bb_per_ctx] =
			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
	}
4552

4553 4554
	if (wa_ctx->indirect_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
4555

4556
		regs[pos_bb_per_ctx + 2] =
4557 4558
			(ggtt_offset + wa_ctx->indirect_ctx.offset) |
			(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
4559

4560
		regs[pos_bb_per_ctx + 4] =
4561
			intel_lr_indirect_ctx_offset(engine) << 6;
4562
	}
4563 4564
}

4565
static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
4566
{
4567
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
4568 4569 4570 4571
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
4572
		ASSIGN_CTX_PML4(ppgtt, regs);
4573
	} else {
4574 4575 4576 4577
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
4578
	}
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
}

static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
{
	if (i915_is_ggtt(vm))
		return i915_vm_to_ggtt(vm)->alias;
	else
		return i915_vm_to_ppgtt(vm);
}

static void execlists_init_reg_state(u32 *regs,
4590 4591 4592
				     const struct intel_context *ce,
				     const struct intel_engine_cs *engine,
				     const struct intel_ring *ring,
4593
				     bool inhibit)
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
{
	/*
	 * A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 *
	 * Must keep consistent with virtual_update_register_offsets().
	 */
4605
	set_offsets(regs, reg_offsets(engine), engine, inhibit);
4606

4607
	init_common_reg_state(regs, engine, ring, inhibit);
4608 4609 4610 4611 4612 4613
	init_ppgtt_reg_state(regs, vm_alias(ce->vm));

	init_wa_bb_reg_state(regs, engine,
			     INTEL_GEN(engine->i915) >= 12 ?
			     GEN12_CTX_BB_PER_CTX_PTR :
			     CTX_BB_PER_CTX_PTR);
4614 4615

	__reset_stop_ring(regs, engine);
4616 4617
}

4618
static int
4619
populate_lr_context(struct intel_context *ce,
4620 4621 4622 4623
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
4624
	bool inhibit = true;
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	void *vaddr;
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

4635 4636
	set_redzone(vaddr, engine);

4637 4638 4639 4640 4641
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
4642 4643 4644 4645
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
4646

4647
		memcpy(vaddr, defaults, engine->context_size);
4648
		i915_gem_object_unpin_map(engine->default_state);
4649
		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
4650
		inhibit = false;
4651 4652
	}

4653 4654 4655 4656 4657 4658 4659
	/* Clear the ppHWSP (inc. per-context counters) */
	memset(vaddr, 0, PAGE_SIZE);

	/*
	 * The second page of the context object contains some registers which
	 * must be set up prior to the first execution.
	 */
4660 4661
	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ce, engine, ring, inhibit);
4662

4663
	ret = 0;
4664
err_unpin_ctx:
4665
	__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
4666
	i915_gem_object_unpin_map(ctx_obj);
4667
	return ret;
4668 4669
}

4670 4671
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine)
4672
{
4673
	struct drm_i915_gem_object *ctx_obj;
4674
	struct intel_ring *ring;
4675
	struct i915_vma *vma;
4676
	u32 context_size;
4677 4678
	int ret;

4679
	GEM_BUG_ON(ce->state);
4680
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
4681

4682 4683
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
4684

4685
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
4686 4687
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
4688

4689
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
4690 4691 4692 4693 4694
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

4695 4696
	if (!ce->timeline) {
		struct intel_timeline *tl;
4697 4698 4699 4700 4701 4702 4703 4704 4705
		struct i915_vma *hwsp;

		/*
		 * Use the static global HWSP for the kernel context, and
		 * a dynamically allocated cacheline for everyone else.
		 */
		hwsp = NULL;
		if (unlikely(intel_context_is_barrier(ce)))
			hwsp = engine->status_page.vma;
4706

4707
		tl = intel_timeline_create(engine->gt, hwsp);
4708 4709 4710 4711 4712 4713
		if (IS_ERR(tl)) {
			ret = PTR_ERR(tl);
			goto error_deref_obj;
		}

		ce->timeline = tl;
4714 4715
	}

4716
	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
4717 4718
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
4719
		goto error_deref_obj;
4720 4721
	}

4722
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
4723 4724
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
4725
		goto error_ring_free;
4726 4727
	}

4728
	ce->ring = ring;
4729
	ce->state = vma;
4730 4731

	return 0;
4732

4733
error_ring_free:
4734
	intel_ring_put(ring);
4735
error_deref_obj:
4736
	i915_gem_object_put(ctx_obj);
4737
	return ret;
4738
}
4739

4740 4741 4742 4743 4744
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

4745 4746 4747 4748 4749 4750
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

4751
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
4752
	GEM_BUG_ON(ve->request);
4753
	GEM_BUG_ON(ve->context.inflight);
4754 4755 4756 4757

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;
4758
		unsigned long flags;
4759 4760 4761 4762

		if (RB_EMPTY_NODE(node))
			continue;

4763
		spin_lock_irqsave(&sibling->active.lock, flags);
4764 4765 4766 4767 4768

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

4769
		spin_unlock_irqrestore(&sibling->active.lock, flags);
4770 4771 4772 4773 4774
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);
4775
	intel_context_fini(&ve->context);
4776

4777
	kfree(ve->bonds);
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
4803 4804 4805
	if (!intel_engine_has_relative_mmio(ve->siblings[0]))
		virtual_update_register_offsets(ve->context.lrc_reg_state,
						ve->siblings[0]);
4806 4807
}

4808 4809 4810 4811 4812 4813 4814
static int virtual_context_alloc(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);

	return __execlists_context_alloc(ce, ve->siblings[0]);
}

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
4836 4837

	intel_timeline_enter(ce->timeline);
4838 4839 4840 4841 4842 4843 4844
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

4845 4846
	intel_timeline_exit(ce->timeline);

4847 4848 4849 4850 4851
	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
4852 4853
	.alloc = virtual_context_alloc,

4854 4855 4856 4857 4858 4859 4860 4861 4862
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

4880 4881 4882
	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
		     rq->fence.context, rq->fence.seqno,
		     mask, ve->base.execlists.queue_priority_hint);
4883 4884 4885 4886

	return mask;
}

4887 4888 4889 4890
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
4891
	intel_engine_mask_t mask;
4892 4893
	unsigned int n;

4894 4895 4896 4897 4898 4899
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

4900 4901 4902 4903 4904 4905 4906
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

4907 4908
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
4909
				spin_lock(&sibling->active.lock);
4910 4911 4912
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
4913
				spin_unlock(&sibling->active.lock);
4914 4915 4916 4917
			}
			continue;
		}

4918
		spin_lock(&sibling->active.lock);
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

4962
		spin_unlock(&sibling->active.lock);
4963 4964 4965 4966 4967 4968 4969
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
4970 4971
	struct i915_request *old;
	unsigned long flags;
4972

4973 4974 4975
	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
		     rq->fence.context,
		     rq->fence.seqno);
4976 4977 4978

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

4979 4980 4981 4982 4983 4984 4985 4986
	spin_lock_irqsave(&ve->base.active.lock, flags);

	old = ve->request;
	if (old) { /* background completion event from preempt-to-busy */
		GEM_BUG_ON(!i915_request_completed(old));
		__i915_request_submit(old);
		i915_request_put(old);
	}
4987

4988 4989
	if (i915_request_completed(rq)) {
		__i915_request_submit(rq);
4990

4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
		ve->base.execlists.queue_priority_hint = INT_MIN;
		ve->request = NULL;
	} else {
		ve->base.execlists.queue_priority_hint = rq_prio(rq);
		ve->request = i915_request_get(rq);

		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
		list_move_tail(&rq->sched.link, virtual_queue(ve));

		tasklet_schedule(&ve->base.execlists.tasklet);
	}
5002

5003
	spin_unlock_irqrestore(&ve->base.active.lock, flags);
5004 5005
}

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5024
	intel_engine_mask_t allowed, exec;
5025 5026
	struct ve_bond *bond;

5027 5028
	allowed = ~to_request(signal)->engine->mask;

5029
	bond = virtual_find_bond(ve, to_request(signal)->engine);
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	if (bond)
		allowed &= bond->sibling_mask;

	/* Restrict the bonded request to run on only the available engines */
	exec = READ_ONCE(rq->execution_mask);
	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
		;

	/* Prevent the master from being re-run on the bonded engines */
	to_request(signal)->execution_mask &= ~allowed;
5040 5041
}

5042
struct intel_context *
5043
intel_execlists_create_virtual(struct intel_engine_cs **siblings,
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
5054
		return intel_context_create(siblings[0]);
5055 5056 5057 5058 5059

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

5060
	ve->base.i915 = siblings[0]->i915;
5061
	ve->base.gt = siblings[0]->gt;
5062
	ve->base.uncore = siblings[0]->uncore;
5063
	ve->base.id = -1;
5064

5065 5066 5067
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5068
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5069

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

5085 5086
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

5087
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
5088
	intel_engine_init_breadcrumbs(&ve->base);
5089 5090 5091 5092 5093 5094 5095
	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
5096
	ve->base.bond_execute = virtual_bond_execute;
5097

5098
	INIT_LIST_HEAD(virtual_queue(ve));
5099 5100 5101 5102 5103
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

5104
	intel_context_init(&ve->context, &ve->base);
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
5165 5166

		ve->base.flags = sibling->flags;
5167 5168
	}

5169 5170
	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;

5171 5172 5173 5174 5175 5176 5177 5178
	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
5179
intel_execlists_clone_virtual(struct intel_engine_cs *src)
5180 5181 5182 5183
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

5184
	dst = intel_execlists_create_virtual(se->siblings,
5185 5186 5187 5188
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

5203 5204 5205
	return dst;
}

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
struct intel_engine_cs *
intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
				 unsigned int sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);

	if (sibling >= ve->num_siblings)
		return NULL;

	return ve->siblings[sibling];
}

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

5267
	spin_lock_irqsave(&engine->active.lock, flags);
5268 5269 5270

	last = NULL;
	count = 0;
5271
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
5288 5289 5290
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

5334
	spin_unlock_irqrestore(&engine->active.lock, flags);
5335 5336
}

5337 5338 5339 5340 5341
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
5342 5343
	GEM_BUG_ON(!intel_context_is_pinned(ce));

5344 5345 5346 5347 5348 5349 5350 5351
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
5352 5353
	if (scrub)
		restore_default_state(ce, engine);
5354 5355

	/* Rerun the request; its payload has been neutered (if guilty). */
5356
	__execlists_update_reg_state(ce, engine, head);
5357 5358
}

5359 5360 5361 5362 5363 5364 5365
bool
intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
{
	return engine->set_default_submission ==
	       intel_execlists_set_default_submission;
}

5366
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5367
#include "selftest_lrc.c"
5368
#endif