hci_request.c 83.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33
#include "eir.h"
34

35 36 37 38
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

39 40 41 42 43 44 45
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

46 47 48 49 50
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

51 52 53 54 55
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

56 57
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
58 59 60 61 62
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

63
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
64 65 66 67 68 69 70 71 72 73 74 75 76 77

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
78 79 80 81 82 83
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
84 85 86 87 88 89 90 91 92 93

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

94 95 96 97 98 99 100 101 102 103
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

104 105 106
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
107
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
108 109 110 111 112 113 114 115 116 117

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

118
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
119
{
120
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

136
	bt_dev_dbg(hdev, "");
137 138 139 140 141 142 143 144

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	err = hci_req_run_skb(&req, hci_req_sync_complete);
145
	if (err < 0)
146 147
		return ERR_PTR(err);

148 149
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
150

151
	if (err == -ERESTARTSYS)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

172
	bt_dev_dbg(hdev, "end: err %d", err);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
194 195
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
196
		   unsigned long opt, u32 timeout, u8 *hci_status)
197 198 199 200
{
	struct hci_request req;
	int err = 0;

201
	bt_dev_dbg(hdev, "start");
202 203 204 205 206

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

207 208 209 210 211 212
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
213 214 215 216 217 218 219 220 221 222

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
223 224 225
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
226
			return 0;
227 228 229 230
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
231 232 233 234

		return err;
	}

235 236
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
237

238
	if (err == -ERESTARTSYS)
239 240 241 242 243
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
244 245
		if (hci_status)
			*hci_status = hdev->req_result;
246 247 248 249
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
250 251
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
252 253 254 255
		break;

	default:
		err = -ETIMEDOUT;
256 257
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
258 259 260
		break;
	}

261 262
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
263 264
	hdev->req_status = hdev->req_result = 0;

265
	bt_dev_dbg(hdev, "end: err %d", err);
266 267 268 269

	return err;
}

270 271
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
272
		 unsigned long opt, u32 timeout, u8 *hci_status)
273 274 275 276
{
	int ret;

	/* Serialize all requests */
277
	hci_req_sync_lock(hdev);
278 279 280 281 282 283 284 285
	/* check the state after obtaing the lock to protect the HCI_UP
	 * against any races from hci_dev_do_close when the controller
	 * gets removed.
	 */
	if (test_bit(HCI_UP, &hdev->flags))
		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
	else
		ret = -ENETDOWN;
286
	hci_req_sync_unlock(hdev);
287 288 289 290

	return ret;
}

291 292 293 294 295 296 297 298 299 300 301
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

302
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
303 304 305 306
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
307
		skb_put_data(skb, param, plen);
308

309
	bt_dev_dbg(hdev, "skb len %d", skb->len);
310

311 312
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
313 314 315 316 317 318 319 320 321 322 323

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

324
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
325 326 327 328 329 330 331 332 333

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
334 335
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
336 337 338 339 340
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
341
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
342

343
	bt_cb(skb)->hci.req_event = event;
344 345 346 347 348 349 350 351 352 353

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
372 373
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
374 375
	}

376
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
377 378 379 380 381 382 383 384 385 386

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
413 414 415 416 417 418
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
419 420 421
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
422 423 424
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
425 426 427 428 429 430 431 432 433 434 435 436 437 438
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

474 475
	bt_dev_dbg(hdev, "ADV monitoring is %s",
		   hci_is_adv_monitoring(hdev) ? "on" : "off");
476

477
	if (list_empty(&hdev->pend_le_conns) &&
478 479
	    list_empty(&hdev->pend_le_reports) &&
	    !hci_is_adv_monitoring(hdev)) {
480
		/* If there is no pending LE connections or devices
481 482
		 * to be scanned for or no ADV monitors, we should stop the
		 * background scanning.
483 484 485 486 487 488
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

489
		hci_req_add_le_scan_disable(req, false);
490

491
		bt_dev_dbg(hdev, "stopping background scanning");
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
508
			hci_req_add_le_scan_disable(req, false);
509 510

		hci_req_add_le_passive_scan(req);
511
		bt_dev_dbg(hdev, "starting background scanning");
512 513 514
	}
}

515 516 517 518 519 520 521 522 523 524
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

544
	eir_create(hdev, cp.data);
545 546 547 548 549 550 551 552 553

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

554
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
555
{
556
	struct hci_dev *hdev = req->hdev;
557

558 559 560 561 562
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

563 564 565
	if (hdev->suspended)
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

566 567 568 569 570 571 572 573 574 575 576 577 578 579
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
580

581
	/* Disable address resolution */
582
	if (use_ll_privacy(hdev) &&
583
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
584
	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
585
		__u8 enable = 0x00;
586

587 588
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
589 590
}

591 592
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
				 u8 bdaddr_type)
593
{
594
	struct hci_cp_le_del_from_accept_list cp;
595 596 597 598

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

599
	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
600
		   cp.bdaddr_type);
601
	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
602

603 604
	if (use_ll_privacy(req->hdev) &&
	    hci_dev_test_flag(req->hdev, HCI_ENABLE_LL_PRIVACY)) {
605 606 607 608 609 610 611 612 613 614 615 616 617
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
618 619
}

620 621 622 623
/* Adds connection to accept list if needed. On error, returns -1. */
static int add_to_accept_list(struct hci_request *req,
			      struct hci_conn_params *params, u8 *num_entries,
			      bool allow_rpa)
624
{
625
	struct hci_cp_le_add_to_accept_list cp;
626 627
	struct hci_dev *hdev = req->hdev;

628 629
	/* Already in accept list */
	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
630 631
				   params->addr_type))
		return 0;
632

633
	/* Select filter policy to accept all advertising */
634
	if (*num_entries >= hdev->le_accept_list_size)
635 636
		return -1;

637
	/* Accept list can not be used with RPAs */
638 639
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
640 641 642 643
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

644
	/* During suspend, only wakeable devices can be in accept list */
645 646
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
647 648 649
		return 0;

	*num_entries += 1;
650 651 652
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

653
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
654
		   cp.bdaddr_type);
655
	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
656

657 658
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) {
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

680
	return 0;
681 682
}

683
static u8 update_accept_list(struct hci_request *req)
684 685 686 687
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
688 689
	u8 num_entries = 0;
	bool pend_conn, pend_report;
690 691
	/* We allow usage of accept list even with RPAs in suspend. In the worst
	 * case, we won't be able to wake from devices that use the privacy1.2
692 693 694 695
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
696

697 698 699 700
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
		allow_rpa = true;

701
	/* Go through the current accept list programmed into the
702 703 704 705 706
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
707
	list_for_each_entry(b, &hdev->le_accept_list, list) {
708 709 710 711 712 713 714 715
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
716
		 * remove it from the accept list.
717
		 */
718
		if (!pend_conn && !pend_report) {
719
			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
720 721 722
			continue;
		}

723
		/* Accept list can not be used with RPAs */
724 725
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
726
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
727 728
			return 0x00;
		}
729

730
		num_entries++;
731 732
	}

733
	/* Since all no longer valid accept list entries have been
734 735 736 737 738
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
739
	 * available accept list entries in the controller, then
740
	 * just abort and return filer policy value to not use the
741
	 * accept list.
742 743
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
744
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
745 746 747 748 749
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
750
	 * accept list if there is still space. Abort if space runs out.
751 752
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
753
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
754 755 756
			return 0x00;
	}

757 758
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
759
	 * - There are 1 or more ADV monitors registered and it's not offloaded
760
	 * - Interleaved scanning is not currently using the allowlist
761
	 */
762
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
763
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
764
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
765 766
		return 0x00;

767
	/* Select filter policy to use accept list */
768 769 770
	return 0x01;
}

771 772 773 774 775
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

776
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
777
			       u16 window, u8 own_addr_type, u8 filter_policy,
778
			       bool filter_dup, bool addr_resolv)
779
{
780
	struct hci_dev *hdev = req->hdev;
781

782 783 784 785 786
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

787 788 789
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
	    addr_resolv) {
790
		u8 enable = 0x01;
791

792 793 794
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

795 796 797 798 799 800 801
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
802 803
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
804 805 806 807 808 809 810 811

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
837 838

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
839
			    plen, ext_param_cp);
840 841 842

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
843
		ext_enable_cp.filter_dup = filter_dup;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
862
		enable_cp.filter_dup = filter_dup;
863 864 865
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
866 867
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

889 890 891 892
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
893 894
void hci_req_add_le_passive_scan(struct hci_request *req)
{
895 896 897
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
898
	u16 window, interval;
899 900
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
901 902
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
903 904 905 906 907

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
908 909 910 911 912 913 914

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
915 916
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
917 918
		return;

919 920
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
921 922 923
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
924
	/* Adding or removing entries from the accept list must
925
	 * happen before enabling scanning. The controller does
926
	 * not allow accept list modification while scanning.
927
	 */
928
	filter_policy = update_accept_list(req);
929 930 931 932 933 934

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
935 936 937
	 * So instead of using filter polices 0x00 (no accept list)
	 * and 0x01 (accept list enabled) use the new filter policies
	 * 0x02 (no accept list) and 0x03 (accept list enabled).
938
	 */
939
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
940 941 942
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

943
	if (hdev->suspended) {
944 945
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
946 947

		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
948 949 950
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
951 952 953
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
954 955 956 957 958 959 960 961 962 963 964 965 966 967

		/* Disable duplicates filter when scanning for advertisement
		 * monitor for the following reasons.
		 *
		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
		 * controllers ignore RSSI_Sampling_Period when the duplicates
		 * filter is enabled.
		 *
		 * For SW pattern filtering, when we're not doing interleaved
		 * scanning, it is necessary to disable duplicates filter,
		 * otherwise hosts can only receive one advertisement and it's
		 * impossible to know if a peer is still in range.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
968 969 970 971 972
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

973 974
	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
		   filter_policy);
975
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
976 977
			   own_addr_type, filter_policy, filter_dup,
			   addr_resolv);
978 979
}

980 981 982 983
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

984 985
	if (!hci_dev_test_flag(req->hdev, HCI_BREDR_ENABLED))
		return;
986

987 988 989 990 991
	if (hci_dev_test_flag(req->hdev, HCI_EVENT_FILTER_CONFIGURED)) {
		memset(&f, 0, sizeof(f));
		f.flt_type = HCI_FLT_CLEAR_ALL;
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
	}
992 993 994 995
}

static void hci_req_set_event_filter(struct hci_request *req)
{
996
	struct bdaddr_list_with_flags *b;
997 998
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
999
	u8 scan = SCAN_DISABLED;
1000 1001 1002 1003
	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;
1004 1005 1006 1007

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

1008
	list_for_each_entry(b, &hdev->accept_list, list) {
1009 1010 1011 1012
		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
					b->current_flags))
			continue;

1013 1014 1015 1016 1017 1018 1019 1020
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1021
		scan = SCAN_PAGE;
1022 1023
	}

1024
	if (scan && !scanning) {
1025
		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1026 1027
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	} else if (!scan && scanning) {
1028
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1029 1030
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	}
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
1042
void __hci_req_pause_adv_instances(struct hci_request *req)
1043
{
1044
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
1057
static void __hci_req_resume_adv_instances(struct hci_request *req)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

1091 1092 1093 1094
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
1095 1096 1097 1098
	if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
		clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1099 1100
		wake_up(&hdev->suspend_wait_q);
	}
1101 1102 1103 1104 1105 1106 1107

	if (test_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
		wake_up(&hdev->suspend_wait_q);
	}
}

1108 1109
static void hci_req_prepare_adv_monitor_suspend(struct hci_request *req,
						bool suspending)
1110 1111 1112 1113 1114
{
	struct hci_dev *hdev = req->hdev;

	switch (hci_get_adv_monitor_offload_ext(hdev)) {
	case HCI_ADV_MONITOR_EXT_MSFT:
1115 1116 1117 1118
		if (suspending)
			msft_suspend(hdev);
		else
			msft_resume(hdev);
1119 1120 1121 1122 1123 1124
		break;
	default:
		return;
	}

	/* No need to block when enabling since it's on resume path */
1125
	if (hdev->suspended && suspending)
1126
		set_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
1127 1128
}

1129 1130 1131
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1132
	int old_state;
1133 1134 1135 1136 1137
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1138 1139 1140 1141 1142 1143
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1144 1145 1146 1147 1148 1149
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		/* Pause discovery if not already stopped */
		old_state = hdev->discovery.state;
		if (old_state != DISCOVERY_STOPPED) {
			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

		hdev->discovery_paused = true;
		hdev->discovery_old_state = old_state;

1161
		/* Stop directed advertising */
1162 1163 1164 1165 1166 1167 1168 1169
		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
		if (old_state) {
			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
			cancel_delayed_work(&hdev->discov_off);
			queue_delayed_work(hdev->req_workqueue,
					   &hdev->discov_off, 0);
		}

1170 1171
		/* Pause other advertisements */
		if (hdev->adv_instance_cnt)
1172
			__hci_req_pause_adv_instances(&req);
1173

1174 1175
		hdev->advertising_paused = true;
		hdev->advertising_old_state = old_state;
1176 1177 1178 1179 1180 1181 1182 1183

		/* Disable page scan if enabled */
		if (test_bit(HCI_PSCAN, &hdev->flags)) {
			page_scan = SCAN_DISABLED;
			hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1,
				    &page_scan);
			set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
		}
1184

1185
		/* Disable LE passive scan if enabled */
1186 1187
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_interleave_scan(hdev);
1188
			hci_req_add_le_scan_disable(&req, false);
1189
		}
1190

1191
		/* Disable advertisement filters */
1192
		hci_req_prepare_adv_monitor_suspend(&req, true);
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
1213
	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1214 1215 1216 1217
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1218
		/* Enable passive scan at lower duty cycle */
1219
		__hci_update_background_scan(&req);
1220 1221 1222 1223 1224 1225 1226
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

1227
		/* Clear any event filters and restore scan state */
1228
		hci_req_clear_event_filter(&req);
1229 1230
		__hci_req_update_scan(&req);

1231
		/* Reset passive/background scanning to normal */
1232
		__hci_update_background_scan(&req);
1233
		/* Enable all of the advertisement filters */
1234
		hci_req_prepare_adv_monitor_suspend(&req, false);
1235

1236
		/* Unpause directed advertising */
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		hdev->advertising_paused = false;
		if (hdev->advertising_old_state) {
			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
				hdev->suspend_tasks);
			hci_dev_set_flag(hdev, HCI_ADVERTISING);
			queue_work(hdev->req_workqueue,
				   &hdev->discoverable_update);
			hdev->advertising_old_state = 0;
		}

1247 1248
		/* Resume other advertisements */
		if (hdev->adv_instance_cnt)
1249
			__hci_req_resume_adv_instances(&req);
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259
		/* Unpause discovery */
		hdev->discovery_paused = false;
		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

1260 1261 1262 1263
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1264 1265 1266 1267 1268 1269

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1270
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
1271
{
1272
	return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
1273 1274 1275 1276
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1277
	if (ext_adv_capable(req->hdev)) {
1278
		__hci_req_disable_ext_adv_instance(req, 0x00);
1279

1280 1281 1282 1283 1284
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1310 1311 1312 1313 1314 1315
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

1316 1317 1318 1319
	/* Check le_states if there is any connection in peripheral role. */
	if (hdev->conn_hash.le_num_peripheral > 0) {
		/* Peripheral connection state and non connectable mode bit 20.
		 */
1320 1321 1322
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

1323
		/* Peripheral connection state and connectable mode bit 38
1324 1325
		 * and scannable bit 21.
		 */
1326 1327
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1328 1329 1330
			return false;
	}

1331 1332 1333
	/* Check le_states if there is any connection in central role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
		/* Central connection state and non connectable mode bit 18. */
1334 1335 1336
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

1337
		/* Central connection state and connectable mode bit 35 and
1338 1339
		 * scannable 19.
		 */
1340
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1341 1342 1343 1344 1345 1346 1347
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1348 1349 1350
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
1351
	struct adv_info *adv;
1352 1353 1354
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1355
	u16 adv_min_interval, adv_max_interval;
1356 1357
	u32 flags;

1358 1359
	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
	adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1360 1361 1362 1363 1364 1365 1366 1367

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1384 1385 1386
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1387 1388 1389 1390
		return;

	memset(&cp, 0, sizeof(cp));

1391 1392 1393
	if (adv) {
		adv_min_interval = adv->min_interval;
		adv_max_interval = adv->max_interval;
1394
	} else {
1395 1396
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1397 1398 1399 1400
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1401
	} else {
1402
		if (adv_cur_instance_is_scannable(hdev))
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1416 1417 1418 1419 1420 1421 1422 1423
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1424
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1425 1426 1427 1428 1429 1430 1431
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1432
	if (ext_adv_capable(hdev)) {
1433 1434 1435 1436
		struct {
			struct hci_cp_le_set_ext_scan_rsp_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1437

1438
		memset(&pdu, 0, sizeof(pdu));
1439

1440
		len = eir_create_scan_rsp(hdev, instance, pdu.data);
1441 1442

		if (hdev->scan_rsp_data_len == len &&
1443
		    !memcmp(pdu.data, hdev->scan_rsp_data, len))
1444 1445
			return;

1446
		memcpy(hdev->scan_rsp_data, pdu.data, len);
1447 1448
		hdev->scan_rsp_data_len = len;

1449 1450 1451 1452
		pdu.cp.handle = instance;
		pdu.cp.length = len;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1453

1454 1455
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1456 1457 1458 1459 1460
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

1461
		len = eir_create_scan_rsp(hdev, instance, cp.data);
1462 1463 1464 1465

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1466

1467 1468
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1469

1470
		cp.length = len;
1471

1472 1473
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1474 1475
}

1476
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1477 1478 1479 1480 1481 1482 1483
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1484
	if (ext_adv_capable(hdev)) {
1485 1486 1487 1488
		struct {
			struct hci_cp_le_set_ext_adv_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1489

1490
		memset(&pdu, 0, sizeof(pdu));
1491

1492
		len = eir_create_adv_data(hdev, instance, pdu.data);
1493 1494 1495

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
1496
		    memcmp(pdu.data, hdev->adv_data, len) == 0)
1497 1498
			return;

1499
		memcpy(hdev->adv_data, pdu.data, len);
1500 1501
		hdev->adv_data_len = len;

1502 1503 1504 1505
		pdu.cp.length = len;
		pdu.cp.handle = instance;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1506

1507 1508
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1509 1510 1511 1512
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1513

1514
		len = eir_create_adv_data(hdev, instance, cp.data);
1515 1516 1517 1518 1519

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1520

1521 1522 1523 1524 1525 1526 1527
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1528 1529
}

1530
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

	if (!use_ll_privacy(hdev) &&
	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1562 1563
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1564
	bt_dev_dbg(hdev, "status %u", status);
1565 1566 1567 1568 1569 1570 1571
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1572
	    list_empty(&hdev->adv_instances))
1573 1574 1575 1576
		return;

	hci_req_init(&req, hdev);

1577 1578 1579
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1580
	} else {
1581 1582 1583 1584 1585 1586 1587
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1601
	bt_dev_dbg(hdev, "");
1602 1603 1604 1605 1606

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1607
	instance = hdev->cur_adv_instance;
1608 1609 1610 1611 1612
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1613
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1614 1615 1616 1617

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1618
	hci_req_run(&req, NULL);
1619 1620 1621 1622 1623

unlock:
	hci_dev_unlock(hdev);
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
1692 1693 1694
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1695 1696
		if (use_ll_privacy(hdev) &&
		    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
1697 1698 1699
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1700 1701

		if (adv_instance) {
1702
			if (adv_rpa_valid(adv_instance))
1703 1704
				return 0;
		} else {
1705
			if (rpa_valid(hdev))
1706 1707 1708 1709 1710
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1711
			bt_dev_err(hdev, "failed to generate new RPA");
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1754 1755 1756 1757 1758
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
	    hci_lookup_le_connect(hdev)) {
		bt_dev_dbg(hdev, "Deferring random address update");
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

1783
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1784 1785 1786 1787 1788
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1789 1790 1791 1792
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1793
	bool secondary_adv;
1794

1795 1796 1797 1798 1799 1800 1801 1802
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1803
	flags = hci_adv_instance_flags(hdev, instance);
1804 1805 1806 1807 1808 1809 1810

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1811
	if (!is_advertising_allowed(hdev, connectable))
1812 1813
		return -EPERM;

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1824 1825
	memset(&cp, 0, sizeof(cp));

1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
1835

1836 1837 1838 1839 1840 1841 1842
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1843
	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1844
		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1855

1856
	cp.own_addr_type = own_addr_type;
1857
	cp.channel_map = hdev->le_adv_channel_map;
1858
	cp.handle = instance;
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1872 1873
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
1885 1886 1887 1888 1889 1890 1891
			/* Instance 0x00 doesn't have an adv_info, instead it
			 * uses hdev->random_addr to track its address so
			 * whenever it needs to be updated this also set the
			 * random address since hdev->random_addr is shared with
			 * scan state machine.
			 */
			set_random_addr(req, &random_addr);
1892 1893 1894 1895
		}

		memset(&cp, 0, sizeof(cp));

1896
		cp.handle = instance;
1897 1898 1899 1900 1901 1902 1903
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1904 1905 1906
	return 0;
}

1907
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1908
{
1909
	struct hci_dev *hdev = req->hdev;
1910 1911 1912
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1913 1914 1915 1916 1917 1918 1919 1920 1921
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1933 1934 1935 1936 1937 1938
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1939
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1940 1941 1942 1943

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1944 1945 1946 1947

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1948 1949

	return 0;
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

1994 1995
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1996
	struct hci_dev *hdev = req->hdev;
1997
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
1998 1999
	int err;

2000 2001 2002 2003 2004
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
2005

2006 2007 2008 2009
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

2010
	__hci_req_update_scan_rsp_data(req, instance);
2011
	__hci_req_enable_ext_advertising(req, instance);
2012 2013 2014 2015

	return 0;
}

2016 2017 2018 2019 2020 2021 2022 2023
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2024
	    list_empty(&hdev->adv_instances))
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

2055 2056 2057 2058
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
2059 2060
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
2061
	}
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
2072 2073 2074 2075 2076 2077 2078
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
2094 2095 2096
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2122
				mgmt_advertising_removed(sk, hdev, rem_inst);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2136
				mgmt_advertising_removed(sk, hdev, instance);
2137 2138 2139 2140 2141 2142 2143
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

2144
	if (next_instance && !ext_adv_capable(hdev))
2145 2146 2147 2148
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2149
int hci_update_random_address(struct hci_request *req, bool require_privacy,
2150
			      bool use_rpa, u8 *own_addr_type)
2151 2152 2153 2154 2155 2156 2157 2158
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2159
	if (use_rpa) {
2160 2161 2162
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
2163 2164
		if (use_ll_privacy(hdev) &&
		    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
2165 2166 2167
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2168

2169
		if (rpa_valid(hdev))
2170 2171 2172 2173
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2174
			bt_dev_err(hdev, "failed to generate new RPA");
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2214 2215 2216 2217
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2218
	 */
2219
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2220
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2221
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2222
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2237

2238
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2239 2240 2241
{
	struct bdaddr_list *b;

2242
	list_for_each_entry(b, &hdev->accept_list, list) {
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2256
void __hci_req_update_scan(struct hci_request *req)
2257 2258 2259 2260
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2261
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2262 2263 2264 2265 2266 2267 2268 2269
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2270 2271 2272
	if (hdev->scanning_paused)
		return;

2273
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2274
	    disconnected_accept_list_entries(hdev))
2275 2276 2277 2278
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2279
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2280 2281
		scan |= SCAN_INQUIRY;

2282 2283 2284 2285
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2286 2287 2288
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2289
static int update_scan(struct hci_request *req, unsigned long opt)
2290
{
2291 2292 2293 2294 2295
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2296

2297 2298 2299 2300 2301
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2317
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2318 2319 2320

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2321 2322 2323 2324 2325 2326
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

2361
	bt_dev_dbg(hdev, "");
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2429
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2430
		__hci_req_update_adv_data(req, 0x00);
2431

2432 2433 2434
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2435 2436 2437 2438 2439 2440
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2441 2442
	}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2515
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2530
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2544
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2545 2546 2547 2548 2549
		return err;
	}

	return 0;
}
2550

2551
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2552 2553 2554 2555
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2556
	return 0;
2557 2558 2559 2560 2561 2562
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2576

2577
	hci_dev_unlock(hdev);
2578 2579
}

2580
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2581
{
2582
	hci_req_add_le_scan_disable(req, false);
2583
	return 0;
2584 2585
}

2586
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2587
{
2588
	u8 length = opt;
2589 2590
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2591 2592
	struct hci_cp_inquiry cp;

2593 2594 2595
	if (test_bit(HCI_INQUIRY, &req->hdev->flags))
		return 0;

2596
	bt_dev_dbg(req->hdev, "");
2597

2598 2599 2600
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2601

2602
	memset(&cp, 0, sizeof(cp));
2603 2604 2605 2606 2607 2608

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2609
	cp.length = length;
2610

2611
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2612

2613
	return 0;
2614 2615 2616 2617 2618 2619 2620 2621
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2622
	bt_dev_dbg(hdev, "");
2623

2624 2625 2626
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2627 2628
	cancel_delayed_work(&hdev->le_scan_restart);

2629 2630
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2631 2632
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2650 2651
		return;

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2663
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2664 2665 2666 2667 2668 2669 2670 2671 2672
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2673 2674
}

2675 2676 2677 2678 2679 2680 2681 2682
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

2683 2684 2685 2686 2687
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

2688
	hci_req_add_le_scan_disable(req, false);
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2707 2708 2709 2710 2711

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2712
{
2713 2714
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2715
	unsigned long timeout, duration, scan_start, now;
2716
	u8 status;
2717

2718
	bt_dev_dbg(hdev, "");
2719

2720
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2721
	if (status) {
2722 2723
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2761 2762 2763 2764 2765
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2766
	/* Accept list is not used for discovery */
2767
	u8 filter_policy = 0x00;
2768 2769
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2770 2771
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
2772 2773
	int err;

2774
	bt_dev_dbg(hdev, "");
2775 2776 2777 2778 2779

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
2780
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2781
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
2782 2783
		cancel_interleave_scan(hdev);
	}
2784 2785 2786 2787 2788

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2789 2790
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2791 2792 2793
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	if (hci_is_adv_monitoring(hdev)) {
		/* Duplicate filter should be disabled when some advertisement
		 * monitor is activated, otherwise AdvMon can only receive one
		 * advertisement for one peer(*) during active scanning, and
		 * might report loss to these peers.
		 *
		 * Note that different controllers have different meanings of
		 * |duplicate|. Some of them consider packets with the same
		 * address as duplicate, and others consider packets with the
		 * same address and the same RSSI as duplicate. Although in the
		 * latter case we don't need to disable duplicate filter, but
		 * it is common to have active scanning for a short period of
		 * time, the power impact should be neglectable.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
	}

2811 2812
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
2813
			   filter_policy, filter_dup, addr_resolv);
2814 2815 2816 2817 2818 2819 2820
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

2821
	bt_dev_dbg(req->hdev, "");
2822 2823 2824 2825 2826

	err = active_scan(req, opt);
	if (err)
		return err;

2827
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2828 2829 2830 2831 2832 2833
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

2834
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
2835 2836 2837 2838

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2839 2840
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
2860
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2861 2862 2863 2864 2865
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2866
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2867 2868 2869 2870
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2871
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

2882
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2899 2900 2901 2902 2903 2904 2905 2906
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

2907
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
2908 2909 2910 2911 2912 2913 2914

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
2915
			cancel_delayed_work(&hdev->le_scan_restart);
2916
			hci_req_add_le_scan_disable(req, false);
2917 2918 2919 2920 2921 2922
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2923
			hci_req_add_le_scan_disable(req, false);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
				      u16 opcode)
{
	bt_dev_dbg(hdev, "status %u", status);
}

int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
{
	struct hci_request req;
	int err;
	__u8 vnd_len, *vnd_data = NULL;
	struct hci_op_configure_data_path *cmd = NULL;

	hci_req_init(&req, hdev);

	err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
					  &vnd_data);
	if (err < 0)
		goto error;

	cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
	if (!cmd) {
		err = -ENOMEM;
		goto error;
	}

	err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
	if (err < 0)
		goto error;

	cmd->vnd_len = vnd_len;
	memcpy(cmd->vnd_data, vnd_data, vnd_len);

	cmd->direction = 0x00;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	cmd->direction = 0x01;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	err = hci_req_run(&req, config_data_path_complete);
error:

	kfree(cmd);
	kfree(vnd_data);
	return err;
}

2994 2995 2996 2997 2998 2999 3000 3001 3002
static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
3018 3019 3020 3021 3022 3023
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
3024 3025 3026 3027 3028 3029
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

3030 3031 3032 3033 3034
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

3035
	bt_dev_dbg(hdev, "");
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

3091
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3092 3093 3094 3095
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
3096 3097
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
3111

3112
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3113
				if (!ext_adv_capable(hdev))
3114
					__hci_req_enable_advertising(req);
3115
				else if (!err)
3116 3117
					__hci_req_enable_ext_advertising(req,
									 0x00);
3118
			}
3119 3120
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
3121 3122 3123 3124

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
3125
							adv_instance->instance,
3126
							true);
3127
		}
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3163 3164
void hci_request_setup(struct hci_dev *hdev)
{
3165
	INIT_WORK(&hdev->discov_update, discov_update);
3166
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3167
	INIT_WORK(&hdev->scan_update, scan_update_work);
3168
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3169
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3170
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3171 3172
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3173
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3174
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
3175 3176 3177 3178
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3179 3180
	hci_req_sync_cancel(hdev, ENODEV);

3181
	cancel_work_sync(&hdev->discov_update);
3182
	cancel_work_sync(&hdev->bg_scan_update);
3183
	cancel_work_sync(&hdev->scan_update);
3184
	cancel_work_sync(&hdev->connectable_update);
3185
	cancel_work_sync(&hdev->discoverable_update);
3186
	cancel_delayed_work_sync(&hdev->discov_off);
3187 3188
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3189 3190 3191 3192 3193

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3194 3195

	cancel_interleave_scan(hdev);
3196
}