slab_common.c 36.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20 21 22
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
23
#include <linux/memcontrol.h>
24 25

#define CREATE_TRACE_POINTS
26
#include <trace/events/kmem.h>
27

28 29 30
#include "slab.h"

enum slab_state slab_state;
31 32
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
33
struct kmem_cache *kmem_cache;
34

35 36 37 38 39 40 41 42
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

43 44 45 46 47
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

48 49 50 51
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
53
		SLAB_FAILSLAB | SLAB_KASAN)
54

V
Vladimir Davydov 已提交
55
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56
			 SLAB_ACCOUNT)
57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
61
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 63 64

static int __init setup_slab_nomerge(char *str)
{
65
	slab_nomerge = true;
66 67 68 69 70 71 72 73 74
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

75 76 77 78 79 80 81 82 83
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

84
#ifdef CONFIG_DEBUG_VM
85
static int kmem_cache_sanity_check(const char *name, size_t size)
86 87 88 89 90
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
91 92
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
93
	}
94

95 96 97 98 99 100 101 102 103 104 105
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
106
			pr_err("Slab cache with size %d has lost its name\n",
107 108 109 110 111 112
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
113 114 115
	return 0;
}
#else
116
static inline int kmem_cache_sanity_check(const char *name, size_t size)
117 118 119
{
	return 0;
}
120 121
#endif

122 123 124 125
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

126 127 128 129 130 131
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
132 133
}

134
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
135 136 137 138 139 140 141 142
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
143
			return 0;
144 145
		}
	}
146
	return i;
147 148
}

149
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
150 151 152

LIST_HEAD(slab_root_caches);

153
void slab_init_memcg_params(struct kmem_cache *s)
154
{
T
Tejun Heo 已提交
155
	s->memcg_params.root_cache = NULL;
156
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
157
	INIT_LIST_HEAD(&s->memcg_params.children);
158 159 160 161 162 163
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
164

T
Tejun Heo 已提交
165
	if (root_cache) {
166
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
167 168
		s->memcg_params.memcg = memcg;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
169
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
170
		return 0;
171
	}
172

173
	slab_init_memcg_params(s);
174

175 176
	if (!memcg_nr_cache_ids)
		return 0;
177

178 179 180
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
181 182
	if (!arr)
		return -ENOMEM;
183

184
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
185 186 187
	return 0;
}

188
static void destroy_memcg_params(struct kmem_cache *s)
189
{
190
	if (is_root_cache(s))
191 192 193 194 195 196 197 198 199
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
200 201
}

202
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
203
{
204
	struct memcg_cache_array *old, *new;
205

206 207
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
208
	if (!new)
209 210
		return -ENOMEM;

211 212 213 214 215
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
216

217 218
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
219
		call_rcu(&old->rcu, free_memcg_params);
220 221 222
	return 0;
}

223 224 225 226 227
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

228
	mutex_lock(&slab_mutex);
229
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
230
		ret = update_memcg_params(s, num_memcgs);
231 232 233 234 235
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
236
			break;
237 238 239 240
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
241

242
void memcg_link_cache(struct kmem_cache *s)
243
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
262
}
263
#else
264 265
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
266 267 268 269
{
	return 0;
}

270
static inline void destroy_memcg_params(struct kmem_cache *s)
271 272
{
}
273

274
static inline void memcg_unlink_cache(struct kmem_cache *s)
275 276
{
}
277
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
278

279 280 281 282
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
283
static unsigned long calculate_alignment(slab_flags_t flags,
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign;

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

322 323 324
	if (s->usersize)
		return 1;

325 326 327 328 329 330 331 332 333 334
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
335
		slab_flags_t flags, const char *name, void (*ctor)(void *))
336 337 338
{
	struct kmem_cache *s;

339
	if (slab_nomerge)
340 341 342 343 344 345 346 347 348 349
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

350 351 352
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

353
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

372 373 374 375
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

376 377 378 379 380
		return s;
	}
	return NULL;
}

381 382
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
383 384
		slab_flags_t flags, size_t useroffset,
		size_t usersize, void (*ctor)(void *),
385
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
386 387 388 389
{
	struct kmem_cache *s;
	int err;

390 391 392
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

393 394 395 396 397 398 399 400 401 402
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;
403 404
	s->useroffset = useroffset;
	s->usersize = usersize;
405

406
	err = init_memcg_params(s, memcg, root_cache);
407 408 409 410 411 412 413 414 415
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
416
	memcg_link_cache(s);
417 418 419 420 421 422
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
423
	destroy_memcg_params(s);
424
	kmem_cache_free(kmem_cache, s);
425 426
	goto out;
}
427

428
/*
429
 * kmem_cache_create_usercopy - Create a cache.
430 431 432 433
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
434 435
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
454
struct kmem_cache *
455 456 457
kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
		  slab_flags_t flags, size_t useroffset, size_t usersize,
		  void (*ctor)(void *))
458
{
459
	struct kmem_cache *s = NULL;
460
	const char *cache_name;
461
	int err;
462

463
	get_online_cpus();
464
	get_online_mems();
465
	memcg_get_cache_ids();
466

467
	mutex_lock(&slab_mutex);
468

469
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
470
	if (err) {
471
		goto out_unlock;
A
Andrew Morton 已提交
472
	}
473

474 475 476 477 478 479
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

480 481 482 483 484 485 486
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
487

488 489 490 491 492 493 494
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
495
	if (s)
496
		goto out_unlock;
497

498
	cache_name = kstrdup_const(name, GFP_KERNEL);
499 500 501 502
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
503

504 505
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
506
			 flags, useroffset, usersize, ctor, NULL, NULL);
507 508
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
509
		kfree_const(cache_name);
510
	}
511 512

out_unlock:
513
	mutex_unlock(&slab_mutex);
514

515
	memcg_put_cache_ids();
516
	put_online_mems();
517 518
	put_online_cpus();

519
	if (err) {
520 521 522 523
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
524
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
525 526 527 528 529
				name, err);
			dump_stack();
		}
		return NULL;
	}
530 531
	return s;
}
532 533 534 535 536 537
EXPORT_SYMBOL(kmem_cache_create_usercopy);

struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
		slab_flags_t flags, void (*ctor)(void *))
{
538
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
539 540
					  ctor);
}
541
EXPORT_SYMBOL(kmem_cache_create);
542

543
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
544
{
545 546
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
547

548
	/*
549
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
550 551 552 553 554 555 556 557 558 559
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
560

561 562 563 564 565 566 567 568 569 570 571 572
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
573 574
}

575
static int shutdown_cache(struct kmem_cache *s)
576
{
577 578 579
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

580 581
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
582

583
	memcg_unlink_cache(s);
584
	list_del(&s->list);
585

586
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
587 588 589
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
590
#ifdef SLAB_SUPPORTS_SYSFS
591
		sysfs_slab_release(s);
592 593 594 595
#else
		slab_kmem_cache_release(s);
#endif
	}
596 597

	return 0;
598 599
}

600
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
601
/*
602
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
603 604 605 606 607 608 609
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
610 611
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
612
{
613
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
614
	struct cgroup_subsys_state *css = &memcg->css;
615
	struct memcg_cache_array *arr;
616
	struct kmem_cache *s = NULL;
617
	char *cache_name;
618
	int idx;
619 620

	get_online_cpus();
621 622
	get_online_mems();

623 624
	mutex_lock(&slab_mutex);

625
	/*
626
	 * The memory cgroup could have been offlined while the cache
627 628
	 * creation work was pending.
	 */
629
	if (memcg->kmem_state != KMEM_ONLINE)
630 631
		goto out_unlock;

632 633 634 635
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

636 637 638 639 640
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
641
	if (arr->entries[idx])
642 643
		goto out_unlock;

644
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
645 646
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
647 648 649
	if (!cache_name)
		goto out_unlock;

650 651
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
652
			 root_cache->flags & CACHE_CREATE_MASK,
653
			 root_cache->useroffset, root_cache->usersize,
654
			 root_cache->ctor, memcg, root_cache);
655 656 657 658 659
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
660
	if (IS_ERR(s)) {
661
		kfree(cache_name);
662
		goto out_unlock;
663
	}
664

665 666 667 668 669 670
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
671
	arr->entries[idx] = s;
672

673 674
out_unlock:
	mutex_unlock(&slab_mutex);
675 676

	put_online_mems();
677
	put_online_cpus();
678
}
679

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static void kmemcg_deactivate_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.deact_work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->memcg_params.deact_fn(s);

	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();

	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
	css_put(&s->memcg_params.memcg->css);
}

static void kmemcg_deactivate_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.deact_rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
712
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

/**
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 *					   sched RCU grace period
 * @s: target kmem_cache
 * @deact_fn: deactivation function to call
 *
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 * alive until @deact_fn is finished.  This is to be used from
 * __kmemcg_cache_deactivate().
 */
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
					   void (*deact_fn)(struct kmem_cache *))
{
	if (WARN_ON_ONCE(is_root_cache(s)) ||
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
		return;

	/* pin memcg so that @s doesn't get destroyed in the middle */
	css_get(&s->memcg_params.memcg->css);

	s->memcg_params.deact_fn = deact_fn;
	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
}

740 741 742 743
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
744
	struct kmem_cache *s, *c;
745 746 747

	idx = memcg_cache_id(memcg);

748 749 750
	get_online_cpus();
	get_online_mems();

751
	mutex_lock(&slab_mutex);
752
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
753 754
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
755 756 757 758
		c = arr->entries[idx];
		if (!c)
			continue;

759
		__kmemcg_cache_deactivate(c);
760 761 762
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
763 764 765

	put_online_mems();
	put_online_cpus();
766 767
}

768
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
769
{
770
	struct kmem_cache *s, *s2;
771

772 773
	get_online_cpus();
	get_online_mems();
774 775

	mutex_lock(&slab_mutex);
776 777
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
				 memcg_params.kmem_caches_node) {
778 779 780 781
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
782
		BUG_ON(shutdown_cache(s));
783 784
	}
	mutex_unlock(&slab_mutex);
785

786 787
	put_online_mems();
	put_online_cpus();
788
}
789

790
static int shutdown_memcg_caches(struct kmem_cache *s)
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
809
		if (shutdown_cache(c))
810 811 812 813 814
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
815
			list_move(&c->memcg_params.children_node, &busy);
816 817 818 819 820 821 822 823 824 825 826 827 828 829
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
830 831
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
832
		shutdown_cache(c);
833

T
Tejun Heo 已提交
834
	list_splice(&busy, &s->memcg_params.children);
835 836 837 838 839

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
840
	if (!list_empty(&s->memcg_params.children))
841 842 843 844
		return -EBUSY;
	return 0;
}
#else
845
static inline int shutdown_memcg_caches(struct kmem_cache *s)
846 847 848
{
	return 0;
}
849
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
850

851 852
void slab_kmem_cache_release(struct kmem_cache *s)
{
853
	__kmem_cache_release(s);
854
	destroy_memcg_params(s);
855
	kfree_const(s->name);
856 857 858
	kmem_cache_free(kmem_cache, s);
}

859 860
void kmem_cache_destroy(struct kmem_cache *s)
{
861
	int err;
862

863 864 865
	if (unlikely(!s))
		return;

866
	get_online_cpus();
867 868
	get_online_mems();

869
	mutex_lock(&slab_mutex);
870

871
	s->refcount--;
872 873 874
	if (s->refcount)
		goto out_unlock;

875
	err = shutdown_memcg_caches(s);
876
	if (!err)
877
		err = shutdown_cache(s);
878

879
	if (err) {
J
Joe Perches 已提交
880 881
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
882 883
		dump_stack();
	}
884 885
out_unlock:
	mutex_unlock(&slab_mutex);
886

887
	put_online_mems();
888 889 890 891
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

892 893 894 895 896 897 898 899 900 901 902 903 904
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
905
	kasan_cache_shrink(cachep);
906
	ret = __kmem_cache_shrink(cachep);
907 908 909 910 911 912
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

913
bool slab_is_available(void)
914 915 916
{
	return slab_state >= UP;
}
917

918 919 920
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
921
		slab_flags_t flags, size_t useroffset, size_t usersize)
922 923 924 925 926
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
927
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
928 929
	s->useroffset = useroffset;
	s->usersize = usersize;
930 931 932

	slab_init_memcg_params(s);

933 934 935
	err = __kmem_cache_create(s, flags);

	if (err)
936
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
937 938 939 940 941 942
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
943 944
				slab_flags_t flags, size_t useroffset,
				size_t usersize)
945 946 947 948 949 950
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

951
	create_boot_cache(s, name, size, flags, useroffset, usersize);
952
	list_add(&s->list, &slab_caches);
953
	memcg_link_cache(s);
954 955 956 957
	s->refcount = 1;
	return s;
}

958
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
959 960 961
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
962
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
963 964 965
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

966 967 968 969 970 971
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
972
static s8 size_index[24] __ro_after_init = {
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

1012
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
1013
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
1014
		return NULL;
1015
	}
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
1026
	if (unlikely((flags & GFP_DMA)))
1027 1028 1029 1030 1031 1032
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

1033 1034 1035 1036 1037
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1038
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

1055
/*
1056 1057 1058 1059 1060 1061 1062 1063 1064
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1065
 */
1066
void __init setup_kmalloc_cache_index_table(void)
1067 1068 1069
{
	int i;

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1100 1101
}

1102
static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1103 1104
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1105 1106
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1107 1108
}

1109 1110 1111 1112 1113
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1114
void __init create_kmalloc_caches(slab_flags_t flags)
1115 1116 1117
{
	int i;

1118 1119 1120
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
1121

1122
		/*
1123 1124 1125
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
1126
		 */
1127 1128 1129 1130
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
1131 1132
	}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1147
				size, SLAB_CACHE_DMA | flags, 0, 0);
1148 1149 1150 1151
		}
	}
#endif
}
1152 1153
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1154 1155 1156 1157 1158
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1159 1160 1161 1162 1163 1164
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1165
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1166 1167
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1168
	kasan_kmalloc_large(ret, size, flags);
V
Vladimir Davydov 已提交
1169 1170 1171 1172
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1173 1174 1175 1176 1177 1178 1179 1180 1181
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1230
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1231 1232 1233 1234 1235 1236
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1237
static void print_slabinfo_header(struct seq_file *m)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1248
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1249 1250 1251
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1252
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1253 1254 1255 1256 1257
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1258
void *slab_start(struct seq_file *m, loff_t *pos)
1259 1260
{
	mutex_lock(&slab_mutex);
1261
	return seq_list_start(&slab_root_caches, *pos);
1262 1263
}

1264
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1265
{
1266
	return seq_list_next(p, &slab_root_caches, pos);
1267 1268
}

1269
void slab_stop(struct seq_file *m, void *p)
1270 1271 1272 1273
{
	mutex_unlock(&slab_mutex);
}

1274 1275 1276 1277 1278 1279 1280 1281 1282
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1283
	for_each_memcg_cache(c, s) {
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1295
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1296
{
1297 1298 1299 1300 1301
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1302 1303
	memcg_accumulate_slabinfo(s, &sinfo);

1304
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1305
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1306 1307 1308 1309 1310 1311 1312 1313
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1314 1315
}

1316
static int slab_show(struct seq_file *m, void *p)
1317
{
1318
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1319

1320
	if (p == slab_root_caches.next)
1321
		print_slabinfo_header(m);
1322
	cache_show(s, m);
1323 1324 1325
	return 0;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1360
#if defined(CONFIG_MEMCG)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1381 1382
int memcg_slab_show(struct seq_file *m, void *p)
{
1383 1384
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1385 1386
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

1387
	if (p == memcg->kmem_caches.next)
1388
		print_slabinfo_header(m);
1389
	cache_show(s, m);
1390
	return 0;
1391
}
1392
#endif
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1408
	.start = slab_start,
1409 1410
	.next = slab_next,
	.stop = slab_stop,
1411
	.show = slab_show,
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1429 1430
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1431 1432 1433
	return 0;
}
module_init(slab_proc_init);
Y
Yang Shi 已提交
1434
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1445
	if (ks >= new_size) {
1446
		kasan_krealloc((void *)p, new_size, flags);
1447
		return (void *)p;
1448
	}
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);