imx-sdma.c 55.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
// SPDX-License-Identifier: GPL-2.0+
//
// drivers/dma/imx-sdma.c
//
// This file contains a driver for the Freescale Smart DMA engine
//
// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
//
// Based on code from Freescale:
//
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 13

#include <linux/init.h>
14
#include <linux/iopoll.h>
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/bitops.h>
18 19 20
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
21
#include <linux/delay.h>
22 23 24 25 26
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
27
#include <linux/dmapool.h>
28 29 30 31
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
32
#include <linux/of.h>
33
#include <linux/of_address.h>
34
#include <linux/of_device.h>
35
#include <linux/of_dma.h>
36 37

#include <asm/irq.h>
38 39
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
40 41 42
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43

44
#include "dmaengine.h"
45
#include "virt-dma.h"
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
74 75
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

176 177 178 179 180 181 182 183
#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
				 BIT(DMA_MEM_TO_DEV) | \
				 BIT(DMA_DEV_TO_DEV))

184 185 186 187
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
188
#define SDMA_BD_MAX_CNT	0xffff
189 190
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191
	u32 command :  8; /* command mostly used for channel 0 */
192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
206 207 208
 * @current_bd_ptr:	current buffer descriptor processed
 * @base_bd_ptr:	first element of buffer descriptor array
 * @unused:		padding. The SDMA engine expects an array of 128 byte
209 210 211 212 213 214 215 216 217 218 219 220
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
221
 * @unused1:	unused
222 223
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
224
 * @unused0:	unused
225 226
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
227
 * @unused2:	unused
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
265 266 267 268 269 270 271 272
 * @scratch0:		1st word of dedicated ram for context switch
 * @scratch1:		2nd word of dedicated ram for context switch
 * @scratch2:		3rd word of dedicated ram for context switch
 * @scratch3:		4th word of dedicated ram for context switch
 * @scratch4:		5th word of dedicated ram for context switch
 * @scratch5:		6th word of dedicated ram for context switch
 * @scratch6:		7th word of dedicated ram for context switch
 * @scratch7:		8th word of dedicated ram for context switch
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));


struct sdma_engine;

304 305
/**
 * struct sdma_desc - descriptor structor for one transfer
306 307 308 309 310 311 312 313 314 315
 * @vd:			descriptor for virt dma
 * @num_bd:		number of descriptors currently handling
 * @bd_phys:		physical address of bd
 * @buf_tail:		ID of the buffer that was processed
 * @buf_ptail:		ID of the previous buffer that was processed
 * @period_len:		period length, used in cyclic.
 * @chn_real_count:	the real count updated from bd->mode.count
 * @chn_count:		the transfer count set
 * @sdmac:		sdma_channel pointer
 * @bd:			pointer of allocate bd
316 317
 */
struct sdma_desc {
318
	struct virt_dma_desc	vd;
319 320 321 322 323 324 325 326 327 328 329
	unsigned int		num_bd;
	dma_addr_t		bd_phys;
	unsigned int		buf_tail;
	unsigned int		buf_ptail;
	unsigned int		period_len;
	unsigned int		chn_real_count;
	unsigned int		chn_count;
	struct sdma_channel	*sdmac;
	struct sdma_buffer_descriptor *bd;
};

330 331 332
/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
333 334 335 336 337 338 339 340 341 342 343 344
 * @vc:			virt_dma base structure
 * @desc:		sdma description including vd and other special member
 * @sdma:		pointer to the SDMA engine for this channel
 * @channel:		the channel number, matches dmaengine chan_id + 1
 * @direction:		transfer type. Needed for setting SDMA script
 * @peripheral_type:	Peripheral type. Needed for setting SDMA script
 * @event_id0:		aka dma request line
 * @event_id1:		for channels that use 2 events
 * @word_size:		peripheral access size
 * @pc_from_device:	script address for those device_2_memory
 * @pc_to_device:	script address for those memory_2_device
 * @device_to_device:	script address for those device_2_device
345
 * @pc_to_pc:		script address for those memory_2_memory
346 347 348 349 350 351 352 353 354 355 356 357
 * @flags:		loop mode or not
 * @per_address:	peripheral source or destination address in common case
 *                      destination address in p_2_p case
 * @per_address2:	peripheral source address in p_2_p case
 * @event_mask:		event mask used in p_2_p script
 * @watermark_level:	value for gReg[7], some script will extend it from
 *			basic watermark such as p_2_p
 * @shp_addr:		value for gReg[6]
 * @per_addr:		value for gReg[2]
 * @status:		status of dma channel
 * @data:		specific sdma interface structure
 * @bd_pool:		dma_pool for bd
358 359
 */
struct sdma_channel {
360
	struct virt_dma_chan		vc;
361
	struct sdma_desc		*desc;
362 363
	struct sdma_engine		*sdma;
	unsigned int			channel;
364
	enum dma_transfer_direction		direction;
365 366 367 368 369
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			pc_from_device, pc_to_device;
370
	unsigned int			device_to_device;
371
	unsigned int                    pc_to_pc;
372
	unsigned long			flags;
373
	dma_addr_t			per_address, per_address2;
374 375
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
376 377
	u32				shp_addr, per_addr;
	enum dma_status			status;
378
	struct imx_dma_data		data;
379
	struct dma_pool			*bd_pool;
380 381
};

382
#define IMX_DMA_SG_LOOP		BIT(0)
383 384 385 386 387 388 389 390 391 392 393

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
394 395 396 397 398 399 400 401 402
 * @magic:		"SDMA"
 * @version_major:	increased whenever layout of struct
 *			sdma_script_start_addrs changes.
 * @version_minor:	firmware minor version (for binary compatible changes)
 * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs:	Number of script addresses in this image
 * @ram_code_start:	offset of SDMA ram image in this firmware image
 * @ram_code_size:	size of SDMA ram image
 * @script_addrs:	Stores the start address of the SDMA scripts
403 404 405 406 407 408 409 410 411 412 413 414
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

415 416 417
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
418
	struct sdma_script_start_addrs	*script_addrs;
419 420
};

421 422
struct sdma_engine {
	struct device			*dev;
423
	struct device_dma_parameters	dma_parms;
424 425 426 427 428 429
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
430 431
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
432
	spinlock_t			channel_0_lock;
433
	u32				script_number;
434
	struct sdma_script_start_addrs	*script_addrs;
435
	const struct sdma_driver_data	*drvdata;
436 437
	u32				spba_start_addr;
	u32				spba_end_addr;
438
	unsigned int			irq;
439 440
	dma_addr_t			bd0_phys;
	struct sdma_buffer_descriptor	*bd0;
441 442
};

443
static struct sdma_driver_data sdma_imx31 = {
444 445 446 447
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

464
static struct sdma_driver_data sdma_imx25 = {
465 466 467 468 469
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

470
static struct sdma_driver_data sdma_imx35 = {
471 472
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
473 474
};

475 476 477 478 479 480 481 482 483 484 485 486 487
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

488
static struct sdma_driver_data sdma_imx51 = {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

508
static struct sdma_driver_data sdma_imx53 = {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

527
static struct sdma_driver_data sdma_imx6q = {
528 529 530 531 532
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static struct sdma_script_start_addrs sdma_script_imx7d = {
	.ap_2_ap_addr = 644,
	.uart_2_mcu_addr = 819,
	.mcu_2_app_addr = 749,
	.uartsh_2_mcu_addr = 1034,
	.mcu_2_shp_addr = 962,
	.app_2_mcu_addr = 685,
	.shp_2_mcu_addr = 893,
	.spdif_2_mcu_addr = 1102,
	.mcu_2_spdif_addr = 1136,
};

static struct sdma_driver_data sdma_imx7d = {
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx7d,
};

551
static const struct platform_device_id sdma_devtypes[] = {
552
	{
553 554 555
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
556
		.name = "imx31-sdma",
557
		.driver_data = (unsigned long)&sdma_imx31,
558 559
	}, {
		.name = "imx35-sdma",
560
		.driver_data = (unsigned long)&sdma_imx35,
561 562 563 564 565 566 567 568 569
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
570 571 572
	}, {
		.name = "imx7d-sdma",
		.driver_data = (unsigned long)&sdma_imx7d,
573 574 575 576 577 578
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

579
static const struct of_device_id sdma_dt_ids[] = {
580 581 582
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
583
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
584
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
585
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
586
	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
587 588 589 590
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

591 592 593
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
594 595 596 597
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
598
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
599 600 601 602 603 604 605 606
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
607
	unsigned long evt, mcu, dsp;
608 609 610 611

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

612 613 614
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
615 616

	if (dsp_override)
617
		__clear_bit(channel, &dsp);
618
	else
619
		__set_bit(channel, &dsp);
620 621

	if (event_override)
622
		__clear_bit(channel, &evt);
623
	else
624
		__set_bit(channel, &evt);
625 626

	if (mcu_override)
627
		__clear_bit(channel, &mcu);
628
	else
629
		__set_bit(channel, &mcu);
630

631 632 633
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
634 635 636 637

	return 0;
}

638 639
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
640
	writel(BIT(channel), sdma->regs + SDMA_H_START);
641 642
}

643
/*
644
 * sdma_run_channel0 - run a channel and wait till it's done
645
 */
646
static int sdma_run_channel0(struct sdma_engine *sdma)
647 648
{
	int ret;
649
	u32 reg;
650

651
	sdma_enable_channel(sdma, 0);
652

653 654 655
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
656
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
657

658 659 660 661
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

662
	return ret;
663 664 665 666 667
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
668
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
669 670 671
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
672
	unsigned long flags;
673

674 675 676
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
677
	if (!buf_virt) {
678
		return -ENOMEM;
679
	}
680

681 682
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

683 684 685 686 687 688 689 690
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

691
	ret = sdma_run_channel0(sdma);
692

693
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
694

695
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
696

697 698 699 700 701 702 703
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
704
	unsigned long val;
705 706
	u32 chnenbl = chnenbl_ofs(sdma, event);

707
	val = readl_relaxed(sdma->regs + chnenbl);
708
	__set_bit(channel, &val);
709
	writel_relaxed(val, sdma->regs + chnenbl);
710 711 712 713 714 715 716
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
717
	unsigned long val;
718

719
	val = readl_relaxed(sdma->regs + chnenbl);
720
	__clear_bit(channel, &val);
721
	writel_relaxed(val, sdma->regs + chnenbl);
722 723
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct sdma_desc, vd.tx);
}

static void sdma_start_desc(struct sdma_channel *sdmac)
{
	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
	struct sdma_desc *desc;
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (!vd) {
		sdmac->desc = NULL;
		return;
	}
	sdmac->desc = desc = to_sdma_desc(&vd->tx);
	/*
	 * Do not delete the node in desc_issued list in cyclic mode, otherwise
V
Vinod Koul 已提交
743
	 * the desc allocated will never be freed in vchan_dma_desc_free_list
744 745 746 747 748 749 750 751 752
	 */
	if (!(sdmac->flags & IMX_DMA_SG_LOOP))
		list_del(&vd->node);

	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
	sdma_enable_channel(sdma, sdmac->channel);
}

753
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
754 755
{
	struct sdma_buffer_descriptor *bd;
756 757
	int error = 0;
	enum dma_status	old_status = sdmac->status;
758 759 760 761 762

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
763
	while (sdmac->desc) {
764 765 766
		struct sdma_desc *desc = sdmac->desc;

		bd = &desc->bd[desc->buf_tail];
767 768 769 770

		if (bd->mode.status & BD_DONE)
			break;

771 772
		if (bd->mode.status & BD_RROR) {
			bd->mode.status &= ~BD_RROR;
773
			sdmac->status = DMA_ERROR;
774 775
			error = -EIO;
		}
776

777 778 779 780 781
	       /*
		* We use bd->mode.count to calculate the residue, since contains
		* the number of bytes present in the current buffer descriptor.
		*/

782
		desc->chn_real_count = bd->mode.count;
783
		bd->mode.status |= BD_DONE;
784 785 786
		bd->mode.count = desc->period_len;
		desc->buf_ptail = desc->buf_tail;
		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
787 788 789 790 791 792 793

		/*
		 * The callback is called from the interrupt context in order
		 * to reduce latency and to avoid the risk of altering the
		 * SDMA transaction status by the time the client tasklet is
		 * executed.
		 */
794 795 796
		spin_unlock(&sdmac->vc.lock);
		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
		spin_lock(&sdmac->vc.lock);
797

798 799
		if (error)
			sdmac->status = old_status;
800 801 802
	}
}

803
static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
804
{
805
	struct sdma_channel *sdmac = (struct sdma_channel *) data;
806 807 808
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

809
	sdmac->desc->chn_real_count = 0;
810 811 812 813
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
814 815
	for (i = 0; i < sdmac->desc->num_bd; i++) {
		bd = &sdmac->desc->bd[i];
816 817 818

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
819
		 sdmac->desc->chn_real_count += bd->mode.count;
820 821 822 823 824
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
825
		sdmac->status = DMA_COMPLETE;
826 827 828 829 830
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
831
	unsigned long stat;
832

833 834
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
835 836
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
837 838 839 840

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];
841 842 843 844 845 846 847 848 849 850 851 852 853
		struct sdma_desc *desc;

		spin_lock(&sdmac->vc.lock);
		desc = sdmac->desc;
		if (desc) {
			if (sdmac->flags & IMX_DMA_SG_LOOP) {
				sdma_update_channel_loop(sdmac);
			} else {
				mxc_sdma_handle_channel_normal(sdmac);
				vchan_cookie_complete(&desc->vd);
				sdma_start_desc(sdmac);
			}
		}
854

855
		spin_unlock(&sdmac->vc.lock);
856
		__clear_bit(channel, &stat);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
874
	int per_2_per = 0, emi_2_emi = 0;
875 876 877

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
878
	sdmac->device_to_device = 0;
879
	sdmac->pc_to_pc = 0;
880 881 882

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
883
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
908
	case IMX_DMATYPE_SAI:
909 910 911
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
912 913 914 915
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
916 917 918 919 920 921 922 923 924 925 926 927 928 929
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
930 931 932 933 934
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
955
	sdmac->device_to_device = per_2_per;
956
	sdmac->pc_to_pc = emi_2_emi;
957 958 959 960 961 962 963 964
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
965
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
966
	int ret;
967
	unsigned long flags;
968

969
	if (sdmac->direction == DMA_DEV_TO_MEM)
970
		load_address = sdmac->pc_from_device;
971 972
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
973 974
	else if (sdmac->direction == DMA_MEM_TO_MEM)
		load_address = sdmac->pc_to_pc;
975
	else
976 977 978 979 980 981
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
982
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
983 984
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
985 986
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
987

988
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
989

990 991 992 993 994 995
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
996 997
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
998 999 1000 1001 1002 1003 1004 1005 1006
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1007
	ret = sdma_run_channel0(sdma);
1008

1009
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1010

1011 1012 1013
	return ret;
}

1014 1015
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
1016
	return container_of(chan, struct sdma_channel, vc.chan);
1017 1018 1019
}

static int sdma_disable_channel(struct dma_chan *chan)
1020
{
1021
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1022 1023 1024
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

1025
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1026
	sdmac->status = DMA_ERROR;
1027 1028

	return 0;
1029 1030
}

1031 1032
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
1033 1034 1035 1036
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

1037
	sdma_disable_channel(chan);
1038 1039 1040 1041 1042
	spin_lock_irqsave(&sdmac->vc.lock, flags);
	vchan_get_all_descriptors(&sdmac->vc, &head);
	sdmac->desc = NULL;
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
	vchan_dma_desc_free_list(&sdmac->vc, &head);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

	/*
	 * According to NXP R&D team a delay of one BD SDMA cost time
	 * (maximum is 1ms) should be added after disable of the channel
	 * bit, to ensure SDMA core has really been stopped after SDMA
	 * clients call .device_terminate_all.
	 */
	mdelay(1);

	return 0;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

1095
static int sdma_config_channel(struct dma_chan *chan)
1096
{
1097
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1098 1099
	int ret;

1100
	sdma_disable_channel(chan);
1101

1102 1103
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
1104 1105 1106 1107
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
1108
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1109 1110 1111 1112
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

1113 1114 1115 1116 1117 1118
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
1137 1138 1139 1140
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
1141
			__set_bit(sdmac->event_id0, sdmac->event_mask);
1142

1143 1144
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
1145
		sdmac->per_addr = sdmac->per_address2;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1166
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1167 1168 1169 1170

	return 0;
}

1171
static int sdma_request_channel0(struct sdma_engine *sdma)
1172 1173 1174
{
	int ret = -EBUSY;

1175 1176 1177
	sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
					GFP_NOWAIT);
	if (!sdma->bd0) {
1178 1179 1180 1181
		ret = -ENOMEM;
		goto out;
	}

1182 1183
	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1184

1185
	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1186 1187 1188 1189 1190 1191
	return 0;
out:

	return ret;
}

1192 1193

static int sdma_alloc_bd(struct sdma_desc *desc)
1194
{
1195
	int ret = 0;
1196

1197 1198
	desc->bd = dma_pool_alloc(desc->sdmac->bd_pool, GFP_ATOMIC,
					&desc->bd_phys);
1199 1200 1201 1202 1203 1204 1205
	if (!desc->bd) {
		ret = -ENOMEM;
		goto out;
	}
out:
	return ret;
}
1206

1207 1208
static void sdma_free_bd(struct sdma_desc *desc)
{
1209
	dma_pool_free(desc->sdmac->bd_pool, desc->bd, desc->bd_phys);
1210
}
1211

1212 1213 1214 1215 1216 1217
static void sdma_desc_free(struct virt_dma_desc *vd)
{
	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);

	sdma_free_bd(desc);
	kfree(desc);
1218 1219 1220 1221 1222 1223
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
1224
	struct imx_dma_data mem_data;
1225 1226
	int prio, ret;

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * MEMCPY may never setup chan->private by filter function such as
	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
	 * Please note in any other slave case, you have to setup chan->private
	 * with 'struct imx_dma_data' in your own filter function if you want to
	 * request dma channel by dma_request_channel() rather than
	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
	 * to warn you to correct your filter function.
	 */
	if (!data) {
		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
		mem_data.priority = 2;
		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
		mem_data.dma_request = 0;
		mem_data.dma_request2 = 0;
		data = &mem_data;

		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
	}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1262
	sdmac->event_id1 = data->dma_request2;
1263

1264 1265 1266 1267 1268 1269
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1270

1271
	ret = sdma_set_channel_priority(sdmac, prio);
1272
	if (ret)
1273
		goto disable_clk_ahb;
1274

1275 1276 1277 1278
	sdmac->bd_pool = dma_pool_create("bd_pool", chan->device->dev,
				sizeof(struct sdma_buffer_descriptor),
				32, 0);

1279
	return 0;
1280 1281 1282 1283 1284 1285

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1286 1287 1288 1289 1290 1291 1292
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

1293
	sdma_disable_channel_with_delay(chan);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

1305 1306
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1307 1308 1309

	dma_pool_destroy(sdmac->bd_pool);
	sdmac->bd_pool = NULL;
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
				enum dma_transfer_direction direction, u32 bds)
{
	struct sdma_desc *desc;

	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
	if (!desc)
		goto err_out;

	sdmac->status = DMA_IN_PROGRESS;
	sdmac->direction = direction;
	sdmac->flags = 0;

	desc->chn_count = 0;
	desc->chn_real_count = 0;
	desc->buf_tail = 0;
	desc->buf_ptail = 0;
	desc->sdmac = sdmac;
	desc->num_bd = bds;

	if (sdma_alloc_bd(desc))
		goto err_desc_out;

1335 1336 1337 1338
	/* No slave_config called in MEMCPY case, so do here */
	if (direction == DMA_MEM_TO_MEM)
		sdma_config_ownership(sdmac, false, true, false);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (sdma_load_context(sdmac))
		goto err_desc_out;

	return desc;

err_desc_out:
	kfree(desc);
err_out:
	return NULL;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static struct dma_async_tx_descriptor *sdma_prep_memcpy(
		struct dma_chan *chan, dma_addr_t dma_dst,
		dma_addr_t dma_src, size_t len, unsigned long flags)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	size_t count;
	int i = 0, param;
	struct sdma_buffer_descriptor *bd;
	struct sdma_desc *desc;

	if (!chan || !len)
		return NULL;

	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
		&dma_src, &dma_dst, len, channel);

	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
					len / SDMA_BD_MAX_CNT + 1);
	if (!desc)
		return NULL;

	do {
		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
		bd = &desc->bd[i];
		bd->buffer_addr = dma_src;
		bd->ext_buffer_addr = dma_dst;
		bd->mode.count = count;
		desc->chn_count += count;
		bd->mode.command = 0;

		dma_src += count;
		dma_dst += count;
		len -= count;
		i++;

		param = BD_DONE | BD_EXTD | BD_CONT;
		/* last bd */
		if (!len) {
			param |= BD_INTR;
			param |= BD_LAST;
			param &= ~BD_CONT;
		}

		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
				i, count, bd->buffer_addr,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	} while (len);

	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
}

1406 1407
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1408
		unsigned int sg_len, enum dma_transfer_direction direction,
1409
		unsigned long flags, void *context)
1410 1411 1412
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
1413
	int i, count;
1414
	int channel = sdmac->channel;
1415
	struct scatterlist *sg;
1416
	struct sdma_desc *desc;
1417

1418
	desc = sdma_transfer_init(sdmac, direction, sg_len);
1419 1420 1421
	if (!desc)
		goto err_out;

1422 1423 1424 1425
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	for_each_sg(sgl, sg, sg_len, i) {
1426
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1427 1428
		int param;

1429
		bd->buffer_addr = sg->dma_address;
1430

1431
		count = sg_dma_len(sg);
1432

1433
		if (count > SDMA_BD_MAX_CNT) {
1434
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1435
					channel, count, SDMA_BD_MAX_CNT);
1436
			goto err_bd_out;
1437 1438 1439
		}

		bd->mode.count = count;
1440
		desc->chn_count += count;
1441

1442
		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1443
			goto err_bd_out;
1444 1445 1446

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1447
			bd->mode.command = 0;
1448
			if (count & 3 || sg->dma_address & 3)
1449
				goto err_bd_out;
1450 1451 1452 1453
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
1454
				goto err_bd_out;
1455 1456 1457 1458 1459
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
1460
			goto err_bd_out;
1461
		}
1462 1463 1464

		param = BD_DONE | BD_EXTD | BD_CONT;

1465
		if (i + 1 == sg_len) {
1466
			param |= BD_INTR;
1467 1468
			param |= BD_LAST;
			param &= ~BD_CONT;
1469 1470
		}

1471 1472
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1473 1474 1475 1476 1477 1478
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

1479 1480 1481 1482
	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
	sdma_free_bd(desc);
	kfree(desc);
1483
err_out:
1484
	sdmac->status = DMA_ERROR;
1485 1486 1487 1488 1489
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1490
		size_t period_len, enum dma_transfer_direction direction,
1491
		unsigned long flags)
1492 1493 1494 1495
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1496
	int channel = sdmac->channel;
1497
	int i = 0, buf = 0;
1498
	struct sdma_desc *desc;
1499 1500 1501

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

1502
	desc = sdma_transfer_init(sdmac, direction, num_periods);
1503 1504 1505
	if (!desc)
		goto err_out;

1506
	desc->period_len = period_len;
1507

1508 1509
	sdmac->flags |= IMX_DMA_SG_LOOP;

1510
	if (period_len > SDMA_BD_MAX_CNT) {
1511
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1512
				channel, period_len, SDMA_BD_MAX_CNT);
1513
		goto err_bd_out;
1514 1515 1516
	}

	while (buf < buf_len) {
1517
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1518 1519 1520 1521 1522 1523 1524
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1525
			goto err_bd_out;
1526 1527 1528 1529 1530 1531 1532 1533 1534
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1535
		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1536
				i, period_len, (u64)dma_addr,
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

1548 1549 1550 1551
	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
	sdma_free_bd(desc);
	kfree(desc);
1552 1553 1554 1555 1556
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1557 1558
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1559 1560 1561
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1562 1563 1564 1565 1566
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1567 1568 1569 1570 1571 1572 1573 1574
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1575 1576 1577 1578 1579 1580 1581 1582
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1583 1584 1585
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1586 1587
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1588 1589
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1590
	struct sdma_desc *desc;
1591
	u32 residue;
1592 1593 1594
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&sdmac->vc.lock, flags);
	vd = vchan_find_desc(&sdmac->vc, cookie);
	if (vd) {
		desc = to_sdma_desc(&vd->tx);
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			residue = (desc->num_bd - desc->buf_ptail) *
				desc->period_len - desc->chn_real_count;
		else
			residue = desc->chn_count - desc->chn_real_count;
	} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
		residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
	} else {
		residue = 0;
	}
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1615

1616
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1617
			 residue);
1618

1619
	return sdmac->status;
1620 1621 1622 1623
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1624
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1625
	unsigned long flags;
1626

1627 1628 1629 1630
	spin_lock_irqsave(&sdmac->vc.lock, flags);
	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
		sdma_start_desc(sdmac);
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1631 1632
}

1633
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1634
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1635
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1636
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1637 1638 1639 1640 1641 1642 1643 1644

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1645 1646 1647 1648
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1649
	for (i = 0; i < sdma->script_number; i++)
1650 1651 1652 1653
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1654
static void sdma_load_firmware(const struct firmware *fw, void *context)
1655
{
1656
	struct sdma_engine *sdma = context;
1657 1658 1659 1660
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1661
	if (!fw) {
1662 1663
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1664 1665
		return;
	}
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1676
	switch (header->version_major) {
A
Asaf Vertz 已提交
1677 1678 1679 1680 1681 1682
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1683 1684 1685
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
1686 1687 1688
	case 4:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
		break;
A
Asaf Vertz 已提交
1689 1690 1691
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1692
	}
1693 1694 1695 1696

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1697 1698
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1699 1700 1701
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1702
			addr->ram_code_start_addr);
1703 1704
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1705 1706 1707 1708 1709 1710 1711 1712 1713

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1714 1715
}

1716 1717
#define EVENT_REMAP_CELLS 3

1718
static int sdma_event_remap(struct sdma_engine *sdma)
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1734
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1782
static int sdma_get_firmware(struct sdma_engine *sdma,
1783 1784 1785 1786 1787 1788 1789
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1790 1791 1792 1793

	return ret;
}

1794
static int sdma_init(struct sdma_engine *sdma)
1795 1796 1797 1798
{
	int i, ret;
	dma_addr_t ccb_phys;

1799 1800 1801 1802 1803 1804
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1805 1806

	/* Be sure SDMA has not started yet */
1807
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1829
	for (i = 0; i < sdma->drvdata->num_events; i++)
1830
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1831 1832 1833

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1834
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1835

1836
	ret = sdma_request_channel0(sdma);
1837 1838 1839 1840 1841 1842
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1843
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1844 1845 1846

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1847
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1848

1849
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1850 1851 1852 1853

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1854 1855
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1856 1857 1858 1859

	return 0;

err_dma_alloc:
1860
	clk_disable(sdma->clk_ahb);
1861 1862
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1863 1864 1865 1866
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1867 1868
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1869
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1870 1871 1872 1873 1874
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1875 1876
	sdmac->data = *data;
	chan->private = &sdmac->data;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1894 1895 1896 1897 1898 1899 1900 1901
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1902 1903 1904 1905

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1906
static int sdma_probe(struct platform_device *pdev)
1907
{
1908 1909 1910
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1911
	struct device_node *spba_bus;
1912
	const char *fw_name;
1913 1914 1915
	int ret;
	int irq;
	struct resource *iores;
1916
	struct resource spba_res;
J
Jingoo Han 已提交
1917
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1918 1919
	int i;
	struct sdma_engine *sdma;
1920
	s32 *saddr_arr;
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1932

1933 1934 1935 1936
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1937
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1938 1939 1940
	if (!sdma)
		return -ENOMEM;

1941
	spin_lock_init(&sdma->channel_0_lock);
1942

1943
	sdma->dev = &pdev->dev;
1944
	sdma->drvdata = drvdata;
1945 1946

	irq = platform_get_irq(pdev, 0);
1947
	if (irq < 0)
1948
		return irq;
1949

1950 1951 1952 1953
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1954

1955
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1956 1957
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1958

1959
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1960 1961
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1962

1963 1964 1965 1966 1967 1968 1969
	ret = clk_prepare(sdma->clk_ipg);
	if (ret)
		return ret;

	ret = clk_prepare(sdma->clk_ahb);
	if (ret)
		goto err_clk;
1970

1971 1972
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1973
	if (ret)
1974
		goto err_irq;
1975

1976 1977
	sdma->irq = irq;

1978
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1979 1980 1981 1982
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
		goto err_irq;
	}
1983

1984 1985 1986 1987 1988
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1989 1990
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1991
	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
1992

1993 1994 1995 1996 1997 1998 1999 2000
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;

		sdmac->channel = i;
2001
		sdmac->vc.desc_free = sdma_desc_free;
2002 2003 2004 2005 2006 2007
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
2008
			vchan_init(&sdmac->vc, &sdma->dma_device);
2009 2010
	}

2011
	ret = sdma_init(sdma);
2012 2013 2014
	if (ret)
		goto err_init;

2015 2016 2017 2018
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

2019 2020
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2021
	if (pdata && pdata->script_addrs)
2022 2023
		sdma_add_scripts(sdma, pdata->script_addrs);

2024
	if (pdata) {
2025 2026
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
2027
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2028 2029 2030 2031 2032 2033 2034 2035
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
2036
		if (ret)
2037
			dev_warn(&pdev->dev, "failed to get firmware name\n");
2038 2039 2040
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
2041
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2042 2043
		}
	}
2044

2045 2046 2047 2048 2049 2050 2051
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2052
	sdma->dma_device.device_config = sdma_config;
2053
	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
2054 2055 2056
	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2057
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2058
	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2059
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2060
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2061
	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2062

2063 2064
	platform_set_drvdata(pdev, sdma);

2065 2066 2067 2068 2069 2070
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

2071 2072 2073 2074 2075 2076
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
2077 2078 2079 2080 2081 2082 2083 2084

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
2085 2086
	}

2087 2088
	return 0;

2089 2090
err_register:
	dma_async_device_unregister(&sdma->dma_device);
2091 2092
err_init:
	kfree(sdma->script_addrs);
2093 2094 2095 2096
err_irq:
	clk_unprepare(sdma->clk_ahb);
err_clk:
	clk_unprepare(sdma->clk_ipg);
2097
	return ret;
2098 2099
}

2100
static int sdma_remove(struct platform_device *pdev)
2101
{
2102
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2103
	int i;
2104

2105
	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2106 2107
	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
2108 2109
	clk_unprepare(sdma->clk_ahb);
	clk_unprepare(sdma->clk_ipg);
2110 2111 2112 2113
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

2114 2115
		tasklet_kill(&sdmac->vc.task);
		sdma_free_chan_resources(&sdmac->vc.chan);
2116
	}
2117 2118 2119

	platform_set_drvdata(pdev, NULL);
	return 0;
2120 2121 2122 2123 2124
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
2125
		.of_match_table = sdma_dt_ids,
2126
	},
2127
	.id_table	= sdma_devtypes,
2128
	.remove		= sdma_remove,
2129
	.probe		= sdma_probe,
2130 2131
};

2132
module_platform_driver(sdma_driver);
2133 2134 2135

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
2136 2137 2138 2139 2140 2141
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
#endif
#if IS_ENABLED(CONFIG_SOC_IMX7D)
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
#endif
2142
MODULE_LICENSE("GPL");