imx-sdma.c 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/types.h>
24
#include <linux/bitops.h>
25 26 27
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
28
#include <linux/delay.h>
29 30 31 32 33 34 35 36 37
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
38
#include <linux/of.h>
39
#include <linux/of_address.h>
40
#include <linux/of_device.h>
41
#include <linux/of_dma.h>
42 43

#include <asm/irq.h>
44 45
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
46 47 48
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49

50 51
#include "dmaengine.h"

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
79 80
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

181 182 183 184 185 186 187 188
#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
				 BIT(DMA_MEM_TO_DEV) | \
				 BIT(DMA_DEV_TO_DEV))

189 190 191 192 193 194
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
195
	u32 command :  8; /* command mostly used for channel 0 */
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
302
 * @channel		the channel number, matches dmaengine chan_id + 1
303 304 305 306 307 308
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
309
 * @buf_ptail		ID of the previous buffer that was processed
310 311 312 313 314
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
315
	enum dma_transfer_direction		direction;
316 317 318 319 320
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
321
	unsigned int			buf_ptail;
322
	unsigned int			num_bd;
323
	unsigned int			period_len;
324 325 326
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
327
	unsigned int			device_to_device;
328
	unsigned long			flags;
329
	dma_addr_t			per_address, per_address2;
330 331
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
332 333 334 335 336
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
337 338
	unsigned int			chn_count;
	unsigned int			chn_real_count;
339
	struct tasklet_struct		tasklet;
340
	struct imx_dma_data		data;
341
	bool				enabled;
342 343
};

344
#define IMX_DMA_SG_LOOP		BIT(0)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

377 378 379
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
380
	struct sdma_script_start_addrs	*script_addrs;
381 382
};

383 384
struct sdma_engine {
	struct device			*dev;
385
	struct device_dma_parameters	dma_parms;
386 387 388 389 390 391
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
392 393
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
394
	spinlock_t			channel_0_lock;
395
	u32				script_number;
396
	struct sdma_script_start_addrs	*script_addrs;
397
	const struct sdma_driver_data	*drvdata;
398 399
	u32				spba_start_addr;
	u32				spba_end_addr;
400
	unsigned int			irq;
401 402
};

403
static struct sdma_driver_data sdma_imx31 = {
404 405 406 407
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

424
static struct sdma_driver_data sdma_imx25 = {
425 426 427 428 429
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

430
static struct sdma_driver_data sdma_imx35 = {
431 432
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
433 434
};

435 436 437 438 439 440 441 442 443 444 445 446 447
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

448
static struct sdma_driver_data sdma_imx51 = {
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

468
static struct sdma_driver_data sdma_imx53 = {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

487
static struct sdma_driver_data sdma_imx6q = {
488 489 490 491 492
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static struct sdma_script_start_addrs sdma_script_imx7d = {
	.ap_2_ap_addr = 644,
	.uart_2_mcu_addr = 819,
	.mcu_2_app_addr = 749,
	.uartsh_2_mcu_addr = 1034,
	.mcu_2_shp_addr = 962,
	.app_2_mcu_addr = 685,
	.shp_2_mcu_addr = 893,
	.spdif_2_mcu_addr = 1102,
	.mcu_2_spdif_addr = 1136,
};

static struct sdma_driver_data sdma_imx7d = {
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx7d,
};

511
static const struct platform_device_id sdma_devtypes[] = {
512
	{
513 514 515
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
516
		.name = "imx31-sdma",
517
		.driver_data = (unsigned long)&sdma_imx31,
518 519
	}, {
		.name = "imx35-sdma",
520
		.driver_data = (unsigned long)&sdma_imx35,
521 522 523 524 525 526 527 528 529
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
530 531 532
	}, {
		.name = "imx7d-sdma",
		.driver_data = (unsigned long)&sdma_imx7d,
533 534 535 536 537 538
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

539
static const struct of_device_id sdma_dt_ids[] = {
540 541 542
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
543
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
544
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
545
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
546
	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
547 548 549 550
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

551 552 553
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
554 555 556 557
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
558
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
559 560 561 562 563 564 565 566
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
567
	unsigned long evt, mcu, dsp;
568 569 570 571

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

572 573 574
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
575 576

	if (dsp_override)
577
		__clear_bit(channel, &dsp);
578
	else
579
		__set_bit(channel, &dsp);
580 581

	if (event_override)
582
		__clear_bit(channel, &evt);
583
	else
584
		__set_bit(channel, &evt);
585 586

	if (mcu_override)
587
		__clear_bit(channel, &mcu);
588
	else
589
		__set_bit(channel, &mcu);
590

591 592 593
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
594 595 596 597

	return 0;
}

598 599
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
600 601 602
	unsigned long flags;
	struct sdma_channel *sdmac = &sdma->channel[channel];

603
	writel(BIT(channel), sdma->regs + SDMA_H_START);
604 605 606 607

	spin_lock_irqsave(&sdmac->lock, flags);
	sdmac->enabled = true;
	spin_unlock_irqrestore(&sdmac->lock, flags);
608 609
}

610
/*
611
 * sdma_run_channel0 - run a channel and wait till it's done
612
 */
613
static int sdma_run_channel0(struct sdma_engine *sdma)
614 615
{
	int ret;
616
	u32 reg;
617

618
	sdma_enable_channel(sdma, 0);
619

620 621 622
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
623
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
624

625 626 627 628
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

629
	return ret;
630 631 632 633 634 635 636 637 638
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
639
	unsigned long flags;
640

641 642 643
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
644
	if (!buf_virt) {
645
		return -ENOMEM;
646
	}
647

648 649
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

650 651 652 653 654 655 656 657
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

658
	ret = sdma_run_channel0(sdma);
659

660
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
661

662
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
663

664 665 666 667 668 669 670
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
671
	unsigned long val;
672 673
	u32 chnenbl = chnenbl_ofs(sdma, event);

674
	val = readl_relaxed(sdma->regs + chnenbl);
675
	__set_bit(channel, &val);
676
	writel_relaxed(val, sdma->regs + chnenbl);
677 678 679 680 681 682 683
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
684
	unsigned long val;
685

686
	val = readl_relaxed(sdma->regs + chnenbl);
687
	__clear_bit(channel, &val);
688
	writel_relaxed(val, sdma->regs + chnenbl);
689 690
}

691
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
692 693
{
	struct sdma_buffer_descriptor *bd;
694 695
	int error = 0;
	enum dma_status	old_status = sdmac->status;
696 697 698 699 700 701 702 703
	unsigned long flags;

	spin_lock_irqsave(&sdmac->lock, flags);
	if (!sdmac->enabled) {
		spin_unlock_irqrestore(&sdmac->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&sdmac->lock, flags);
704 705 706 707 708 709 710 711 712 713 714

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

715 716
		if (bd->mode.status & BD_RROR) {
			bd->mode.status &= ~BD_RROR;
717
			sdmac->status = DMA_ERROR;
718 719
			error = -EIO;
		}
720

721 722 723 724 725 726
	       /*
		* We use bd->mode.count to calculate the residue, since contains
		* the number of bytes present in the current buffer descriptor.
		*/

		sdmac->chn_real_count = bd->mode.count;
727
		bd->mode.status |= BD_DONE;
728
		bd->mode.count = sdmac->period_len;
729 730
		sdmac->buf_ptail = sdmac->buf_tail;
		sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
731 732 733 734 735 736 737 738

		/*
		 * The callback is called from the interrupt context in order
		 * to reduce latency and to avoid the risk of altering the
		 * SDMA transaction status by the time the client tasklet is
		 * executed.
		 */

739
		dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
740

741 742
		if (error)
			sdmac->status = old_status;
743 744 745
	}
}

746
static void mxc_sdma_handle_channel_normal(unsigned long data)
747
{
748
	struct sdma_channel *sdmac = (struct sdma_channel *) data;
749 750 751
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

752
	sdmac->chn_real_count = 0;
753 754 755 756 757 758 759 760 761
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
762
		 sdmac->chn_real_count += bd->mode.count;
763 764 765 766 767
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
768
		sdmac->status = DMA_COMPLETE;
769

770
	dma_cookie_complete(&sdmac->desc);
771 772

	dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
773 774 775 776 777
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
778
	unsigned long stat;
779

780 781
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
782 783
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
784 785 786 787 788

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

789 790
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			sdma_update_channel_loop(sdmac);
791 792
		else
			tasklet_schedule(&sdmac->tasklet);
793

794
		__clear_bit(channel, &stat);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
812
	int per_2_per = 0;
813 814 815

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
816
	sdmac->device_to_device = 0;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
844
	case IMX_DMATYPE_SAI:
845 846 847
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
848 849 850 851
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
852 853 854 855 856 857 858 859 860 861 862 863 864 865
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
866 867 868 869 870
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
891
	sdmac->device_to_device = per_2_per;
892 893 894 895 896 897 898 899 900 901
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;
902
	unsigned long flags;
903

904
	if (sdmac->direction == DMA_DEV_TO_MEM)
905
		load_address = sdmac->pc_from_device;
906 907 908
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
	else
909 910 911 912 913 914
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
915
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
916 917
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
918 919
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
920

921
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
922

923 924 925 926 927 928
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
929 930
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
931 932 933 934 935 936 937 938 939
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
940
	ret = sdma_run_channel0(sdma);
941

942
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
943

944 945 946
	return ret;
}

947 948 949 950 951 952
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static int sdma_disable_channel(struct dma_chan *chan)
953
{
954
	struct sdma_channel *sdmac = to_sdma_chan(chan);
955 956
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
957
	unsigned long flags;
958

959
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
960
	sdmac->status = DMA_ERROR;
961

962 963 964 965
	spin_lock_irqsave(&sdmac->lock, flags);
	sdmac->enabled = false;
	spin_unlock_irqrestore(&sdmac->lock, flags);

966
	return 0;
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
	sdma_disable_channel(chan);

	/*
	 * According to NXP R&D team a delay of one BD SDMA cost time
	 * (maximum is 1ms) should be added after disable of the channel
	 * bit, to ensure SDMA core has really been stopped after SDMA
	 * clients call .device_terminate_all.
	 */
	mdelay(1);

	return 0;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

1024
static int sdma_config_channel(struct dma_chan *chan)
1025
{
1026
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1027 1028
	int ret;

1029
	sdma_disable_channel(chan);
1030

1031 1032
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
1033 1034 1035 1036
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
1037
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1038 1039 1040 1041
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

1042 1043 1044 1045 1046 1047
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
1066 1067 1068 1069
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
1070
			__set_bit(sdmac->event_id0, sdmac->event_mask);
1071

1072 1073
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
1074
		sdmac->per_addr = sdmac->per_address2;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1095
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

J
Joe Perches 已提交
1106 1107
	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
					GFP_KERNEL);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
	return 0;
out:

	return ret;
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
1125
	unsigned long flags;
1126 1127 1128
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

1129
	spin_lock_irqsave(&sdmac->lock, flags);
1130

1131
	cookie = dma_cookie_assign(tx);
1132

1133
	spin_unlock_irqrestore(&sdmac->lock, flags);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1162
	sdmac->event_id1 = data->dma_request2;
1163

1164 1165 1166 1167 1168 1169
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1170

1171
	ret = sdma_request_channel(sdmac);
1172
	if (ret)
1173
		goto disable_clk_ahb;
1174

1175
	ret = sdma_set_channel_priority(sdmac, prio);
1176
	if (ret)
1177
		goto disable_clk_ahb;
1178 1179 1180 1181 1182 1183 1184

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
1185 1186 1187 1188 1189 1190

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1191 1192 1193 1194 1195 1196 1197
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

1198
	sdma_disable_channel(chan);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

1212 1213
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1214 1215 1216 1217
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1218
		unsigned int sg_len, enum dma_transfer_direction direction,
1219
		unsigned long flags, void *context)
1220 1221 1222 1223
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
1224
	int channel = sdmac->channel;
1225 1226 1227 1228 1229 1230 1231 1232
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

1233
	sdmac->buf_tail = 0;
1234 1235
	sdmac->buf_ptail = 0;
	sdmac->chn_real_count = 0;
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

1252
	sdmac->chn_count = 0;
1253 1254 1255 1256
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

1257
		bd->buffer_addr = sg->dma_address;
1258

1259
		count = sg_dma_len(sg);
1260 1261 1262 1263 1264 1265 1266 1267 1268

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
1269
		sdmac->chn_count += count;
1270 1271 1272 1273 1274

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
1275 1276 1277

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1278
			bd->mode.command = 0;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
1293 1294 1295

		param = BD_DONE | BD_EXTD | BD_CONT;

1296
		if (i + 1 == sg_len) {
1297
			param |= BD_INTR;
1298 1299
			param |= BD_LAST;
			param &= ~BD_CONT;
1300 1301
		}

1302 1303
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1315
	sdmac->status = DMA_ERROR;
1316 1317 1318 1319 1320
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1321
		size_t period_len, enum dma_transfer_direction direction,
1322
		unsigned long flags)
1323 1324 1325 1326
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1327
	int channel = sdmac->channel;
1328 1329 1330 1331 1332 1333 1334 1335 1336
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1337
	sdmac->buf_tail = 0;
1338 1339
	sdmac->buf_ptail = 0;
	sdmac->chn_real_count = 0;
1340
	sdmac->period_len = period_len;
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
1355
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1379
		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1380
				i, period_len, (u64)dma_addr,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1401 1402
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1403 1404 1405
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1406 1407 1408 1409 1410
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1411 1412 1413 1414 1415 1416 1417 1418
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1419 1420 1421 1422 1423 1424 1425 1426
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1427 1428 1429
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1430 1431
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1432 1433
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1434 1435 1436
	u32 residue;

	if (sdmac->flags & IMX_DMA_SG_LOOP)
1437
		residue = (sdmac->num_bd - sdmac->buf_ptail) *
1438
			   sdmac->period_len - sdmac->chn_real_count;
1439 1440
	else
		residue = sdmac->chn_count - sdmac->chn_real_count;
1441

1442
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1443
			 residue);
1444

1445
	return sdmac->status;
1446 1447 1448 1449
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1450 1451 1452 1453 1454
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1455 1456
}

1457
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1458
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1459
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1460
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1461 1462 1463 1464 1465 1466 1467 1468

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1469 1470 1471 1472
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1473
	for (i = 0; i < sdma->script_number; i++)
1474 1475 1476 1477
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1478
static void sdma_load_firmware(const struct firmware *fw, void *context)
1479
{
1480
	struct sdma_engine *sdma = context;
1481 1482 1483 1484
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1485
	if (!fw) {
1486 1487
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1488 1489
		return;
	}
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1500
	switch (header->version_major) {
A
Asaf Vertz 已提交
1501 1502 1503 1504 1505 1506
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1507 1508 1509
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
1510 1511 1512
	case 4:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
		break;
A
Asaf Vertz 已提交
1513 1514 1515
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1516
	}
1517 1518 1519 1520

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1521 1522
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1523 1524 1525
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1526
			addr->ram_code_start_addr);
1527 1528
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1529 1530 1531 1532 1533 1534 1535 1536 1537

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1538 1539
}

1540 1541
#define EVENT_REMAP_CELLS 3

1542
static int sdma_event_remap(struct sdma_engine *sdma)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1558
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1606
static int sdma_get_firmware(struct sdma_engine *sdma,
1607 1608 1609 1610 1611 1612 1613
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1614 1615 1616 1617

	return ret;
}

1618
static int sdma_init(struct sdma_engine *sdma)
1619 1620 1621 1622
{
	int i, ret;
	dma_addr_t ccb_phys;

1623 1624 1625 1626 1627 1628
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1629 1630

	/* Be sure SDMA has not started yet */
1631
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1653
	for (i = 0; i < sdma->drvdata->num_events; i++)
1654
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1655 1656 1657

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1658
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1659 1660 1661 1662 1663 1664 1665 1666

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1667
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1668 1669 1670

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1671
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1672

1673
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1674 1675 1676 1677

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1678 1679
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1680 1681 1682 1683

	return 0;

err_dma_alloc:
1684
	clk_disable(sdma->clk_ahb);
1685 1686
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1687 1688 1689 1690
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1691 1692
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1693
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1694 1695 1696 1697 1698
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1699 1700
	sdmac->data = *data;
	chan->private = &sdmac->data;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1718 1719 1720 1721 1722 1723 1724 1725
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1726 1727 1728 1729

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1730
static int sdma_probe(struct platform_device *pdev)
1731
{
1732 1733 1734
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1735
	struct device_node *spba_bus;
1736
	const char *fw_name;
1737 1738 1739
	int ret;
	int irq;
	struct resource *iores;
1740
	struct resource spba_res;
J
Jingoo Han 已提交
1741
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1742 1743
	int i;
	struct sdma_engine *sdma;
1744
	s32 *saddr_arr;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1756

1757 1758 1759 1760
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1761
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1762 1763 1764
	if (!sdma)
		return -ENOMEM;

1765
	spin_lock_init(&sdma->channel_0_lock);
1766

1767
	sdma->dev = &pdev->dev;
1768
	sdma->drvdata = drvdata;
1769 1770

	irq = platform_get_irq(pdev, 0);
1771
	if (irq < 0)
1772
		return irq;
1773

1774 1775 1776 1777
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1778

1779
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1780 1781
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1782

1783
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1784 1785
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1786

1787 1788 1789 1790 1791 1792 1793
	ret = clk_prepare(sdma->clk_ipg);
	if (ret)
		return ret;

	ret = clk_prepare(sdma->clk_ahb);
	if (ret)
		goto err_clk;
1794

1795 1796
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1797
	if (ret)
1798
		goto err_irq;
1799

1800 1801
	sdma->irq = irq;

1802
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1803 1804 1805 1806
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
		goto err_irq;
	}
1807

1808 1809 1810 1811 1812
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1813 1814 1815
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1816 1817 1818 1819 1820 1821 1822 1823 1824
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1825
		dma_cookie_init(&sdmac->chan);
1826 1827
		sdmac->channel = i;

1828
		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1829
			     (unsigned long) sdmac);
1830 1831 1832 1833 1834 1835 1836 1837
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1838 1839
	}

1840
	ret = sdma_init(sdma);
1841 1842 1843
	if (ret)
		goto err_init;

1844 1845 1846 1847
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

1848 1849
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1850
	if (pdata && pdata->script_addrs)
1851 1852
		sdma_add_scripts(sdma, pdata->script_addrs);

1853
	if (pdata) {
1854 1855
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1856
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1857 1858 1859 1860 1861 1862 1863 1864
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1865
		if (ret)
1866
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1867 1868 1869
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1870
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1871 1872
		}
	}
1873

1874 1875 1876 1877 1878 1879 1880
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1881
	sdma->dma_device.device_config = sdma_config;
1882
	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1883 1884 1885
	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1886
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1887
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1888 1889
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1890

1891 1892
	platform_set_drvdata(pdev, sdma);

1893 1894 1895 1896 1897 1898
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1899 1900 1901 1902 1903 1904
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
1905 1906 1907 1908 1909 1910 1911 1912

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
1913 1914
	}

1915 1916
	return 0;

1917 1918
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1919 1920
err_init:
	kfree(sdma->script_addrs);
1921 1922 1923 1924
err_irq:
	clk_unprepare(sdma->clk_ahb);
err_clk:
	clk_unprepare(sdma->clk_ipg);
1925
	return ret;
1926 1927
}

1928
static int sdma_remove(struct platform_device *pdev)
1929
{
1930
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1931
	int i;
1932

1933
	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1934 1935
	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
1936 1937
	clk_unprepare(sdma->clk_ahb);
	clk_unprepare(sdma->clk_ipg);
1938 1939 1940 1941 1942 1943
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		tasklet_kill(&sdmac->tasklet);
	}
1944 1945 1946

	platform_set_drvdata(pdev, NULL);
	return 0;
1947 1948 1949 1950 1951
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1952
		.of_match_table = sdma_dt_ids,
1953
	},
1954
	.id_table	= sdma_devtypes,
1955
	.remove		= sdma_remove,
1956
	.probe		= sdma_probe,
1957 1958
};

1959
module_platform_driver(sdma_driver);
1960 1961 1962

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
1963 1964 1965 1966 1967 1968
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
#endif
#if IS_ENABLED(CONFIG_SOC_IMX7D)
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
#endif
1969
MODULE_LICENSE("GPL");