imx-sdma.c 51.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
// SPDX-License-Identifier: GPL-2.0+
//
// drivers/dma/imx-sdma.c
//
// This file contains a driver for the Freescale Smart DMA engine
//
// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
//
// Based on code from Freescale:
//
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 13

#include <linux/init.h>
14
#include <linux/iopoll.h>
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/bitops.h>
18 19 20
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
21
#include <linux/delay.h>
22 23 24 25 26 27 28 29 30
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
31
#include <linux/of.h>
32
#include <linux/of_address.h>
33
#include <linux/of_device.h>
34
#include <linux/of_dma.h>
35 36

#include <asm/irq.h>
37 38
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
39 40 41
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42

43 44
#include "dmaengine.h"

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
72 73
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

174 175 176 177 178 179 180 181
#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
				 BIT(DMA_MEM_TO_DEV) | \
				 BIT(DMA_DEV_TO_DEV))

182 183 184 185 186 187
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
188
	u32 command :  8; /* command mostly used for channel 0 */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/**
 * struct sdma_desc - descriptor structor for one transfer
 * @vd			descriptor for virt dma
 * @num_bd		max NUM_BD. number of descriptors currently handling
 * @buf_tail		ID of the buffer that was processed
 * @buf_ptail		ID of the previous buffer that was processed
 * @period_len		period length, used in cyclic.
 * @chn_real_count	the real count updated from bd->mode.count
 * @chn_count		the transfer count setuped
 * @sdmac		sdma_channel pointer
 * @bd			pointer of alloced bd
 */
struct sdma_desc {
	unsigned int		num_bd;
	dma_addr_t		bd_phys;
	unsigned int		buf_tail;
	unsigned int		buf_ptail;
	unsigned int		period_len;
	unsigned int		chn_real_count;
	unsigned int		chn_count;
	struct sdma_channel	*sdmac;
	struct sdma_buffer_descriptor *bd;
};

315 316 317 318
/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
319
 * @channel		the channel number, matches dmaengine chan_id + 1
320 321 322 323 324 325 326
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 */
struct sdma_channel {
327 328
	struct sdma_desc		*desc;
	struct sdma_desc		_desc;
329 330
	struct sdma_engine		*sdma;
	unsigned int			channel;
331
	enum dma_transfer_direction		direction;
332 333 334 335 336
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			pc_from_device, pc_to_device;
337
	unsigned int			device_to_device;
338
	unsigned long			flags;
339
	dma_addr_t			per_address, per_address2;
340 341
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
342 343 344
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
345
	struct dma_async_tx_descriptor	txdesc;
346
	enum dma_status			status;
347
	struct tasklet_struct		tasklet;
348
	struct imx_dma_data		data;
349
	bool				enabled;
350 351
};

352
#define IMX_DMA_SG_LOOP		BIT(0)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

385 386 387
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
388
	struct sdma_script_start_addrs	*script_addrs;
389 390
};

391 392
struct sdma_engine {
	struct device			*dev;
393
	struct device_dma_parameters	dma_parms;
394 395 396 397 398 399
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
400 401
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
402
	spinlock_t			channel_0_lock;
403
	u32				script_number;
404
	struct sdma_script_start_addrs	*script_addrs;
405
	const struct sdma_driver_data	*drvdata;
406 407
	u32				spba_start_addr;
	u32				spba_end_addr;
408
	unsigned int			irq;
409 410
	dma_addr_t			bd0_phys;
	struct sdma_buffer_descriptor	*bd0;
411 412
};

413
static struct sdma_driver_data sdma_imx31 = {
414 415 416 417
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

434
static struct sdma_driver_data sdma_imx25 = {
435 436 437 438 439
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

440
static struct sdma_driver_data sdma_imx35 = {
441 442
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
443 444
};

445 446 447 448 449 450 451 452 453 454 455 456 457
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

458
static struct sdma_driver_data sdma_imx51 = {
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

478
static struct sdma_driver_data sdma_imx53 = {
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

497
static struct sdma_driver_data sdma_imx6q = {
498 499 500 501 502
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static struct sdma_script_start_addrs sdma_script_imx7d = {
	.ap_2_ap_addr = 644,
	.uart_2_mcu_addr = 819,
	.mcu_2_app_addr = 749,
	.uartsh_2_mcu_addr = 1034,
	.mcu_2_shp_addr = 962,
	.app_2_mcu_addr = 685,
	.shp_2_mcu_addr = 893,
	.spdif_2_mcu_addr = 1102,
	.mcu_2_spdif_addr = 1136,
};

static struct sdma_driver_data sdma_imx7d = {
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx7d,
};

521
static const struct platform_device_id sdma_devtypes[] = {
522
	{
523 524 525
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
526
		.name = "imx31-sdma",
527
		.driver_data = (unsigned long)&sdma_imx31,
528 529
	}, {
		.name = "imx35-sdma",
530
		.driver_data = (unsigned long)&sdma_imx35,
531 532 533 534 535 536 537 538 539
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
540 541 542
	}, {
		.name = "imx7d-sdma",
		.driver_data = (unsigned long)&sdma_imx7d,
543 544 545 546 547 548
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

549
static const struct of_device_id sdma_dt_ids[] = {
550 551 552
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
553
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
554
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
555
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
556
	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
557 558 559 560
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

561 562 563
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
564 565 566 567
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
568
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
569 570 571 572 573 574 575 576
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
577
	unsigned long evt, mcu, dsp;
578 579 580 581

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

582 583 584
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
585 586

	if (dsp_override)
587
		__clear_bit(channel, &dsp);
588
	else
589
		__set_bit(channel, &dsp);
590 591

	if (event_override)
592
		__clear_bit(channel, &evt);
593
	else
594
		__set_bit(channel, &evt);
595 596

	if (mcu_override)
597
		__clear_bit(channel, &mcu);
598
	else
599
		__set_bit(channel, &mcu);
600

601 602 603
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
604 605 606 607

	return 0;
}

608 609
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
610 611 612
	unsigned long flags;
	struct sdma_channel *sdmac = &sdma->channel[channel];

613
	writel(BIT(channel), sdma->regs + SDMA_H_START);
614 615 616 617

	spin_lock_irqsave(&sdmac->lock, flags);
	sdmac->enabled = true;
	spin_unlock_irqrestore(&sdmac->lock, flags);
618 619
}

620
/*
621
 * sdma_run_channel0 - run a channel and wait till it's done
622
 */
623
static int sdma_run_channel0(struct sdma_engine *sdma)
624 625
{
	int ret;
626
	u32 reg;
627

628
	sdma_enable_channel(sdma, 0);
629

630 631 632
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
633
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
634

635 636 637 638
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

639
	return ret;
640 641 642 643 644
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
645
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
646 647 648
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
649
	unsigned long flags;
650

651 652 653
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
654
	if (!buf_virt) {
655
		return -ENOMEM;
656
	}
657

658 659
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

660 661 662 663 664 665 666 667
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

668
	ret = sdma_run_channel0(sdma);
669

670
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
671

672
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
673

674 675 676 677 678 679 680
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
681
	unsigned long val;
682 683
	u32 chnenbl = chnenbl_ofs(sdma, event);

684
	val = readl_relaxed(sdma->regs + chnenbl);
685
	__set_bit(channel, &val);
686
	writel_relaxed(val, sdma->regs + chnenbl);
687 688 689 690 691 692 693
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
694
	unsigned long val;
695

696
	val = readl_relaxed(sdma->regs + chnenbl);
697
	__clear_bit(channel, &val);
698
	writel_relaxed(val, sdma->regs + chnenbl);
699 700
}

701
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
702 703
{
	struct sdma_buffer_descriptor *bd;
704 705
	int error = 0;
	enum dma_status	old_status = sdmac->status;
706 707 708 709 710 711 712 713
	unsigned long flags;

	spin_lock_irqsave(&sdmac->lock, flags);
	if (!sdmac->enabled) {
		spin_unlock_irqrestore(&sdmac->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&sdmac->lock, flags);
714 715 716 717 718 719

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
720 721 722
		struct sdma_desc *desc = sdmac->desc;

		bd = &desc->bd[desc->buf_tail];
723 724 725 726

		if (bd->mode.status & BD_DONE)
			break;

727 728
		if (bd->mode.status & BD_RROR) {
			bd->mode.status &= ~BD_RROR;
729
			sdmac->status = DMA_ERROR;
730 731
			error = -EIO;
		}
732

733 734 735 736 737
	       /*
		* We use bd->mode.count to calculate the residue, since contains
		* the number of bytes present in the current buffer descriptor.
		*/

738
		desc->chn_real_count = bd->mode.count;
739
		bd->mode.status |= BD_DONE;
740 741 742
		bd->mode.count = desc->period_len;
		desc->buf_ptail = desc->buf_tail;
		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
743 744 745 746 747 748 749 750

		/*
		 * The callback is called from the interrupt context in order
		 * to reduce latency and to avoid the risk of altering the
		 * SDMA transaction status by the time the client tasklet is
		 * executed.
		 */

751
		dmaengine_desc_get_callback_invoke(&sdmac->txdesc, NULL);
752

753 754
		if (error)
			sdmac->status = old_status;
755 756 757
	}
}

758
static void mxc_sdma_handle_channel_normal(unsigned long data)
759
{
760
	struct sdma_channel *sdmac = (struct sdma_channel *) data;
761 762 763
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

764
	sdmac->desc->chn_real_count = 0;
765 766 767 768
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
769 770
	for (i = 0; i < sdmac->desc->num_bd; i++) {
		bd = &sdmac->desc->bd[i];
771 772 773

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
774
		 sdmac->desc->chn_real_count += bd->mode.count;
775 776 777 778 779
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
780
		sdmac->status = DMA_COMPLETE;
781

782
	dma_cookie_complete(&sdmac->txdesc);
783

784
	dmaengine_desc_get_callback_invoke(&sdmac->txdesc, NULL);
785 786 787 788 789
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
790
	unsigned long stat;
791

792 793
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
794 795
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
796 797 798 799 800

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

801 802
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			sdma_update_channel_loop(sdmac);
803 804
		else
			tasklet_schedule(&sdmac->tasklet);
805

806
		__clear_bit(channel, &stat);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
824
	int per_2_per = 0;
825 826 827

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
828
	sdmac->device_to_device = 0;
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
856
	case IMX_DMATYPE_SAI:
857 858 859
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
860 861 862 863
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
864 865 866 867 868 869 870 871 872 873 874 875 876 877
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
878 879 880 881 882
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
903
	sdmac->device_to_device = per_2_per;
904 905 906 907 908 909 910 911
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
912
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
913
	int ret;
914
	unsigned long flags;
915

916
	if (sdmac->direction == DMA_DEV_TO_MEM)
917
		load_address = sdmac->pc_from_device;
918 919 920
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
	else
921 922 923 924 925 926
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
927
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
928 929
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
930 931
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
932

933
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
934

935 936 937 938 939 940
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
941 942
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
943 944 945 946 947 948 949 950 951
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
952
	ret = sdma_run_channel0(sdma);
953

954
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
955

956 957 958
	return ret;
}

959 960 961 962 963 964
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static int sdma_disable_channel(struct dma_chan *chan)
965
{
966
	struct sdma_channel *sdmac = to_sdma_chan(chan);
967 968
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
969
	unsigned long flags;
970

971
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
972
	sdmac->status = DMA_ERROR;
973

974 975 976 977
	spin_lock_irqsave(&sdmac->lock, flags);
	sdmac->enabled = false;
	spin_unlock_irqrestore(&sdmac->lock, flags);

978
	return 0;
979 980
}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
	sdma_disable_channel(chan);

	/*
	 * According to NXP R&D team a delay of one BD SDMA cost time
	 * (maximum is 1ms) should be added after disable of the channel
	 * bit, to ensure SDMA core has really been stopped after SDMA
	 * clients call .device_terminate_all.
	 */
	mdelay(1);

	return 0;
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

1036
static int sdma_config_channel(struct dma_chan *chan)
1037
{
1038
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1039 1040
	int ret;

1041
	sdma_disable_channel(chan);
1042

1043 1044
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
1045 1046 1047 1048
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
1049
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1050 1051 1052 1053
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

1054 1055 1056 1057 1058 1059
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
1078 1079 1080 1081
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
1082
			__set_bit(sdmac->event_id0, sdmac->event_mask);
1083

1084 1085
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
1086
		sdmac->per_addr = sdmac->per_address2;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1107
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1108 1109 1110 1111 1112 1113 1114

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
1115
	struct sdma_desc *desc;
1116 1117 1118
	int channel = sdmac->channel;
	int ret = -EBUSY;

1119 1120 1121 1122
	sdmac->desc = &sdmac->_desc;
	desc = sdmac->desc;

	desc->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &desc->bd_phys,
J
Joe Perches 已提交
1123
					GFP_KERNEL);
1124
	if (!desc->bd) {
1125 1126 1127 1128
		ret = -ENOMEM;
		goto out;
	}

1129 1130
	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
	return 0;
out:

	return ret;
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
1141
	unsigned long flags;
1142 1143 1144
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

1145
	spin_lock_irqsave(&sdmac->lock, flags);
1146

1147
	cookie = dma_cookie_assign(tx);
1148

1149
	spin_unlock_irqrestore(&sdmac->lock, flags);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1178
	sdmac->event_id1 = data->dma_request2;
1179

1180 1181 1182 1183 1184 1185
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1186

1187
	ret = sdma_request_channel(sdmac);
1188
	if (ret)
1189
		goto disable_clk_ahb;
1190

1191
	ret = sdma_set_channel_priority(sdmac, prio);
1192
	if (ret)
1193
		goto disable_clk_ahb;
1194

1195 1196
	dma_async_tx_descriptor_init(&sdmac->txdesc, chan);
	sdmac->txdesc.tx_submit = sdma_tx_submit;
1197
	/* txd.flags will be overwritten in prep funcs */
1198
	sdmac->txdesc.flags = DMA_CTRL_ACK;
1199 1200

	return 0;
1201 1202 1203 1204 1205 1206

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1207 1208 1209 1210 1211 1212
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
1213
	struct sdma_desc *desc = sdmac->desc;
1214

1215
	sdma_disable_channel(chan);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

1227
	dma_free_coherent(NULL, PAGE_SIZE, desc->bd, desc->bd_phys);
1228

1229 1230
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1231 1232 1233 1234
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1235
		unsigned int sg_len, enum dma_transfer_direction direction,
1236
		unsigned long flags, void *context)
1237 1238 1239 1240
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
1241
	int channel = sdmac->channel;
1242
	struct scatterlist *sg;
1243
	struct sdma_desc *desc = sdmac->desc;
1244 1245 1246 1247 1248 1249 1250

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

1251 1252 1253
	desc->buf_tail = 0;
	desc->buf_ptail = 0;
	desc->chn_real_count = 0;
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

1270
	desc->chn_count = 0;
1271
	for_each_sg(sgl, sg, sg_len, i) {
1272
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1273 1274
		int param;

1275
		bd->buffer_addr = sg->dma_address;
1276

1277
		count = sg_dma_len(sg);
1278 1279 1280 1281 1282 1283 1284 1285 1286

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
1287
		desc->chn_count += count;
1288 1289 1290 1291 1292

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
1293 1294 1295

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1296
			bd->mode.command = 0;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
1311 1312 1313

		param = BD_DONE | BD_EXTD | BD_CONT;

1314
		if (i + 1 == sg_len) {
1315
			param |= BD_INTR;
1316 1317
			param |= BD_LAST;
			param &= ~BD_CONT;
1318 1319
		}

1320 1321
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1322 1323 1324 1325 1326 1327
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

1328 1329
	desc->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
1330

1331
	return &sdmac->txdesc;
1332
err_out:
1333
	sdmac->status = DMA_ERROR;
1334 1335 1336 1337 1338
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1339
		size_t period_len, enum dma_transfer_direction direction,
1340
		unsigned long flags)
1341 1342 1343 1344
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1345
	int channel = sdmac->channel;
1346
	int ret, i = 0, buf = 0;
1347
	struct sdma_desc *desc = sdmac->desc;
1348 1349 1350 1351 1352 1353 1354 1355

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1356 1357 1358 1359
	desc->buf_tail = 0;
	desc->buf_ptail = 0;
	desc->chn_real_count = 0;
	desc->period_len = period_len;
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
1374
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1375 1376 1377 1378 1379
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
1380
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1398
		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1399
				i, period_len, (u64)dma_addr,
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

1411 1412
	desc->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
1413

1414
	return &sdmac->txdesc;
1415 1416 1417 1418 1419
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1420 1421
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1422 1423 1424
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1425 1426 1427 1428 1429
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1430 1431 1432 1433 1434 1435 1436 1437
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1438 1439 1440 1441 1442 1443 1444 1445
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1446 1447 1448
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1449 1450
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1451 1452
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1453
	struct sdma_desc *desc = sdmac->desc;
1454 1455 1456
	u32 residue;

	if (sdmac->flags & IMX_DMA_SG_LOOP)
1457 1458
		residue = (desc->num_bd - desc->buf_ptail) *
			   desc->period_len - desc->chn_real_count;
1459
	else
1460
		residue = desc->chn_count - desc->chn_real_count;
1461

1462
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1463
			 residue);
1464

1465
	return sdmac->status;
1466 1467 1468 1469
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1470 1471 1472 1473 1474
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1475 1476
}

1477
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1478
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1479
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1480
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1481 1482 1483 1484 1485 1486 1487 1488

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1489 1490 1491 1492
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1493
	for (i = 0; i < sdma->script_number; i++)
1494 1495 1496 1497
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1498
static void sdma_load_firmware(const struct firmware *fw, void *context)
1499
{
1500
	struct sdma_engine *sdma = context;
1501 1502 1503 1504
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1505
	if (!fw) {
1506 1507
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1508 1509
		return;
	}
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1520
	switch (header->version_major) {
A
Asaf Vertz 已提交
1521 1522 1523 1524 1525 1526
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1527 1528 1529
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
1530 1531 1532
	case 4:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
		break;
A
Asaf Vertz 已提交
1533 1534 1535
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1536
	}
1537 1538 1539 1540

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1541 1542
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1543 1544 1545
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1546
			addr->ram_code_start_addr);
1547 1548
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1549 1550 1551 1552 1553 1554 1555 1556 1557

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1558 1559
}

1560 1561
#define EVENT_REMAP_CELLS 3

1562
static int sdma_event_remap(struct sdma_engine *sdma)
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1578
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1626
static int sdma_get_firmware(struct sdma_engine *sdma,
1627 1628 1629 1630 1631 1632 1633
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1634 1635 1636 1637

	return ret;
}

1638
static int sdma_init(struct sdma_engine *sdma)
1639 1640 1641 1642
{
	int i, ret;
	dma_addr_t ccb_phys;

1643 1644 1645 1646 1647 1648
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1649 1650

	/* Be sure SDMA has not started yet */
1651
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1673
	for (i = 0; i < sdma->drvdata->num_events; i++)
1674
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1675 1676 1677

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1678
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1679 1680 1681 1682 1683

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

1684 1685
	sdma->bd0 = sdma->channel[0].desc->bd;

1686 1687 1688
	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1689
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1690 1691 1692

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1693
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1694

1695
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1696 1697 1698 1699

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1700 1701
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1702 1703 1704 1705

	return 0;

err_dma_alloc:
1706
	clk_disable(sdma->clk_ahb);
1707 1708
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1709 1710 1711 1712
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1713 1714
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1715
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1716 1717 1718 1719 1720
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1721 1722
	sdmac->data = *data;
	chan->private = &sdmac->data;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1748 1749 1750 1751

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1752
static int sdma_probe(struct platform_device *pdev)
1753
{
1754 1755 1756
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1757
	struct device_node *spba_bus;
1758
	const char *fw_name;
1759 1760 1761
	int ret;
	int irq;
	struct resource *iores;
1762
	struct resource spba_res;
J
Jingoo Han 已提交
1763
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1764 1765
	int i;
	struct sdma_engine *sdma;
1766
	s32 *saddr_arr;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1778

1779 1780 1781 1782
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1783
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1784 1785 1786
	if (!sdma)
		return -ENOMEM;

1787
	spin_lock_init(&sdma->channel_0_lock);
1788

1789
	sdma->dev = &pdev->dev;
1790
	sdma->drvdata = drvdata;
1791 1792

	irq = platform_get_irq(pdev, 0);
1793
	if (irq < 0)
1794
		return irq;
1795

1796 1797 1798 1799
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1800

1801
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1802 1803
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1804

1805
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1806 1807
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1808

1809 1810 1811 1812 1813 1814 1815
	ret = clk_prepare(sdma->clk_ipg);
	if (ret)
		return ret;

	ret = clk_prepare(sdma->clk_ahb);
	if (ret)
		goto err_clk;
1816

1817 1818
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1819
	if (ret)
1820
		goto err_irq;
1821

1822 1823
	sdma->irq = irq;

1824
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1825 1826 1827 1828
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
		goto err_irq;
	}
1829

1830 1831 1832 1833 1834
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1835 1836 1837
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1838 1839 1840 1841 1842 1843 1844 1845 1846
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1847
		dma_cookie_init(&sdmac->chan);
1848 1849
		sdmac->channel = i;

1850
		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1851
			     (unsigned long) sdmac);
1852 1853 1854 1855 1856 1857 1858 1859
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1860 1861
	}

1862
	ret = sdma_init(sdma);
1863 1864 1865
	if (ret)
		goto err_init;

1866 1867 1868 1869
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

1870 1871
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1872
	if (pdata && pdata->script_addrs)
1873 1874
		sdma_add_scripts(sdma, pdata->script_addrs);

1875
	if (pdata) {
1876 1877
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1878
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1879 1880 1881 1882 1883 1884 1885 1886
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1887
		if (ret)
1888
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1889 1890 1891
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1892
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1893 1894
		}
	}
1895

1896 1897 1898 1899 1900 1901 1902
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1903
	sdma->dma_device.device_config = sdma_config;
1904
	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1905 1906 1907
	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1908
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1909
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1910 1911
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1912

1913 1914
	platform_set_drvdata(pdev, sdma);

1915 1916 1917 1918 1919 1920
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1921 1922 1923 1924 1925 1926
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
1927 1928 1929 1930 1931 1932 1933 1934

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
1935 1936
	}

1937 1938
	return 0;

1939 1940
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1941 1942
err_init:
	kfree(sdma->script_addrs);
1943 1944 1945 1946
err_irq:
	clk_unprepare(sdma->clk_ahb);
err_clk:
	clk_unprepare(sdma->clk_ipg);
1947
	return ret;
1948 1949
}

1950
static int sdma_remove(struct platform_device *pdev)
1951
{
1952
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1953
	int i;
1954

1955
	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1956 1957
	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
1958 1959
	clk_unprepare(sdma->clk_ahb);
	clk_unprepare(sdma->clk_ipg);
1960 1961 1962 1963 1964 1965
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		tasklet_kill(&sdmac->tasklet);
	}
1966 1967 1968

	platform_set_drvdata(pdev, NULL);
	return 0;
1969 1970 1971 1972 1973
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1974
		.of_match_table = sdma_dt_ids,
1975
	},
1976
	.id_table	= sdma_devtypes,
1977
	.remove		= sdma_remove,
1978
	.probe		= sdma_probe,
1979 1980
};

1981
module_platform_driver(sdma_driver);
1982 1983 1984

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
1985 1986 1987 1988 1989 1990
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
#endif
#if IS_ENABLED(CONFIG_SOC_IMX7D)
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
#endif
1991
MODULE_LICENSE("GPL");