imx-sdma.c 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/types.h>
24
#include <linux/bitops.h>
25 26 27
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
28
#include <linux/delay.h>
29 30 31 32 33 34 35 36 37
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
38
#include <linux/of.h>
39
#include <linux/of_address.h>
40
#include <linux/of_device.h>
41
#include <linux/of_dma.h>
42 43

#include <asm/irq.h>
44 45
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
46 47 48
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49

50 51
#include "dmaengine.h"

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
79 80
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

181 182 183 184 185 186
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187
	u32 command :  8; /* command mostly used for channel 0 */
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
294
 * @channel		the channel number, matches dmaengine chan_id + 1
295 296 297 298 299 300
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
301
 * @buf_ptail		ID of the previous buffer that was processed
302 303 304 305 306
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
307
	enum dma_transfer_direction		direction;
308 309 310 311 312
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
313
	unsigned int			buf_ptail;
314
	unsigned int			num_bd;
315
	unsigned int			period_len;
316 317 318
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
319
	unsigned int			device_to_device;
320
	unsigned long			flags;
321
	dma_addr_t			per_address, per_address2;
322 323
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
324 325 326 327 328
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
329 330
	unsigned int			chn_count;
	unsigned int			chn_real_count;
331
	struct tasklet_struct		tasklet;
332
	struct imx_dma_data		data;
333 334
};

335
#define IMX_DMA_SG_LOOP		BIT(0)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

368 369 370
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
371
	struct sdma_script_start_addrs	*script_addrs;
372 373
};

374 375
struct sdma_engine {
	struct device			*dev;
376
	struct device_dma_parameters	dma_parms;
377 378 379 380 381 382
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
383 384
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
385
	spinlock_t			channel_0_lock;
386
	u32				script_number;
387
	struct sdma_script_start_addrs	*script_addrs;
388
	const struct sdma_driver_data	*drvdata;
389 390
	u32				spba_start_addr;
	u32				spba_end_addr;
391
	unsigned int			irq;
392 393
};

394
static struct sdma_driver_data sdma_imx31 = {
395 396 397 398
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

415
static struct sdma_driver_data sdma_imx25 = {
416 417 418 419 420
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

421
static struct sdma_driver_data sdma_imx35 = {
422 423
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
424 425
};

426 427 428 429 430 431 432 433 434 435 436 437 438
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

439
static struct sdma_driver_data sdma_imx51 = {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

459
static struct sdma_driver_data sdma_imx53 = {
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

478
static struct sdma_driver_data sdma_imx6q = {
479 480 481 482 483
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static struct sdma_script_start_addrs sdma_script_imx7d = {
	.ap_2_ap_addr = 644,
	.uart_2_mcu_addr = 819,
	.mcu_2_app_addr = 749,
	.uartsh_2_mcu_addr = 1034,
	.mcu_2_shp_addr = 962,
	.app_2_mcu_addr = 685,
	.shp_2_mcu_addr = 893,
	.spdif_2_mcu_addr = 1102,
	.mcu_2_spdif_addr = 1136,
};

static struct sdma_driver_data sdma_imx7d = {
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx7d,
};

502
static const struct platform_device_id sdma_devtypes[] = {
503
	{
504 505 506
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
507
		.name = "imx31-sdma",
508
		.driver_data = (unsigned long)&sdma_imx31,
509 510
	}, {
		.name = "imx35-sdma",
511
		.driver_data = (unsigned long)&sdma_imx35,
512 513 514 515 516 517 518 519 520
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
521 522 523
	}, {
		.name = "imx7d-sdma",
		.driver_data = (unsigned long)&sdma_imx7d,
524 525 526 527 528 529
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

530
static const struct of_device_id sdma_dt_ids[] = {
531 532 533
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
534
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
535
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
536
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
537
	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
538 539 540 541
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

542 543 544
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
545 546 547 548
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
549
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
550 551 552 553 554 555 556 557
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
558
	unsigned long evt, mcu, dsp;
559 560 561 562

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

563 564 565
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
566 567

	if (dsp_override)
568
		__clear_bit(channel, &dsp);
569
	else
570
		__set_bit(channel, &dsp);
571 572

	if (event_override)
573
		__clear_bit(channel, &evt);
574
	else
575
		__set_bit(channel, &evt);
576 577

	if (mcu_override)
578
		__clear_bit(channel, &mcu);
579
	else
580
		__set_bit(channel, &mcu);
581

582 583 584
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
585 586 587 588

	return 0;
}

589 590
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
591
	writel(BIT(channel), sdma->regs + SDMA_H_START);
592 593
}

594
/*
595
 * sdma_run_channel0 - run a channel and wait till it's done
596
 */
597
static int sdma_run_channel0(struct sdma_engine *sdma)
598 599
{
	int ret;
600
	u32 reg;
601

602
	sdma_enable_channel(sdma, 0);
603

604 605 606
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
607
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
608

609 610 611 612
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

613
	return ret;
614 615 616 617 618 619 620 621 622
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
623
	unsigned long flags;
624

625 626 627
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
628
	if (!buf_virt) {
629
		return -ENOMEM;
630
	}
631

632 633
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

634 635 636 637 638 639 640 641
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

642
	ret = sdma_run_channel0(sdma);
643

644
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
645

646
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
647

648 649 650 651 652 653 654
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
655
	unsigned long val;
656 657
	u32 chnenbl = chnenbl_ofs(sdma, event);

658
	val = readl_relaxed(sdma->regs + chnenbl);
659
	__set_bit(channel, &val);
660
	writel_relaxed(val, sdma->regs + chnenbl);
661 662 663 664 665 666 667
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
668
	unsigned long val;
669

670
	val = readl_relaxed(sdma->regs + chnenbl);
671
	__clear_bit(channel, &val);
672
	writel_relaxed(val, sdma->regs + chnenbl);
673 674
}

675
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
676 677
{
	struct sdma_buffer_descriptor *bd;
678 679
	int error = 0;
	enum dma_status	old_status = sdmac->status;
680 681 682 683 684 685 686 687 688 689 690

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

691 692
		if (bd->mode.status & BD_RROR) {
			bd->mode.status &= ~BD_RROR;
693
			sdmac->status = DMA_ERROR;
694 695
			error = -EIO;
		}
696

697 698 699 700 701 702
	       /*
		* We use bd->mode.count to calculate the residue, since contains
		* the number of bytes present in the current buffer descriptor.
		*/

		sdmac->chn_real_count = bd->mode.count;
703
		bd->mode.status |= BD_DONE;
704
		bd->mode.count = sdmac->period_len;
705 706
		sdmac->buf_ptail = sdmac->buf_tail;
		sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
707 708 709 710 711 712 713 714

		/*
		 * The callback is called from the interrupt context in order
		 * to reduce latency and to avoid the risk of altering the
		 * SDMA transaction status by the time the client tasklet is
		 * executed.
		 */

715
		dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
716

717 718
		if (error)
			sdmac->status = old_status;
719 720 721
	}
}

722
static void mxc_sdma_handle_channel_normal(unsigned long data)
723
{
724
	struct sdma_channel *sdmac = (struct sdma_channel *) data;
725 726 727
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

728
	sdmac->chn_real_count = 0;
729 730 731 732 733 734 735 736 737
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
738
		 sdmac->chn_real_count += bd->mode.count;
739 740 741 742 743
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
744
		sdmac->status = DMA_COMPLETE;
745

746
	dma_cookie_complete(&sdmac->desc);
747 748

	dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
749 750 751 752 753
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
754
	unsigned long stat;
755

756 757
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
758 759
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
760 761 762 763 764

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

765 766
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			sdma_update_channel_loop(sdmac);
767 768
		else
			tasklet_schedule(&sdmac->tasklet);
769

770
		__clear_bit(channel, &stat);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
788
	int per_2_per = 0;
789 790 791

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
792
	sdmac->device_to_device = 0;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
820
	case IMX_DMATYPE_SAI:
821 822 823
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
824 825 826 827
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
828 829 830 831 832 833 834 835 836 837 838 839 840 841
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
842 843 844 845 846
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
867
	sdmac->device_to_device = per_2_per;
868 869 870 871 872 873 874 875 876 877
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;
878
	unsigned long flags;
879

880
	if (sdmac->direction == DMA_DEV_TO_MEM)
881
		load_address = sdmac->pc_from_device;
882 883 884
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
	else
885 886 887 888 889 890
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
891
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
892 893
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
894 895
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
896

897
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
898

899 900 901 902 903 904
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
905 906
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
907 908 909 910 911 912 913 914 915
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
916
	ret = sdma_run_channel0(sdma);
917

918
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
919

920 921 922
	return ret;
}

923 924 925 926 927 928
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static int sdma_disable_channel(struct dma_chan *chan)
929
{
930
	struct sdma_channel *sdmac = to_sdma_chan(chan);
931 932 933
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

934
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
935
	sdmac->status = DMA_ERROR;
936 937

	return 0;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
	sdma_disable_channel(chan);

	/*
	 * According to NXP R&D team a delay of one BD SDMA cost time
	 * (maximum is 1ms) should be added after disable of the channel
	 * bit, to ensure SDMA core has really been stopped after SDMA
	 * clients call .device_terminate_all.
	 */
	mdelay(1);

	return 0;
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

995
static int sdma_config_channel(struct dma_chan *chan)
996
{
997
	struct sdma_channel *sdmac = to_sdma_chan(chan);
998 999
	int ret;

1000
	sdma_disable_channel(chan);
1001

1002 1003
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
1004 1005 1006 1007
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
1008
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1009 1010 1011 1012
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

1013 1014 1015 1016 1017 1018
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
1037 1038 1039 1040
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
1041
			__set_bit(sdmac->event_id0, sdmac->event_mask);
1042

1043 1044
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
1045
		sdmac->per_addr = sdmac->per_address2;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1066
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

J
Joe Perches 已提交
1077 1078
	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
					GFP_KERNEL);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
	return 0;
out:

	return ret;
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
1096
	unsigned long flags;
1097 1098 1099
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

1100
	spin_lock_irqsave(&sdmac->lock, flags);
1101

1102
	cookie = dma_cookie_assign(tx);
1103

1104
	spin_unlock_irqrestore(&sdmac->lock, flags);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1133
	sdmac->event_id1 = data->dma_request2;
1134

1135 1136 1137 1138 1139 1140
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1141

1142
	ret = sdma_request_channel(sdmac);
1143
	if (ret)
1144
		goto disable_clk_ahb;
1145

1146
	ret = sdma_set_channel_priority(sdmac, prio);
1147
	if (ret)
1148
		goto disable_clk_ahb;
1149 1150 1151 1152 1153 1154 1155

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
1156 1157 1158 1159 1160 1161

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1162 1163 1164 1165 1166 1167 1168
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

1169
	sdma_disable_channel(chan);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

1183 1184
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1185 1186 1187 1188
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1189
		unsigned int sg_len, enum dma_transfer_direction direction,
1190
		unsigned long flags, void *context)
1191 1192 1193 1194
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
1195
	int channel = sdmac->channel;
1196 1197 1198 1199 1200 1201 1202 1203
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

1204
	sdmac->buf_tail = 0;
1205 1206
	sdmac->buf_ptail = 0;
	sdmac->chn_real_count = 0;
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

1223
	sdmac->chn_count = 0;
1224 1225 1226 1227
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

1228
		bd->buffer_addr = sg->dma_address;
1229

1230
		count = sg_dma_len(sg);
1231 1232 1233 1234 1235 1236 1237 1238 1239

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
1240
		sdmac->chn_count += count;
1241 1242 1243 1244 1245

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
1246 1247 1248

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1249
			bd->mode.command = 0;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
1264 1265 1266

		param = BD_DONE | BD_EXTD | BD_CONT;

1267
		if (i + 1 == sg_len) {
1268
			param |= BD_INTR;
1269 1270
			param |= BD_LAST;
			param &= ~BD_CONT;
1271 1272
		}

1273 1274
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1286
	sdmac->status = DMA_ERROR;
1287 1288 1289 1290 1291
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1292
		size_t period_len, enum dma_transfer_direction direction,
1293
		unsigned long flags)
1294 1295 1296 1297
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1298
	int channel = sdmac->channel;
1299 1300 1301 1302 1303 1304 1305 1306 1307
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1308
	sdmac->buf_tail = 0;
1309 1310
	sdmac->buf_ptail = 0;
	sdmac->chn_real_count = 0;
1311
	sdmac->period_len = period_len;
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1350 1351
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, period_len, (u64)dma_addr,
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1372 1373
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1374 1375 1376
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1377 1378 1379 1380 1381
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1382 1383 1384 1385 1386 1387 1388 1389
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1390 1391 1392 1393 1394 1395 1396 1397
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1398 1399 1400
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1401 1402
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1403 1404
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1405 1406 1407
	u32 residue;

	if (sdmac->flags & IMX_DMA_SG_LOOP)
1408
		residue = (sdmac->num_bd - sdmac->buf_ptail) *
1409
			   sdmac->period_len - sdmac->chn_real_count;
1410 1411
	else
		residue = sdmac->chn_count - sdmac->chn_real_count;
1412

1413
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1414
			 residue);
1415

1416
	return sdmac->status;
1417 1418 1419 1420
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1421 1422 1423 1424 1425
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1426 1427
}

1428
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1429
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1430
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1431
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1432 1433 1434 1435 1436 1437 1438 1439

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1440 1441 1442 1443
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1444
	for (i = 0; i < sdma->script_number; i++)
1445 1446 1447 1448
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1449
static void sdma_load_firmware(const struct firmware *fw, void *context)
1450
{
1451
	struct sdma_engine *sdma = context;
1452 1453 1454 1455
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1456
	if (!fw) {
1457 1458
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1459 1460
		return;
	}
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1471
	switch (header->version_major) {
A
Asaf Vertz 已提交
1472 1473 1474 1475 1476 1477
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1478 1479 1480
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
1481 1482 1483
	case 4:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
		break;
A
Asaf Vertz 已提交
1484 1485 1486
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1487
	}
1488 1489 1490 1491

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1492 1493
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1494 1495 1496
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1497
			addr->ram_code_start_addr);
1498 1499
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1500 1501 1502 1503 1504 1505 1506 1507 1508

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1509 1510
}

1511 1512
#define EVENT_REMAP_CELLS 3

1513
static int sdma_event_remap(struct sdma_engine *sdma)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1529
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1577
static int sdma_get_firmware(struct sdma_engine *sdma,
1578 1579 1580 1581 1582 1583 1584
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1585 1586 1587 1588

	return ret;
}

1589
static int sdma_init(struct sdma_engine *sdma)
1590 1591 1592 1593
{
	int i, ret;
	dma_addr_t ccb_phys;

1594 1595 1596 1597 1598 1599
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1600 1601

	/* Be sure SDMA has not started yet */
1602
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1624
	for (i = 0; i < sdma->drvdata->num_events; i++)
1625
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1626 1627 1628

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1629
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1630 1631 1632 1633 1634 1635 1636 1637

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1638
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1639 1640 1641

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1642
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1643

1644
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1645 1646 1647 1648

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1649 1650
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1651 1652 1653 1654

	return 0;

err_dma_alloc:
1655
	clk_disable(sdma->clk_ahb);
1656 1657
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1658 1659 1660 1661
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1662 1663
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1664
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1665 1666 1667 1668 1669
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1670 1671
	sdmac->data = *data;
	chan->private = &sdmac->data;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1689 1690 1691 1692 1693 1694 1695 1696
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1697 1698 1699 1700

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1701
static int sdma_probe(struct platform_device *pdev)
1702
{
1703 1704 1705
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1706
	struct device_node *spba_bus;
1707
	const char *fw_name;
1708 1709 1710
	int ret;
	int irq;
	struct resource *iores;
1711
	struct resource spba_res;
J
Jingoo Han 已提交
1712
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1713 1714
	int i;
	struct sdma_engine *sdma;
1715
	s32 *saddr_arr;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1727

1728 1729 1730 1731
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1732
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1733 1734 1735
	if (!sdma)
		return -ENOMEM;

1736
	spin_lock_init(&sdma->channel_0_lock);
1737

1738
	sdma->dev = &pdev->dev;
1739
	sdma->drvdata = drvdata;
1740 1741

	irq = platform_get_irq(pdev, 0);
1742
	if (irq < 0)
1743
		return irq;
1744

1745 1746 1747 1748
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1749

1750
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1751 1752
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1753

1754
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1755 1756
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1757 1758 1759 1760

	clk_prepare(sdma->clk_ipg);
	clk_prepare(sdma->clk_ahb);

1761 1762
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1763
	if (ret)
1764
		return ret;
1765

1766 1767
	sdma->irq = irq;

1768
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1769 1770
	if (!sdma->script_addrs)
		return -ENOMEM;
1771

1772 1773 1774 1775 1776
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1777 1778 1779
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1780 1781 1782 1783 1784 1785 1786 1787 1788
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1789
		dma_cookie_init(&sdmac->chan);
1790 1791
		sdmac->channel = i;

1792
		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1793
			     (unsigned long) sdmac);
1794 1795 1796 1797 1798 1799 1800 1801
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1802 1803
	}

1804
	ret = sdma_init(sdma);
1805 1806 1807
	if (ret)
		goto err_init;

1808 1809 1810 1811
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

1812 1813
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1814
	if (pdata && pdata->script_addrs)
1815 1816
		sdma_add_scripts(sdma, pdata->script_addrs);

1817
	if (pdata) {
1818 1819
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1820
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1821 1822 1823 1824 1825 1826 1827 1828
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1829
		if (ret)
1830
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1831 1832 1833
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1834
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1835 1836
		}
	}
1837

1838 1839 1840 1841 1842 1843 1844
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1845
	sdma->dma_device.device_config = sdma_config;
1846
	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1847 1848 1849
	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1850
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1851
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1852 1853
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1854

1855 1856
	platform_set_drvdata(pdev, sdma);

1857 1858 1859 1860 1861 1862
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1863 1864 1865 1866 1867 1868
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
1869 1870 1871 1872 1873 1874 1875 1876

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
1877 1878
	}

1879 1880
	return 0;

1881 1882
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1883 1884
err_init:
	kfree(sdma->script_addrs);
1885
	return ret;
1886 1887
}

1888
static int sdma_remove(struct platform_device *pdev)
1889
{
1890
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1891
	int i;
1892

1893
	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1894 1895
	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
1896 1897 1898 1899 1900 1901
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		tasklet_kill(&sdmac->tasklet);
	}
1902 1903 1904

	platform_set_drvdata(pdev, NULL);
	return 0;
1905 1906 1907 1908 1909
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1910
		.of_match_table = sdma_dt_ids,
1911
	},
1912
	.id_table	= sdma_devtypes,
1913
	.remove		= sdma_remove,
1914
	.probe		= sdma_probe,
1915 1916
};

1917
module_platform_driver(sdma_driver);
1918 1919 1920 1921

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
MODULE_LICENSE("GPL");