imx-sdma.c 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
// SPDX-License-Identifier: GPL-2.0+
//
// drivers/dma/imx-sdma.c
//
// This file contains a driver for the Freescale Smart DMA engine
//
// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
//
// Based on code from Freescale:
//
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 13

#include <linux/init.h>
14
#include <linux/iopoll.h>
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/bitops.h>
18 19 20
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
21
#include <linux/delay.h>
22 23 24 25 26
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
27
#include <linux/dmapool.h>
28 29 30 31
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
32
#include <linux/of.h>
33
#include <linux/of_address.h>
34
#include <linux/of_device.h>
35
#include <linux/of_dma.h>
36 37

#include <asm/irq.h>
38 39
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
40 41 42
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43

44
#include "dmaengine.h"
45
#include "virt-dma.h"
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
74 75
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

176 177 178 179 180 181 182 183
#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
				 BIT(DMA_MEM_TO_DEV) | \
				 BIT(DMA_DEV_TO_DEV))

184 185 186 187 188 189
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
190
	u32 command :  8; /* command mostly used for channel 0 */
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));


struct sdma_engine;

292 293 294 295 296 297 298 299
/**
 * struct sdma_desc - descriptor structor for one transfer
 * @vd			descriptor for virt dma
 * @num_bd		max NUM_BD. number of descriptors currently handling
 * @buf_tail		ID of the buffer that was processed
 * @buf_ptail		ID of the previous buffer that was processed
 * @period_len		period length, used in cyclic.
 * @chn_real_count	the real count updated from bd->mode.count
V
Vinod Koul 已提交
300
 * @chn_count		the transfer count set
301
 * @sdmac		sdma_channel pointer
V
Vinod Koul 已提交
302
 * @bd			pointer of allocate bd
303 304
 */
struct sdma_desc {
305
	struct virt_dma_desc	vd;
306 307 308 309 310 311 312 313 314 315 316
	unsigned int		num_bd;
	dma_addr_t		bd_phys;
	unsigned int		buf_tail;
	unsigned int		buf_ptail;
	unsigned int		period_len;
	unsigned int		chn_real_count;
	unsigned int		chn_count;
	struct sdma_channel	*sdmac;
	struct sdma_buffer_descriptor *bd;
};

317 318 319 320
/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
321
 * @channel		the channel number, matches dmaengine chan_id + 1
322 323 324 325 326 327 328
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 */
struct sdma_channel {
329
	struct virt_dma_chan		vc;
330
	struct sdma_desc		*desc;
331 332
	struct sdma_engine		*sdma;
	unsigned int			channel;
333
	enum dma_transfer_direction		direction;
334 335 336 337 338
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			pc_from_device, pc_to_device;
339
	unsigned int			device_to_device;
340
	unsigned long			flags;
341
	dma_addr_t			per_address, per_address2;
342 343
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
344 345
	u32				shp_addr, per_addr;
	enum dma_status			status;
346
	struct imx_dma_data		data;
347
	struct dma_pool			*bd_pool;
348 349
};

350
#define IMX_DMA_SG_LOOP		BIT(0)
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

383 384 385
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
386
	struct sdma_script_start_addrs	*script_addrs;
387 388
};

389 390
struct sdma_engine {
	struct device			*dev;
391
	struct device_dma_parameters	dma_parms;
392 393 394 395 396 397
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
398 399
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
400
	spinlock_t			channel_0_lock;
401
	u32				script_number;
402
	struct sdma_script_start_addrs	*script_addrs;
403
	const struct sdma_driver_data	*drvdata;
404 405
	u32				spba_start_addr;
	u32				spba_end_addr;
406
	unsigned int			irq;
407 408
	dma_addr_t			bd0_phys;
	struct sdma_buffer_descriptor	*bd0;
409 410
};

411
static struct sdma_driver_data sdma_imx31 = {
412 413 414 415
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

432
static struct sdma_driver_data sdma_imx25 = {
433 434 435 436 437
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

438
static struct sdma_driver_data sdma_imx35 = {
439 440
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
441 442
};

443 444 445 446 447 448 449 450 451 452 453 454 455
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

456
static struct sdma_driver_data sdma_imx51 = {
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

476
static struct sdma_driver_data sdma_imx53 = {
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

495
static struct sdma_driver_data sdma_imx6q = {
496 497 498 499 500
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static struct sdma_script_start_addrs sdma_script_imx7d = {
	.ap_2_ap_addr = 644,
	.uart_2_mcu_addr = 819,
	.mcu_2_app_addr = 749,
	.uartsh_2_mcu_addr = 1034,
	.mcu_2_shp_addr = 962,
	.app_2_mcu_addr = 685,
	.shp_2_mcu_addr = 893,
	.spdif_2_mcu_addr = 1102,
	.mcu_2_spdif_addr = 1136,
};

static struct sdma_driver_data sdma_imx7d = {
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx7d,
};

519
static const struct platform_device_id sdma_devtypes[] = {
520
	{
521 522 523
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
524
		.name = "imx31-sdma",
525
		.driver_data = (unsigned long)&sdma_imx31,
526 527
	}, {
		.name = "imx35-sdma",
528
		.driver_data = (unsigned long)&sdma_imx35,
529 530 531 532 533 534 535 536 537
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
538 539 540
	}, {
		.name = "imx7d-sdma",
		.driver_data = (unsigned long)&sdma_imx7d,
541 542 543 544 545 546
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

547
static const struct of_device_id sdma_dt_ids[] = {
548 549 550
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
551
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
552
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
553
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
554
	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
555 556 557 558
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

559 560 561
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
562 563 564 565
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
566
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
567 568 569 570 571 572 573 574
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
575
	unsigned long evt, mcu, dsp;
576 577 578 579

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

580 581 582
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
583 584

	if (dsp_override)
585
		__clear_bit(channel, &dsp);
586
	else
587
		__set_bit(channel, &dsp);
588 589

	if (event_override)
590
		__clear_bit(channel, &evt);
591
	else
592
		__set_bit(channel, &evt);
593 594

	if (mcu_override)
595
		__clear_bit(channel, &mcu);
596
	else
597
		__set_bit(channel, &mcu);
598

599 600 601
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
602 603 604 605

	return 0;
}

606 607
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
608
	writel(BIT(channel), sdma->regs + SDMA_H_START);
609 610
}

611
/*
612
 * sdma_run_channel0 - run a channel and wait till it's done
613
 */
614
static int sdma_run_channel0(struct sdma_engine *sdma)
615 616
{
	int ret;
617
	u32 reg;
618

619
	sdma_enable_channel(sdma, 0);
620

621 622 623
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
624
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
625

626 627 628 629
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

630
	return ret;
631 632 633 634 635
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
636
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
637 638 639
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
640
	unsigned long flags;
641

642 643 644
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
645
	if (!buf_virt) {
646
		return -ENOMEM;
647
	}
648

649 650
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

651 652 653 654 655 656 657 658
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

659
	ret = sdma_run_channel0(sdma);
660

661
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
662

663
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
664

665 666 667 668 669 670 671
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
672
	unsigned long val;
673 674
	u32 chnenbl = chnenbl_ofs(sdma, event);

675
	val = readl_relaxed(sdma->regs + chnenbl);
676
	__set_bit(channel, &val);
677
	writel_relaxed(val, sdma->regs + chnenbl);
678 679 680 681 682 683 684
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
685
	unsigned long val;
686

687
	val = readl_relaxed(sdma->regs + chnenbl);
688
	__clear_bit(channel, &val);
689
	writel_relaxed(val, sdma->regs + chnenbl);
690 691
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct sdma_desc, vd.tx);
}

static void sdma_start_desc(struct sdma_channel *sdmac)
{
	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
	struct sdma_desc *desc;
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (!vd) {
		sdmac->desc = NULL;
		return;
	}
	sdmac->desc = desc = to_sdma_desc(&vd->tx);
	/*
	 * Do not delete the node in desc_issued list in cyclic mode, otherwise
V
Vinod Koul 已提交
711
	 * the desc allocated will never be freed in vchan_dma_desc_free_list
712 713 714 715 716 717 718 719 720
	 */
	if (!(sdmac->flags & IMX_DMA_SG_LOOP))
		list_del(&vd->node);

	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
	sdma_enable_channel(sdma, sdmac->channel);
}

721
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
722 723
{
	struct sdma_buffer_descriptor *bd;
724 725
	int error = 0;
	enum dma_status	old_status = sdmac->status;
726 727 728 729 730

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
731
	while (sdmac->desc) {
732 733 734
		struct sdma_desc *desc = sdmac->desc;

		bd = &desc->bd[desc->buf_tail];
735 736 737 738

		if (bd->mode.status & BD_DONE)
			break;

739 740
		if (bd->mode.status & BD_RROR) {
			bd->mode.status &= ~BD_RROR;
741
			sdmac->status = DMA_ERROR;
742 743
			error = -EIO;
		}
744

745 746 747 748 749
	       /*
		* We use bd->mode.count to calculate the residue, since contains
		* the number of bytes present in the current buffer descriptor.
		*/

750
		desc->chn_real_count = bd->mode.count;
751
		bd->mode.status |= BD_DONE;
752 753 754
		bd->mode.count = desc->period_len;
		desc->buf_ptail = desc->buf_tail;
		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
755 756 757 758 759 760 761

		/*
		 * The callback is called from the interrupt context in order
		 * to reduce latency and to avoid the risk of altering the
		 * SDMA transaction status by the time the client tasklet is
		 * executed.
		 */
762 763 764
		spin_unlock(&sdmac->vc.lock);
		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
		spin_lock(&sdmac->vc.lock);
765

766 767
		if (error)
			sdmac->status = old_status;
768 769 770
	}
}

771
static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
772
{
773
	struct sdma_channel *sdmac = (struct sdma_channel *) data;
774 775 776
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

777
	sdmac->desc->chn_real_count = 0;
778 779 780 781
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
782 783
	for (i = 0; i < sdmac->desc->num_bd; i++) {
		bd = &sdmac->desc->bd[i];
784 785 786

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
787
		 sdmac->desc->chn_real_count += bd->mode.count;
788 789 790 791 792
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
793
		sdmac->status = DMA_COMPLETE;
794 795 796 797 798
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
799
	unsigned long stat;
800

801 802
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
803 804
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
805 806 807 808

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];
809 810 811 812 813 814 815 816 817 818 819 820 821
		struct sdma_desc *desc;

		spin_lock(&sdmac->vc.lock);
		desc = sdmac->desc;
		if (desc) {
			if (sdmac->flags & IMX_DMA_SG_LOOP) {
				sdma_update_channel_loop(sdmac);
			} else {
				mxc_sdma_handle_channel_normal(sdmac);
				vchan_cookie_complete(&desc->vd);
				sdma_start_desc(sdmac);
			}
		}
822

823
		spin_unlock(&sdmac->vc.lock);
824
		__clear_bit(channel, &stat);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
842
	int per_2_per = 0;
843 844 845

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
846
	sdmac->device_to_device = 0;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
874
	case IMX_DMATYPE_SAI:
875 876 877
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
878 879 880 881
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
882 883 884 885 886 887 888 889 890 891 892 893 894 895
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
896 897 898 899 900
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
921
	sdmac->device_to_device = per_2_per;
922 923 924 925 926 927 928 929
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
930
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
931
	int ret;
932
	unsigned long flags;
933

934
	if (sdmac->direction == DMA_DEV_TO_MEM)
935
		load_address = sdmac->pc_from_device;
936 937 938
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
	else
939 940 941 942 943 944
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
945
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
946 947
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
948 949
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
950

951
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
952

953 954 955 956 957 958
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
959 960
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
961 962 963 964 965 966 967 968 969
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
970
	ret = sdma_run_channel0(sdma);
971

972
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
973

974 975 976
	return ret;
}

977 978
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
979
	return container_of(chan, struct sdma_channel, vc.chan);
980 981 982
}

static int sdma_disable_channel(struct dma_chan *chan)
983
{
984
	struct sdma_channel *sdmac = to_sdma_chan(chan);
985 986 987
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

988
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
989
	sdmac->status = DMA_ERROR;
990 991

	return 0;
992 993
}

994 995
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
996 997 998 999
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

1000
	sdma_disable_channel(chan);
1001 1002 1003 1004 1005
	spin_lock_irqsave(&sdmac->vc.lock, flags);
	vchan_get_all_descriptors(&sdmac->vc, &head);
	sdmac->desc = NULL;
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
	vchan_dma_desc_free_list(&sdmac->vc, &head);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	/*
	 * According to NXP R&D team a delay of one BD SDMA cost time
	 * (maximum is 1ms) should be added after disable of the channel
	 * bit, to ensure SDMA core has really been stopped after SDMA
	 * clients call .device_terminate_all.
	 */
	mdelay(1);

	return 0;
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

1058
static int sdma_config_channel(struct dma_chan *chan)
1059
{
1060
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1061 1062
	int ret;

1063
	sdma_disable_channel(chan);
1064

1065 1066
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
1067 1068 1069 1070
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
1071
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1072 1073 1074 1075
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

1076 1077 1078 1079 1080 1081
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
1100 1101 1102 1103
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
1104
			__set_bit(sdmac->event_id0, sdmac->event_mask);
1105

1106 1107
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
1108
		sdmac->per_addr = sdmac->per_address2;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1129
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1130 1131 1132 1133

	return 0;
}

1134
static int sdma_request_channel0(struct sdma_engine *sdma)
1135 1136 1137
{
	int ret = -EBUSY;

1138 1139 1140
	sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
					GFP_NOWAIT);
	if (!sdma->bd0) {
1141 1142 1143 1144
		ret = -ENOMEM;
		goto out;
	}

1145 1146
	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1147

1148
	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1149 1150 1151 1152 1153 1154
	return 0;
out:

	return ret;
}

1155 1156

static int sdma_alloc_bd(struct sdma_desc *desc)
1157
{
1158
	int ret = 0;
1159

1160 1161
	desc->bd = dma_pool_alloc(desc->sdmac->bd_pool, GFP_NOWAIT,
				  &desc->bd_phys);
1162 1163 1164 1165 1166 1167 1168
	if (!desc->bd) {
		ret = -ENOMEM;
		goto out;
	}
out:
	return ret;
}
1169

1170 1171
static void sdma_free_bd(struct sdma_desc *desc)
{
1172
	dma_pool_free(desc->sdmac->bd_pool, desc->bd, desc->bd_phys);
1173
}
1174

1175 1176 1177 1178 1179 1180
static void sdma_desc_free(struct virt_dma_desc *vd)
{
	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);

	sdma_free_bd(desc);
	kfree(desc);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1207
	sdmac->event_id1 = data->dma_request2;
1208

1209 1210 1211 1212 1213 1214
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1215

1216
	ret = sdma_set_channel_priority(sdmac, prio);
1217
	if (ret)
1218
		goto disable_clk_ahb;
1219

1220 1221 1222 1223
	sdmac->bd_pool = dma_pool_create("bd_pool", chan->device->dev,
				sizeof(struct sdma_buffer_descriptor),
				32, 0);

1224
	return 0;
1225 1226 1227 1228 1229 1230

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1231 1232 1233 1234 1235 1236 1237
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

1238
	sdma_disable_channel_with_delay(chan);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

1250 1251
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1252 1253 1254

	dma_pool_destroy(sdmac->bd_pool);
	sdmac->bd_pool = NULL;
1255 1256
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
				enum dma_transfer_direction direction, u32 bds)
{
	struct sdma_desc *desc;

	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
	if (!desc)
		goto err_out;

	sdmac->status = DMA_IN_PROGRESS;
	sdmac->direction = direction;
	sdmac->flags = 0;

	desc->chn_count = 0;
	desc->chn_real_count = 0;
	desc->buf_tail = 0;
	desc->buf_ptail = 0;
	desc->sdmac = sdmac;
	desc->num_bd = bds;

	if (sdma_alloc_bd(desc))
		goto err_desc_out;

	if (sdma_load_context(sdmac))
		goto err_desc_out;

	return desc;

err_desc_out:
	kfree(desc);
err_out:
	return NULL;
}

1291 1292
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1293
		unsigned int sg_len, enum dma_transfer_direction direction,
1294
		unsigned long flags, void *context)
1295 1296 1297 1298
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
1299
	int channel = sdmac->channel;
1300
	struct scatterlist *sg;
1301
	struct sdma_desc *desc;
1302

1303
	desc = sdma_transfer_init(sdmac, direction, sg_len);
1304 1305 1306
	if (!desc)
		goto err_out;

1307 1308 1309 1310
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	for_each_sg(sgl, sg, sg_len, i) {
1311
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1312 1313
		int param;

1314
		bd->buffer_addr = sg->dma_address;
1315

1316
		count = sg_dma_len(sg);
1317 1318 1319 1320 1321

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
1322
			goto err_bd_out;
1323 1324 1325
		}

		bd->mode.count = count;
1326
		desc->chn_count += count;
1327 1328 1329

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
1330
			goto err_bd_out;
1331
		}
1332 1333 1334

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1335
			bd->mode.command = 0;
1336
			if (count & 3 || sg->dma_address & 3)
1337
				goto err_bd_out;
1338 1339 1340 1341
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
1342
				goto err_bd_out;
1343 1344 1345 1346 1347
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
1348
			goto err_bd_out;
1349
		}
1350 1351 1352

		param = BD_DONE | BD_EXTD | BD_CONT;

1353
		if (i + 1 == sg_len) {
1354
			param |= BD_INTR;
1355 1356
			param |= BD_LAST;
			param &= ~BD_CONT;
1357 1358
		}

1359 1360
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1361 1362 1363 1364 1365 1366
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

1367 1368 1369 1370
	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
	sdma_free_bd(desc);
	kfree(desc);
1371
err_out:
1372
	sdmac->status = DMA_ERROR;
1373 1374 1375 1376 1377
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1378
		size_t period_len, enum dma_transfer_direction direction,
1379
		unsigned long flags)
1380 1381 1382 1383
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1384
	int channel = sdmac->channel;
1385
	int i = 0, buf = 0;
1386
	struct sdma_desc *desc;
1387 1388 1389

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

1390
	desc = sdma_transfer_init(sdmac, direction, num_periods);
1391 1392 1393
	if (!desc)
		goto err_out;

1394
	desc->period_len = period_len;
1395

1396 1397 1398
	sdmac->flags |= IMX_DMA_SG_LOOP;

	if (period_len > 0xffff) {
1399
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1400
				channel, period_len, 0xffff);
1401
		goto err_bd_out;
1402 1403 1404
	}

	while (buf < buf_len) {
1405
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1406 1407 1408 1409 1410 1411 1412
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1413
			goto err_bd_out;
1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1423
		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1424
				i, period_len, (u64)dma_addr,
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

1436 1437 1438 1439
	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
	sdma_free_bd(desc);
	kfree(desc);
1440 1441 1442 1443 1444
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1445 1446
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1447 1448 1449
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1450 1451 1452 1453 1454
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1455 1456 1457 1458 1459 1460 1461 1462
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1463 1464 1465 1466 1467 1468 1469 1470
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1471 1472 1473
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1474 1475
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1476 1477
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1478
	struct sdma_desc *desc;
1479
	u32 residue;
1480 1481 1482
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&sdmac->vc.lock, flags);
	vd = vchan_find_desc(&sdmac->vc, cookie);
	if (vd) {
		desc = to_sdma_desc(&vd->tx);
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			residue = (desc->num_bd - desc->buf_ptail) *
				desc->period_len - desc->chn_real_count;
		else
			residue = desc->chn_count - desc->chn_real_count;
	} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
		residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
	} else {
		residue = 0;
	}
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1503

1504
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1505
			 residue);
1506

1507
	return sdmac->status;
1508 1509 1510 1511
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1512
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1513
	unsigned long flags;
1514

1515 1516 1517 1518
	spin_lock_irqsave(&sdmac->vc.lock, flags);
	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
		sdma_start_desc(sdmac);
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1519 1520
}

1521
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1522
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1523
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1524
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1525 1526 1527 1528 1529 1530 1531 1532

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1533 1534 1535 1536
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1537
	for (i = 0; i < sdma->script_number; i++)
1538 1539 1540 1541
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1542
static void sdma_load_firmware(const struct firmware *fw, void *context)
1543
{
1544
	struct sdma_engine *sdma = context;
1545 1546 1547 1548
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1549
	if (!fw) {
1550 1551
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1552 1553
		return;
	}
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1564
	switch (header->version_major) {
A
Asaf Vertz 已提交
1565 1566 1567 1568 1569 1570
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1571 1572 1573
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
1574 1575 1576
	case 4:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
		break;
A
Asaf Vertz 已提交
1577 1578 1579
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1580
	}
1581 1582 1583 1584

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1585 1586
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1587 1588 1589
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1590
			addr->ram_code_start_addr);
1591 1592
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1593 1594 1595 1596 1597 1598 1599 1600 1601

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1602 1603
}

1604 1605
#define EVENT_REMAP_CELLS 3

1606
static int sdma_event_remap(struct sdma_engine *sdma)
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1622
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1670
static int sdma_get_firmware(struct sdma_engine *sdma,
1671 1672 1673 1674 1675 1676 1677
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1678 1679 1680 1681

	return ret;
}

1682
static int sdma_init(struct sdma_engine *sdma)
1683 1684 1685 1686
{
	int i, ret;
	dma_addr_t ccb_phys;

1687 1688 1689 1690 1691 1692
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1693 1694

	/* Be sure SDMA has not started yet */
1695
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1717
	for (i = 0; i < sdma->drvdata->num_events; i++)
1718
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1719 1720 1721

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1722
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1723

1724
	ret = sdma_request_channel0(sdma);
1725 1726 1727 1728 1729 1730
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1731
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1732 1733 1734

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1735
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1736

1737
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1738 1739 1740 1741

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1742 1743
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1744 1745 1746 1747

	return 0;

err_dma_alloc:
1748
	clk_disable(sdma->clk_ahb);
1749 1750
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1751 1752 1753 1754
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1755 1756
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1757
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1758 1759 1760 1761 1762
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1763 1764
	sdmac->data = *data;
	chan->private = &sdmac->data;
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1782 1783 1784 1785 1786 1787 1788 1789
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1790 1791 1792 1793

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1794
static int sdma_probe(struct platform_device *pdev)
1795
{
1796 1797 1798
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1799
	struct device_node *spba_bus;
1800
	const char *fw_name;
1801 1802 1803
	int ret;
	int irq;
	struct resource *iores;
1804
	struct resource spba_res;
J
Jingoo Han 已提交
1805
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1806 1807
	int i;
	struct sdma_engine *sdma;
1808
	s32 *saddr_arr;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1820

1821 1822 1823 1824
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1825
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1826 1827 1828
	if (!sdma)
		return -ENOMEM;

1829
	spin_lock_init(&sdma->channel_0_lock);
1830

1831
	sdma->dev = &pdev->dev;
1832
	sdma->drvdata = drvdata;
1833 1834

	irq = platform_get_irq(pdev, 0);
1835
	if (irq < 0)
1836
		return irq;
1837

1838 1839 1840 1841
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1842

1843
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1844 1845
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1846

1847
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1848 1849
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1850

1851 1852 1853 1854 1855 1856 1857
	ret = clk_prepare(sdma->clk_ipg);
	if (ret)
		return ret;

	ret = clk_prepare(sdma->clk_ahb);
	if (ret)
		goto err_clk;
1858

1859 1860
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1861
	if (ret)
1862
		goto err_irq;
1863

1864 1865
	sdma->irq = irq;

1866
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1867 1868 1869 1870
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
		goto err_irq;
	}
1871

1872 1873 1874 1875 1876
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1877 1878 1879
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1880 1881 1882 1883 1884 1885 1886 1887
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;

		sdmac->channel = i;
1888
		sdmac->vc.desc_free = sdma_desc_free;
1889 1890 1891 1892 1893 1894
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
1895
			vchan_init(&sdmac->vc, &sdma->dma_device);
1896 1897
	}

1898
	ret = sdma_init(sdma);
1899 1900 1901
	if (ret)
		goto err_init;

1902 1903 1904 1905
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

1906 1907
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1908
	if (pdata && pdata->script_addrs)
1909 1910
		sdma_add_scripts(sdma, pdata->script_addrs);

1911
	if (pdata) {
1912 1913
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1914
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1915 1916 1917 1918 1919 1920 1921 1922
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1923
		if (ret)
1924
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1925 1926 1927
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1928
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1929 1930
		}
	}
1931

1932 1933 1934 1935 1936 1937 1938
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1939
	sdma->dma_device.device_config = sdma_config;
1940
	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1941 1942 1943
	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1944
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1945
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1946 1947
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1948

1949 1950
	platform_set_drvdata(pdev, sdma);

1951 1952 1953 1954 1955 1956
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1957 1958 1959 1960 1961 1962
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
1963 1964 1965 1966 1967 1968 1969 1970

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
1971 1972
	}

1973 1974
	return 0;

1975 1976
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1977 1978
err_init:
	kfree(sdma->script_addrs);
1979 1980 1981 1982
err_irq:
	clk_unprepare(sdma->clk_ahb);
err_clk:
	clk_unprepare(sdma->clk_ipg);
1983
	return ret;
1984 1985
}

1986
static int sdma_remove(struct platform_device *pdev)
1987
{
1988
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1989
	int i;
1990

1991
	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1992 1993
	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
1994 1995
	clk_unprepare(sdma->clk_ahb);
	clk_unprepare(sdma->clk_ipg);
1996 1997 1998 1999
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

2000 2001
		tasklet_kill(&sdmac->vc.task);
		sdma_free_chan_resources(&sdmac->vc.chan);
2002
	}
2003 2004 2005

	platform_set_drvdata(pdev, NULL);
	return 0;
2006 2007 2008 2009 2010
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
2011
		.of_match_table = sdma_dt_ids,
2012
	},
2013
	.id_table	= sdma_devtypes,
2014
	.remove		= sdma_remove,
2015
	.probe		= sdma_probe,
2016 2017
};

2018
module_platform_driver(sdma_driver);
2019 2020 2021

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
2022 2023 2024 2025 2026 2027
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
#endif
#if IS_ENABLED(CONFIG_SOC_IMX7D)
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
#endif
2028
MODULE_LICENSE("GPL");