imx-sdma.c 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/module.h>
22
#include <linux/types.h>
23
#include <linux/bitops.h>
24 25 26
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
27
#include <linux/delay.h>
28 29 30 31 32 33 34 35 36
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
37 38
#include <linux/of.h>
#include <linux/of_device.h>
39
#include <linux/of_dma.h>
40 41

#include <asm/irq.h>
42 43
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
44

45 46
#include "dmaengine.h"

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
74 75
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
	u32 command :  8; /* command mostlky used for channel 0 */
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
239
 * @channel		the channel number, matches dmaengine chan_id + 1
240 241 242 243 244 245 246 247 248 249 250
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
251
	enum dma_transfer_direction		direction;
252 253 254 255 256 257
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
	unsigned int			num_bd;
258
	unsigned int			period_len;
259 260 261 262 263
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
	unsigned long			flags;
	dma_addr_t			per_address;
264 265
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
266 267 268 269 270
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
271 272
	unsigned int			chn_count;
	unsigned int			chn_real_count;
273
	struct tasklet_struct		tasklet;
274
	struct imx_dma_data		data;
275 276
};

277
#define IMX_DMA_SG_LOOP		BIT(0)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

310 311 312
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
313
	struct sdma_script_start_addrs	*script_addrs;
314 315
};

316 317
struct sdma_engine {
	struct device			*dev;
318
	struct device_dma_parameters	dma_parms;
319 320 321 322 323 324
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
325 326
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
327
	spinlock_t			channel_0_lock;
328
	u32				script_number;
329
	struct sdma_script_start_addrs	*script_addrs;
330 331 332
	const struct sdma_driver_data	*drvdata;
};

333
static struct sdma_driver_data sdma_imx31 = {
334 335 336 337
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

354
static struct sdma_driver_data sdma_imx25 = {
355 356 357 358 359
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

360
static struct sdma_driver_data sdma_imx35 = {
361 362
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
363 364
};

365 366 367 368 369 370 371 372 373 374 375 376 377
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

378
static struct sdma_driver_data sdma_imx51 = {
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

398
static struct sdma_driver_data sdma_imx53 = {
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

417
static struct sdma_driver_data sdma_imx6q = {
418 419 420 421 422
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

423 424
static struct platform_device_id sdma_devtypes[] = {
	{
425 426 427
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
428
		.name = "imx31-sdma",
429
		.driver_data = (unsigned long)&sdma_imx31,
430 431
	}, {
		.name = "imx35-sdma",
432
		.driver_data = (unsigned long)&sdma_imx35,
433 434 435 436 437 438 439 440 441
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
442 443 444 445 446 447
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

448
static const struct of_device_id sdma_dt_ids[] = {
449 450 451
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
452
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
453
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
454
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
455 456 457 458
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

459 460 461
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
462 463 464 465
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
466
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
467 468 469 470 471 472 473 474
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
475
	unsigned long evt, mcu, dsp;
476 477 478 479

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

480 481 482
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
483 484

	if (dsp_override)
485
		__clear_bit(channel, &dsp);
486
	else
487
		__set_bit(channel, &dsp);
488 489

	if (event_override)
490
		__clear_bit(channel, &evt);
491
	else
492
		__set_bit(channel, &evt);
493 494

	if (mcu_override)
495
		__clear_bit(channel, &mcu);
496
	else
497
		__set_bit(channel, &mcu);
498

499 500 501
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
502 503 504 505

	return 0;
}

506 507
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
508
	writel(BIT(channel), sdma->regs + SDMA_H_START);
509 510
}

511
/*
512
 * sdma_run_channel0 - run a channel and wait till it's done
513
 */
514
static int sdma_run_channel0(struct sdma_engine *sdma)
515 516
{
	int ret;
517
	unsigned long timeout = 500;
518

519
	sdma_enable_channel(sdma, 0);
520

521 522 523 524 525
	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
		if (timeout-- <= 0)
			break;
		udelay(1);
	}
526

527 528 529 530 531 532
	if (ret) {
		/* Clear the interrupt status */
		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
	} else {
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
	}
533 534 535 536 537 538 539 540 541 542 543

	return ret ? 0 : -ETIMEDOUT;
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
544
	unsigned long flags;
545

546 547 548
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
549
	if (!buf_virt) {
550
		return -ENOMEM;
551
	}
552

553 554
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

555 556 557 558 559 560 561 562
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

563
	ret = sdma_run_channel0(sdma);
564

565
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
566

567
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
568

569 570 571 572 573 574 575
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
576
	unsigned long val;
577 578
	u32 chnenbl = chnenbl_ofs(sdma, event);

579
	val = readl_relaxed(sdma->regs + chnenbl);
580
	__set_bit(channel, &val);
581
	writel_relaxed(val, sdma->regs + chnenbl);
582 583 584 585 586 587 588
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
589
	unsigned long val;
590

591
	val = readl_relaxed(sdma->regs + chnenbl);
592
	__clear_bit(channel, &val);
593
	writel_relaxed(val, sdma->regs + chnenbl);
594 595 596
}

static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
597 598 599 600 601 602
{
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

static void sdma_update_channel_loop(struct sdma_channel *sdmac)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
	struct sdma_buffer_descriptor *bd;

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

		if (bd->mode.status & BD_RROR)
			sdmac->status = DMA_ERROR;

		bd->mode.status |= BD_DONE;
		sdmac->buf_tail++;
		sdmac->buf_tail %= sdmac->num_bd;
	}
}

static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

630
	sdmac->chn_real_count = 0;
631 632 633 634 635 636 637 638 639
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
640
		 sdmac->chn_real_count += bd->mode.count;
641 642 643 644 645
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
646
		sdmac->status = DMA_COMPLETE;
647

648
	dma_cookie_complete(&sdmac->desc);
649 650 651 652
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

653
static void sdma_tasklet(unsigned long data)
654
{
655 656
	struct sdma_channel *sdmac = (struct sdma_channel *) data;

657 658 659 660 661 662 663 664 665
	if (sdmac->flags & IMX_DMA_SG_LOOP)
		sdma_handle_channel_loop(sdmac);
	else
		mxc_sdma_handle_channel_normal(sdmac);
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
666
	unsigned long stat;
667

668
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
669 670
	/* not interested in channel 0 interrupts */
	stat &= ~1;
671
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
672 673 674 675 676

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

677 678 679
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			sdma_update_channel_loop(sdmac);

680
		tasklet_schedule(&sdmac->tasklet);
681

682
		__clear_bit(channel, &stat);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
	int per_2_per = 0, emi_2_emi = 0;

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
732
	case IMX_DMATYPE_SAI:
733 734 735
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
736 737 738 739
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
740 741 742 743 744 745 746 747 748 749 750 751 752 753
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
754 755 756 757 758
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;
789
	unsigned long flags;
790

791
	if (sdmac->direction == DMA_DEV_TO_MEM) {
792 793 794 795 796 797 798 799 800
		load_address = sdmac->pc_from_device;
	} else {
		load_address = sdmac->pc_to_device;
	}

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
801
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
802 803
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
804 805
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
806

807
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
808

809 810 811 812 813 814
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
815 816
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
817 818 819 820 821 822 823 824 825
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
826
	ret = sdma_run_channel0(sdma);
827

828
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
829

830 831 832 833 834 835 836 837
	return ret;
}

static void sdma_disable_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

838
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
839 840 841 842 843 844 845 846 847
	sdmac->status = DMA_ERROR;
}

static int sdma_config_channel(struct sdma_channel *sdmac)
{
	int ret;

	sdma_disable_channel(sdmac);

848 849
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
850 851 852 853
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
854
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
877
			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
878
			if (sdmac->event_id1 > 31)
879 880
				__set_bit(31, &sdmac->watermark_level);
			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
881
			if (sdmac->event_id0 > 31)
882
				__set_bit(30, &sdmac->watermark_level);
883
		} else {
884
			__set_bit(sdmac->event_id0, sdmac->event_mask);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		}
		/* Watermark Level */
		sdmac->watermark_level |= sdmac->watermark_level;
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

910
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
911 912 913 914 915 916 917 918 919 920

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

J
Joe Perches 已提交
921 922
	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
					GFP_KERNEL);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
	return 0;
out:

	return ret;
}

static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
945
	unsigned long flags;
946 947 948
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

949
	spin_lock_irqsave(&sdmac->lock, flags);
950

951
	cookie = dma_cookie_assign(tx);
952

953
	spin_unlock_irqrestore(&sdmac->lock, flags);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
982

983 984
	clk_enable(sdmac->sdma->clk_ipg);
	clk_enable(sdmac->sdma->clk_ahb);
985

986
	ret = sdma_request_channel(sdmac);
987 988 989
	if (ret)
		return ret;

990
	ret = sdma_set_channel_priority(sdmac, prio);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (ret)
		return ret;

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	sdma_disable_channel(sdmac);

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

1021 1022
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1023 1024 1025 1026
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1027
		unsigned int sg_len, enum dma_transfer_direction direction,
1028
		unsigned long flags, void *context)
1029 1030 1031 1032
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
1033
	int channel = sdmac->channel;
1034 1035 1036 1037 1038 1039 1040 1041
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

1042 1043
	sdmac->buf_tail = 0;

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

1059
	sdmac->chn_count = 0;
1060 1061 1062 1063
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

1064
		bd->buffer_addr = sg->dma_address;
1065

1066
		count = sg_dma_len(sg);
1067 1068 1069 1070 1071 1072 1073 1074 1075

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
1076
		sdmac->chn_count += count;
1077 1078 1079 1080 1081

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
1082 1083 1084

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1085
			bd->mode.command = 0;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
1100 1101 1102

		param = BD_DONE | BD_EXTD | BD_CONT;

1103
		if (i + 1 == sg_len) {
1104
			param |= BD_INTR;
1105 1106
			param |= BD_LAST;
			param &= ~BD_CONT;
1107 1108
		}

1109 1110
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1122
	sdmac->status = DMA_ERROR;
1123 1124 1125 1126 1127
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1128
		size_t period_len, enum dma_transfer_direction direction,
1129
		unsigned long flags)
1130 1131 1132 1133
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1134
	int channel = sdmac->channel;
1135 1136 1137 1138 1139 1140 1141 1142 1143
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1144
	sdmac->buf_tail = 0;
1145
	sdmac->period_len = period_len;
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1184 1185
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, period_len, (u64)dma_addr,
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		unsigned long arg)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct dma_slave_config *dmaengine_cfg = (void *)arg;

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		sdma_disable_channel(sdmac);
		return 0;
	case DMA_SLAVE_CONFIG:
1217
		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1218
			sdmac->per_address = dmaengine_cfg->src_addr;
1219 1220
			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
						dmaengine_cfg->src_addr_width;
1221 1222 1223
			sdmac->word_size = dmaengine_cfg->src_addr_width;
		} else {
			sdmac->per_address = dmaengine_cfg->dst_addr;
1224 1225
			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
						dmaengine_cfg->dst_addr_width;
1226 1227
			sdmac->word_size = dmaengine_cfg->dst_addr_width;
		}
1228
		sdmac->direction = dmaengine_cfg->direction;
1229 1230 1231 1232 1233 1234 1235 1236 1237
		return sdma_config_channel(sdmac);
	default:
		return -ENOSYS;
	}

	return -EINVAL;
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1238 1239
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1240 1241
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1242 1243 1244 1245 1246 1247
	u32 residue;

	if (sdmac->flags & IMX_DMA_SG_LOOP)
		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
	else
		residue = sdmac->chn_count - sdmac->chn_real_count;
1248

1249
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1250
			 residue);
1251

1252
	return sdmac->status;
1253 1254 1255 1256
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1257 1258 1259 1260 1261
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1262 1263
}

1264
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1265
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1266 1267 1268 1269 1270 1271 1272 1273

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1274 1275 1276 1277
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1278
	for (i = 0; i < sdma->script_number; i++)
1279 1280 1281 1282
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1283
static void sdma_load_firmware(const struct firmware *fw, void *context)
1284
{
1285
	struct sdma_engine *sdma = context;
1286 1287 1288 1289
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1290 1291 1292 1293
	if (!fw) {
		dev_err(sdma->dev, "firmware not found\n");
		return;
	}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	switch (header->version_major) {
		case 1:
			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
			break;
		case 2:
			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
			break;
		default:
			dev_err(sdma->dev, "unknown firmware version\n");
			goto err_firmware;
	}
1315 1316 1317 1318

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1319 1320
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1321 1322 1323
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1324
			addr->ram_code_start_addr);
1325 1326
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1327 1328 1329 1330 1331 1332 1333 1334 1335

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1336 1337
}

1338
static int sdma_get_firmware(struct sdma_engine *sdma,
1339 1340 1341 1342 1343 1344 1345
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1346 1347 1348 1349

	return ret;
}

1350
static int sdma_init(struct sdma_engine *sdma)
1351 1352 1353 1354
{
	int i, ret;
	dma_addr_t ccb_phys;

1355 1356
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1357 1358

	/* Be sure SDMA has not started yet */
1359
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1381
	for (i = 0; i < sdma->drvdata->num_events; i++)
1382
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1383 1384 1385

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1386
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1387 1388 1389 1390 1391 1392 1393 1394

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1395
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1396 1397 1398

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1399
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1400

1401
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1402 1403

	/* Set bits of CONFIG register with given context switching mode */
1404
	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1405 1406 1407 1408

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1409 1410
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1411 1412 1413 1414

	return 0;

err_dma_alloc:
1415 1416
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1417 1418 1419 1420
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1421 1422
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1423
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1424 1425 1426 1427 1428
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1429 1430
	sdmac->data = *data;
	chan->private = &sdmac->data;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1452
static int sdma_probe(struct platform_device *pdev)
1453
{
1454 1455 1456 1457
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
	const char *fw_name;
1458 1459 1460
	int ret;
	int irq;
	struct resource *iores;
J
Jingoo Han 已提交
1461
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1462 1463
	int i;
	struct sdma_engine *sdma;
1464
	s32 *saddr_arr;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1476

1477 1478 1479 1480
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1481 1482 1483 1484
	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
	if (!sdma)
		return -ENOMEM;

1485
	spin_lock_init(&sdma->channel_0_lock);
1486

1487
	sdma->dev = &pdev->dev;
1488
	sdma->drvdata = drvdata;
1489 1490 1491

	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1492
	if (!iores || irq < 0) {
1493 1494 1495 1496 1497 1498 1499 1500 1501
		ret = -EINVAL;
		goto err_irq;
	}

	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
		ret = -EBUSY;
		goto err_request_region;
	}

1502 1503 1504
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
	if (IS_ERR(sdma->clk_ipg)) {
		ret = PTR_ERR(sdma->clk_ipg);
1505 1506 1507
		goto err_clk;
	}

1508 1509 1510 1511 1512 1513 1514 1515 1516
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
	if (IS_ERR(sdma->clk_ahb)) {
		ret = PTR_ERR(sdma->clk_ahb);
		goto err_clk;
	}

	clk_prepare(sdma->clk_ipg);
	clk_prepare(sdma->clk_ahb);

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	sdma->regs = ioremap(iores->start, resource_size(iores));
	if (!sdma->regs) {
		ret = -ENOMEM;
		goto err_ioremap;
	}

	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
	if (ret)
		goto err_request_irq;

1527
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1528 1529
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
1530
		goto err_alloc;
1531
	}
1532

1533 1534 1535 1536 1537
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1538 1539 1540
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1541 1542 1543 1544 1545 1546 1547 1548 1549
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1550
		dma_cookie_init(&sdmac->chan);
1551 1552
		sdmac->channel = i;

1553 1554
		tasklet_init(&sdmac->tasklet, sdma_tasklet,
			     (unsigned long) sdmac);
1555 1556 1557 1558 1559 1560 1561 1562
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1563 1564
	}

1565
	ret = sdma_init(sdma);
1566 1567 1568
	if (ret)
		goto err_init;

1569 1570
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1571
	if (pdata && pdata->script_addrs)
1572 1573
		sdma_add_scripts(sdma, pdata->script_addrs);

1574
	if (pdata) {
1575 1576
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1577
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1578 1579 1580 1581 1582 1583 1584 1585
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1586
		if (ret)
1587
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1588 1589 1590
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1591
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1592 1593
		}
	}
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
	sdma->dma_device.device_control = sdma_control;
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1604 1605
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1606

1607 1608
	platform_set_drvdata(pdev, sdma);

1609 1610 1611 1612 1613 1614
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1615 1616 1617 1618 1619 1620 1621 1622
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
	}

1623
	dev_info(sdma->dev, "initialized\n");
1624 1625 1626

	return 0;

1627 1628
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1629 1630
err_init:
	kfree(sdma->script_addrs);
1631
err_alloc:
1632 1633 1634 1635 1636 1637 1638 1639 1640
	free_irq(irq, sdma);
err_request_irq:
	iounmap(sdma->regs);
err_ioremap:
err_clk:
	release_mem_region(iores->start, resource_size(iores));
err_request_region:
err_irq:
	kfree(sdma);
1641
	return ret;
1642 1643
}

1644
static int sdma_remove(struct platform_device *pdev)
1645
{
1646 1647 1648
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
	struct resource *iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	int irq = platform_get_irq(pdev, 0);
1649
	int i;
1650 1651 1652 1653 1654 1655

	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
	free_irq(irq, sdma);
	iounmap(sdma->regs);
	release_mem_region(iores->start, resource_size(iores));
1656 1657 1658 1659 1660 1661
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		tasklet_kill(&sdmac->tasklet);
	}
1662 1663 1664 1665 1666
	kfree(sdma);

	platform_set_drvdata(pdev, NULL);
	dev_info(&pdev->dev, "Removed...\n");
	return 0;
1667 1668 1669 1670 1671
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1672
		.of_match_table = sdma_dt_ids,
1673
	},
1674
	.id_table	= sdma_devtypes,
1675
	.remove		= sdma_remove,
1676
	.probe		= sdma_probe,
1677 1678
};

1679
module_platform_driver(sdma_driver);
1680 1681 1682 1683

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
MODULE_LICENSE("GPL");