ctree.c 151.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16

17 18
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
19 20 21
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
22
static int push_node_left(struct btrfs_trans_handle *trans,
23 24
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26
static int balance_node_right(struct btrfs_trans_handle *trans,
27
			      struct btrfs_fs_info *fs_info,
28 29
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
30 31
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
32

C
Chris Mason 已提交
33
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
34
{
35
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
36 37
}

38 39 40 41 42 43 44 45
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
46 47 48 49 50 51 52
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
53 54 55
	}
}

C
Chris Mason 已提交
56
/* this also releases the path */
C
Chris Mason 已提交
57
void btrfs_free_path(struct btrfs_path *p)
58
{
59 60
	if (!p)
		return;
61
	btrfs_release_path(p);
C
Chris Mason 已提交
62
	kmem_cache_free(btrfs_path_cachep, p);
63 64
}

C
Chris Mason 已提交
65 66 67 68 69 70
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
71
noinline void btrfs_release_path(struct btrfs_path *p)
72 73
{
	int i;
74

C
Chris Mason 已提交
75
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
76
		p->slots[i] = 0;
77
		if (!p->nodes[i])
78 79
			continue;
		if (p->locks[i]) {
80
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
81 82
			p->locks[i] = 0;
		}
83
		free_extent_buffer(p->nodes[i]);
84
		p->nodes[i] = NULL;
85 86 87
	}
}

C
Chris Mason 已提交
88 89 90 91 92 93 94 95 96 97
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
98 99 100
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
101

102 103 104 105 106 107
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
108
		 * it was COWed but we may not get the new root node yet so do
109 110 111 112 113 114 115 116 117 118
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
119 120 121
	return eb;
}

C
Chris Mason 已提交
122 123 124 125
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
126 127 128 129
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
130
	while (1) {
131 132
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
133
		if (eb == root->node)
134 135 136 137 138 139 140
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

141 142 143 144
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
145
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
146 147 148 149 150 151 152 153 154 155 156 157 158 159
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
160 161 162 163
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
164 165
static void add_root_to_dirty_list(struct btrfs_root *root)
{
166 167
	struct btrfs_fs_info *fs_info = root->fs_info;

168 169 170 171
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

172
	spin_lock(&fs_info->trans_lock);
173 174
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
175
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
176
			list_move_tail(&root->dirty_list,
177
				       &fs_info->dirty_cowonly_roots);
178 179
		else
			list_move(&root->dirty_list,
180
				  &fs_info->dirty_cowonly_roots);
181
	}
182
	spin_unlock(&fs_info->trans_lock);
183 184
}

C
Chris Mason 已提交
185 186 187 188 189
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
190 191 192 193 194
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
195
	struct btrfs_fs_info *fs_info = root->fs_info;
196 197 198
	struct extent_buffer *cow;
	int ret = 0;
	int level;
199
	struct btrfs_disk_key disk_key;
200

201
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
202
		trans->transid != fs_info->running_transaction->transid);
203 204
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
205 206

	level = btrfs_header_level(buf);
207 208 209 210
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
211

212 213
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
214
	if (IS_ERR(cow))
215 216
		return PTR_ERR(cow);

217
	copy_extent_buffer_full(cow, buf);
218 219
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
220 221 222 223 224 225 226
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
227

228
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
229

230
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
231
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232
		ret = btrfs_inc_ref(trans, root, cow, 1);
233
	else
234
		ret = btrfs_inc_ref(trans, root, cow, 0);
235

236 237 238 239 240 241 242 243
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
261
	u64 logical;
262
	u64 seq;
263 264 265 266 267 268 269 270 271 272 273 274 275
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
276 277 278 279
	struct {
		int dst_slot;
		int nr_items;
	} move;
280 281 282 283 284

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

285
/*
J
Josef Bacik 已提交
286
 * Pull a new tree mod seq number for our operation.
287
 */
J
Josef Bacik 已提交
288
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
289 290 291 292
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

293 294 295 296 297 298 299 300 301 302
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
303
{
304
	write_lock(&fs_info->tree_mod_log_lock);
305
	spin_lock(&fs_info->tree_mod_seq_lock);
306
	if (!elem->seq) {
J
Josef Bacik 已提交
307
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
308 309
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
310
	spin_unlock(&fs_info->tree_mod_seq_lock);
311
	write_unlock(&fs_info->tree_mod_log_lock);
312

J
Josef Bacik 已提交
313
	return elem->seq;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
332
	elem->seq = 0;
333 334

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
335
		if (cur_elem->seq < min_seq) {
336 337 338 339 340
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
341 342
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
343 344 345 346
			}
			min_seq = cur_elem->seq;
		}
	}
347 348
	spin_unlock(&fs_info->tree_mod_seq_lock);

349 350 351 352
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
353
	write_lock(&fs_info->tree_mod_log_lock);
354 355 356
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
357
		tm = rb_entry(node, struct tree_mod_elem, node);
358
		if (tm->seq > min_seq)
359 360 361 362
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
363
	write_unlock(&fs_info->tree_mod_log_lock);
364 365 366 367
}

/*
 * key order of the log:
368
 *       node/leaf start address -> sequence
369
 *
370 371 372
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
373
 *
374
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
375 376 377 378 379 380 381 382
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
383

J
Josef Bacik 已提交
384
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
385 386 387 388

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
389
		cur = rb_entry(*new, struct tree_mod_elem, node);
390
		parent = *new;
391
		if (cur->logical < tm->logical)
392
			new = &((*new)->rb_left);
393
		else if (cur->logical > tm->logical)
394
			new = &((*new)->rb_right);
395
		else if (cur->seq < tm->seq)
396
			new = &((*new)->rb_left);
397
		else if (cur->seq > tm->seq)
398
			new = &((*new)->rb_right);
399 400
		else
			return -EEXIST;
401 402 403 404
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
405
	return 0;
406 407
}

408 409 410 411
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
412
 * write unlock fs_info::tree_mod_log_lock.
413
 */
414 415 416 417 418
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
419 420
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
421

422
	write_lock(&fs_info->tree_mod_log_lock);
423
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
424
		write_unlock(&fs_info->tree_mod_log_lock);
425 426 427
		return 1;
	}

428 429 430
	return 0;
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
447
{
448
	struct tree_mod_elem *tm;
449

450 451
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
452
		return NULL;
453

454
	tm->logical = eb->start;
455 456 457 458 459 460 461
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
462
	RB_CLEAR_NODE(&tm->node);
463

464
	return tm;
465 466
}

467 468
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
469
{
470 471 472
	struct tree_mod_elem *tm;
	int ret;

473
	if (!tree_mod_need_log(eb->fs_info, eb))
474 475 476 477 478 479
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

480
	if (tree_mod_dont_log(eb->fs_info, eb)) {
481
		kfree(tm);
482
		return 0;
483 484
	}

485
	ret = __tree_mod_log_insert(eb->fs_info, tm);
486
	write_unlock(&eb->fs_info->tree_mod_log_lock);
487 488
	if (ret)
		kfree(tm);
489

490
	return ret;
491 492
}

493 494
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
495
{
496 497 498
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
499
	int i;
500
	int locked = 0;
501

502
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
503
		return 0;
504

505
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
506 507 508
	if (!tm_list)
		return -ENOMEM;

509
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
510 511 512 513 514
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

515
	tm->logical = eb->start;
516 517 518 519 520 521 522
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
523
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
524 525 526 527 528 529
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

530
	if (tree_mod_dont_log(eb->fs_info, eb))
531 532 533
		goto free_tms;
	locked = 1;

534 535 536 537 538
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
539
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
540
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
541 542
		if (ret)
			goto free_tms;
543 544
	}

545
	ret = __tree_mod_log_insert(eb->fs_info, tm);
546 547
	if (ret)
		goto free_tms;
548
	write_unlock(&eb->fs_info->tree_mod_log_lock);
549
	kfree(tm_list);
J
Jan Schmidt 已提交
550

551 552 553 554
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
555
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
556 557 558
		kfree(tm_list[i]);
	}
	if (locked)
559
		write_unlock(&eb->fs_info->tree_mod_log_lock);
560 561
	kfree(tm_list);
	kfree(tm);
562

563
	return ret;
564 565
}

566 567 568 569
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
570
{
571
	int i, j;
572 573 574
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
575 576 577 578 579 580 581
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
582
	}
583 584

	return 0;
585 586
}

587 588
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
589
{
590
	struct btrfs_fs_info *fs_info = old_root->fs_info;
591 592 593 594 595
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
596

597
	if (!tree_mod_need_log(fs_info, NULL))
598 599
		return 0;

600 601
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
602
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
603
				  GFP_NOFS);
604 605 606 607 608 609
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
610
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
611 612 613 614 615 616
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
617

618
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
619 620 621 622
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
623

624
	tm->logical = new_root->start;
625 626 627 628 629
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

630 631 632 633 634 635 636 637
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

638
	write_unlock(&fs_info->tree_mod_log_lock);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
654 655 656 657 658 659 660 661 662 663 664
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

665
	read_lock(&fs_info->tree_mod_log_lock);
666 667 668
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
669
		cur = rb_entry(node, struct tree_mod_elem, node);
670
		if (cur->logical < start) {
671
			node = node->rb_left;
672
		} else if (cur->logical > start) {
673
			node = node->rb_right;
674
		} else if (cur->seq < min_seq) {
675 676 677 678
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
679
				BUG_ON(found->seq > cur->seq);
680 681
			found = cur;
			node = node->rb_left;
682
		} else if (cur->seq > min_seq) {
683 684
			/* we want the node with the smallest seq */
			if (found)
685
				BUG_ON(found->seq < cur->seq);
686 687 688 689 690 691 692
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
693
	read_unlock(&fs_info->tree_mod_log_lock);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

721
static noinline int
722 723
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
724
		     unsigned long src_offset, int nr_items)
725
{
726 727 728
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
729
	int i;
730
	int locked = 0;
731

732 733
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
734

735
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
736 737
		return 0;

738
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
739 740 741
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
742

743 744
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
745
	for (i = 0; i < nr_items; i++) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
772
	}
773

774
	write_unlock(&fs_info->tree_mod_log_lock);
775 776 777 778 779 780 781 782 783 784 785
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
786
		write_unlock(&fs_info->tree_mod_log_lock);
787 788 789
	kfree(tm_list);

	return ret;
790 791
}

792
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
793
{
794 795 796 797 798 799 800 801
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

802
	if (!tree_mod_need_log(eb->fs_info, NULL))
803 804 805
		return 0;

	nritems = btrfs_header_nritems(eb);
806
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
807 808 809 810 811 812 813 814 815 816 817 818
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

819
	if (tree_mod_dont_log(eb->fs_info, eb))
820 821
		goto free_tms;

822
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
823
	write_unlock(&eb->fs_info->tree_mod_log_lock);
824 825 826 827 828 829 830 831 832 833 834 835
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
836 837
}

838 839 840 841 842 843 844
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
845
	 * Tree blocks not in reference counted trees and tree roots
846 847 848 849
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
850
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
851 852 853 854 855
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
856

857 858 859 860 861 862
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
863 864
				       struct extent_buffer *cow,
				       int *last_ref)
865
{
866
	struct btrfs_fs_info *fs_info = root->fs_info;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
891
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
892 893
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
894 895
		if (ret)
			return ret;
896 897
		if (refs == 0) {
			ret = -EROFS;
898
			btrfs_handle_fs_error(fs_info, ret, NULL);
899 900
			return ret;
		}
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
918
			ret = btrfs_inc_ref(trans, root, buf, 1);
919 920
			if (ret)
				return ret;
921 922 923

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
924
				ret = btrfs_dec_ref(trans, root, buf, 0);
925 926
				if (ret)
					return ret;
927
				ret = btrfs_inc_ref(trans, root, cow, 1);
928 929
				if (ret)
					return ret;
930 931 932 933 934 935
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
936
				ret = btrfs_inc_ref(trans, root, cow, 1);
937
			else
938
				ret = btrfs_inc_ref(trans, root, cow, 0);
939 940
			if (ret)
				return ret;
941 942
		}
		if (new_flags != 0) {
943 944
			int level = btrfs_header_level(buf);

945
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
946 947
							  buf->start,
							  buf->len,
948
							  new_flags, level, 0);
949 950
			if (ret)
				return ret;
951 952 953 954 955
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
956
				ret = btrfs_inc_ref(trans, root, cow, 1);
957
			else
958
				ret = btrfs_inc_ref(trans, root, cow, 0);
959 960
			if (ret)
				return ret;
961
			ret = btrfs_dec_ref(trans, root, buf, 1);
962 963
			if (ret)
				return ret;
964
		}
965
		clean_tree_block(fs_info, buf);
966
		*last_ref = 1;
967 968 969 970
	}
	return 0;
}

C
Chris Mason 已提交
971
/*
C
Chris Mason 已提交
972 973 974 975
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
976 977 978
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
979 980 981
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
982
 */
C
Chris Mason 已提交
983
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
984 985 986 987
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
988
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
989
{
990
	struct btrfs_fs_info *fs_info = root->fs_info;
991
	struct btrfs_disk_key disk_key;
992
	struct extent_buffer *cow;
993
	int level, ret;
994
	int last_ref = 0;
995
	int unlock_orig = 0;
996
	u64 parent_start = 0;
997

998 999 1000
	if (*cow_ret == buf)
		unlock_orig = 1;

1001
	btrfs_assert_tree_locked(buf);
1002

1003
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1004
		trans->transid != fs_info->running_transaction->transid);
1005 1006
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1007

1008
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1009

1010 1011 1012 1013 1014
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1015 1016
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * If we are COWing a node/leaf from the extent, chunk or device trees,
	 * make sure that we do not finish block group creation of pending block
	 * groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk and device trees, therefore we could
	 * deadlock with ourselves since we are holding a lock on an extent
	 * buffer that btrfs_create_pending_block_groups() may try to COW later.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root)
		trans->can_flush_pending_bgs = false;

1034 1035 1036
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1037
	trans->can_flush_pending_bgs = true;
1038 1039
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1040

1041 1042
	/* cow is set to blocking by btrfs_init_new_buffer */

1043
	copy_extent_buffer_full(cow, buf);
1044
	btrfs_set_header_bytenr(cow, cow->start);
1045
	btrfs_set_header_generation(cow, trans->transid);
1046 1047 1048 1049 1050 1051 1052
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1053

1054
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1055

1056
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1057
	if (ret) {
1058
		btrfs_abort_transaction(trans, ret);
1059 1060
		return ret;
	}
Z
Zheng Yan 已提交
1061

1062
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1063
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1064
		if (ret) {
1065
			btrfs_abort_transaction(trans, ret);
1066
			return ret;
1067
		}
1068
	}
1069

C
Chris Mason 已提交
1070
	if (buf == root->node) {
1071
		WARN_ON(parent && parent != buf);
1072 1073 1074
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1075

1076
		extent_buffer_get(cow);
1077 1078
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1079
		rcu_assign_pointer(root->node, cow);
1080

1081
		btrfs_free_tree_block(trans, root, buf, parent_start,
1082
				      last_ref);
1083
		free_extent_buffer(buf);
1084
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1085
	} else {
1086
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1087
		tree_mod_log_insert_key(parent, parent_slot,
1088
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1089
		btrfs_set_node_blockptr(parent, parent_slot,
1090
					cow->start);
1091 1092
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1093
		btrfs_mark_buffer_dirty(parent);
1094
		if (last_ref) {
1095
			ret = tree_mod_log_free_eb(buf);
1096
			if (ret) {
1097
				btrfs_abort_transaction(trans, ret);
1098 1099 1100
				return ret;
			}
		}
1101
		btrfs_free_tree_block(trans, root, buf, parent_start,
1102
				      last_ref);
C
Chris Mason 已提交
1103
	}
1104 1105
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1106
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1107
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1108
	*cow_ret = cow;
C
Chris Mason 已提交
1109 1110 1111
	return 0;
}

J
Jan Schmidt 已提交
1112 1113 1114 1115
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1116 1117
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1118 1119 1120
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1121
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1122 1123 1124
	int looped = 0;

	if (!time_seq)
1125
		return NULL;
J
Jan Schmidt 已提交
1126 1127

	/*
1128 1129 1130 1131
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1132 1133
	 */
	while (1) {
1134
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1135 1136
						time_seq);
		if (!looped && !tm)
1137
			return NULL;
J
Jan Schmidt 已提交
1138
		/*
1139 1140 1141
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1142
		 */
1143 1144
		if (!tm)
			break;
J
Jan Schmidt 已提交
1145

1146 1147 1148 1149 1150
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1151 1152 1153 1154 1155 1156 1157 1158
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1159 1160 1161 1162
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1163 1164 1165 1166 1167
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1168
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1169 1170 1171
 * time_seq).
 */
static void
1172 1173
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1183
	read_lock(&fs_info->tree_mod_log_lock);
1184
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1185 1186 1187 1188 1189 1190 1191 1192
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1193
			/* Fallthrough */
1194
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1195
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1196 1197 1198 1199
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1200
			n++;
J
Jan Schmidt 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1210
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1211 1212 1213
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1214 1215 1216
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1234
		tm = rb_entry(next, struct tree_mod_elem, node);
1235
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1236 1237
			break;
	}
1238
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1239 1240 1241
	btrfs_set_header_nritems(eb, n);
}

1242
/*
1243
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1244 1245 1246 1247 1248
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1249
static struct extent_buffer *
1250 1251
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1266 1267 1268
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1269 1270
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1271
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1272
		if (!eb_rewin) {
1273
			btrfs_tree_read_unlock_blocking(eb);
1274 1275 1276
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1277 1278 1279 1280
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1281
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1282 1283
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1284
		if (!eb_rewin) {
1285
			btrfs_tree_read_unlock_blocking(eb);
1286 1287 1288
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1289 1290
	}

1291
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1292 1293
	free_extent_buffer(eb);

1294
	btrfs_tree_read_lock(eb_rewin);
1295
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1296
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1297
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1298 1299 1300 1301

	return eb_rewin;
}

1302 1303 1304 1305 1306 1307 1308
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1309 1310 1311
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1312
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1313
	struct tree_mod_elem *tm;
1314 1315
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1316
	struct extent_buffer *old;
1317
	struct tree_mod_root *old_root = NULL;
1318
	u64 old_generation = 0;
1319
	u64 logical;
1320
	int level;
J
Jan Schmidt 已提交
1321

1322
	eb_root = btrfs_read_lock_root_node(root);
1323
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1324
	if (!tm)
1325
		return eb_root;
J
Jan Schmidt 已提交
1326

1327 1328 1329 1330
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1331
		level = old_root->level;
1332
	} else {
1333
		logical = eb_root->start;
1334
		level = btrfs_header_level(eb_root);
1335
	}
J
Jan Schmidt 已提交
1336

1337
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1338
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1339 1340
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1341
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1342 1343 1344
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1345 1346 1347
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1348
		} else {
1349 1350
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1351 1352
		}
	} else if (old_root) {
1353 1354
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1355
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1356
	} else {
1357
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1358
		eb = btrfs_clone_extent_buffer(eb_root);
1359
		btrfs_tree_read_unlock_blocking(eb_root);
1360
		free_extent_buffer(eb_root);
1361 1362
	}

1363 1364 1365
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1366
	if (old_root) {
J
Jan Schmidt 已提交
1367 1368
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1369
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1370 1371
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1372
	}
1373
	if (tm)
1374
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1375 1376
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1377
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1378 1379 1380 1381

	return eb;
}

J
Jan Schmidt 已提交
1382 1383 1384 1385
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1386
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1387

1388
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1389 1390 1391
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1392
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1393
	}
1394
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1395 1396 1397 1398

	return level;
}

1399 1400 1401 1402
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1403
	if (btrfs_is_testing(root->fs_info))
1404
		return 0;
1405

1406 1407
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1416
	 *    when we create snapshot during committing the transaction,
1417 1418 1419
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1420 1421 1422
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1423
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1424
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1425 1426 1427 1428
		return 0;
	return 1;
}

C
Chris Mason 已提交
1429 1430
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1431
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1432 1433
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1434
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1435 1436
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1437
		    struct extent_buffer **cow_ret)
1438
{
1439
	struct btrfs_fs_info *fs_info = root->fs_info;
1440
	u64 search_start;
1441
	int ret;
C
Chris Mason 已提交
1442

1443 1444 1445 1446
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1447
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1448
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1449
		       trans->transid,
1450
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1451

1452
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1453
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1454
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1455

1456
	if (!should_cow_block(trans, root, buf)) {
1457
		trans->dirty = true;
1458 1459 1460
		*cow_ret = buf;
		return 0;
	}
1461

1462
	search_start = buf->start & ~((u64)SZ_1G - 1);
1463 1464 1465 1466 1467

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1468
	ret = __btrfs_cow_block(trans, root, buf, parent,
1469
				 parent_slot, cow_ret, search_start, 0);
1470 1471 1472

	trace_btrfs_cow_block(root, buf, *cow_ret);

1473
	return ret;
1474 1475
}

C
Chris Mason 已提交
1476 1477 1478 1479
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1480
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1481
{
1482
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1483
		return 1;
1484
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1485 1486 1487 1488
		return 1;
	return 0;
}

1489 1490 1491
/*
 * compare two keys in a memcmp fashion
 */
1492 1493
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1494 1495 1496 1497 1498
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1499
	return btrfs_comp_cpu_keys(&k1, k2);
1500 1501
}

1502 1503 1504
/*
 * same as comp_keys only with two btrfs_key's
 */
1505
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1521

C
Chris Mason 已提交
1522 1523 1524 1525 1526
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1527
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1528
		       struct btrfs_root *root, struct extent_buffer *parent,
1529
		       int start_slot, u64 *last_ret,
1530
		       struct btrfs_key *progress)
1531
{
1532
	struct btrfs_fs_info *fs_info = root->fs_info;
1533
	struct extent_buffer *cur;
1534
	u64 blocknr;
1535
	u64 gen;
1536 1537
	u64 search_start = *last_ret;
	u64 last_block = 0;
1538 1539 1540 1541 1542
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1543
	int parent_level;
1544 1545
	int uptodate;
	u32 blocksize;
1546 1547
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1548

1549 1550
	parent_level = btrfs_header_level(parent);

1551 1552
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1553

1554
	parent_nritems = btrfs_header_nritems(parent);
1555
	blocksize = fs_info->nodesize;
1556
	end_slot = parent_nritems - 1;
1557

1558
	if (parent_nritems <= 1)
1559 1560
		return 0;

1561 1562
	btrfs_set_lock_blocking(parent);

1563
	for (i = start_slot; i <= end_slot; i++) {
1564
		struct btrfs_key first_key;
1565
		int close = 1;
1566

1567 1568 1569 1570 1571
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1572
		blocknr = btrfs_node_blockptr(parent, i);
1573
		gen = btrfs_node_ptr_generation(parent, i);
1574
		btrfs_node_key_to_cpu(parent, &first_key, i);
1575 1576
		if (last_block == 0)
			last_block = blocknr;
1577

1578
		if (i > 0) {
1579 1580
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1581
		}
1582
		if (!close && i < end_slot) {
1583 1584
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1585
		}
1586 1587
		if (close) {
			last_block = blocknr;
1588
			continue;
1589
		}
1590

1591
		cur = find_extent_buffer(fs_info, blocknr);
1592
		if (cur)
1593
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1594 1595
		else
			uptodate = 0;
1596
		if (!cur || !uptodate) {
1597
			if (!cur) {
1598 1599 1600
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1601 1602 1603
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1604
					free_extent_buffer(cur);
1605
					return -EIO;
1606
				}
1607
			} else if (!uptodate) {
1608 1609
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1610 1611 1612 1613
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1614
			}
1615
		}
1616
		if (search_start == 0)
1617
			search_start = last_block;
1618

1619
		btrfs_tree_lock(cur);
1620
		btrfs_set_lock_blocking(cur);
1621
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1622
					&cur, search_start,
1623
					min(16 * blocksize,
1624
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1625
		if (err) {
1626
			btrfs_tree_unlock(cur);
1627
			free_extent_buffer(cur);
1628
			break;
Y
Yan 已提交
1629
		}
1630 1631
		search_start = cur->start;
		last_block = cur->start;
1632
		*last_ret = search_start;
1633 1634
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1635 1636 1637 1638
	}
	return err;
}

C
Chris Mason 已提交
1639
/*
1640 1641 1642
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1643 1644 1645 1646 1647 1648
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1649
static noinline int generic_bin_search(struct extent_buffer *eb,
1650 1651
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1652
				       int max, int *slot)
1653 1654 1655 1656 1657
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1658
	struct btrfs_disk_key *tmp = NULL;
1659 1660 1661 1662 1663
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1664
	int err;
1665

1666 1667 1668 1669 1670 1671 1672 1673
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1674
	while (low < high) {
1675
		mid = (low + high) / 2;
1676 1677
		offset = p + mid * item_size;

1678
		if (!kaddr || offset < map_start ||
1679 1680
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1681 1682

			err = map_private_extent_buffer(eb, offset,
1683
						sizeof(struct btrfs_disk_key),
1684
						&kaddr, &map_start, &map_len);
1685 1686 1687 1688

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1689
			} else if (err == 1) {
1690 1691 1692
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1693 1694
			} else {
				return err;
1695
			}
1696 1697 1698 1699 1700

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1716 1717 1718 1719
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1720 1721
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1722
{
1723
	if (level == 0)
1724 1725
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1726
					  sizeof(struct btrfs_item),
1727
					  key, btrfs_header_nritems(eb),
1728
					  slot);
1729
	else
1730 1731
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1732
					  sizeof(struct btrfs_key_ptr),
1733
					  key, btrfs_header_nritems(eb),
1734
					  slot);
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1753 1754 1755
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1756 1757 1758
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1759
{
1760
	int level = btrfs_header_level(parent);
1761
	struct extent_buffer *eb;
1762
	struct btrfs_key first_key;
1763

1764 1765
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1766 1767 1768

	BUG_ON(level == 0);

1769
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1770
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1771 1772
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1773 1774 1775
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1776 1777 1778
	}

	return eb;
1779 1780
}

C
Chris Mason 已提交
1781 1782 1783 1784 1785
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1786
static noinline int balance_level(struct btrfs_trans_handle *trans,
1787 1788
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1789
{
1790
	struct btrfs_fs_info *fs_info = root->fs_info;
1791 1792 1793 1794
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1795 1796 1797 1798
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1799
	u64 orig_ptr;
1800

1801
	ASSERT(level > 0);
1802

1803
	mid = path->nodes[level];
1804

1805 1806
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1807 1808
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1809
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1810

L
Li Zefan 已提交
1811
	if (level < BTRFS_MAX_LEVEL - 1) {
1812
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1813 1814
		pslot = path->slots[level + 1];
	}
1815

C
Chris Mason 已提交
1816 1817 1818 1819
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1820 1821
	if (!parent) {
		struct extent_buffer *child;
1822

1823
		if (btrfs_header_nritems(mid) != 1)
1824 1825 1826
			return 0;

		/* promote the child to a root */
1827
		child = read_node_slot(fs_info, mid, 0);
1828 1829
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1830
			btrfs_handle_fs_error(fs_info, ret, NULL);
1831 1832 1833
			goto enospc;
		}

1834
		btrfs_tree_lock(child);
1835
		btrfs_set_lock_blocking(child);
1836
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1837 1838 1839 1840 1841
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1842

1843 1844
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1845
		rcu_assign_pointer(root->node, child);
1846

1847
		add_root_to_dirty_list(root);
1848
		btrfs_tree_unlock(child);
1849

1850
		path->locks[level] = 0;
1851
		path->nodes[level] = NULL;
1852
		clean_tree_block(fs_info, mid);
1853
		btrfs_tree_unlock(mid);
1854
		/* once for the path */
1855
		free_extent_buffer(mid);
1856 1857

		root_sub_used(root, mid->len);
1858
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1859
		/* once for the root ptr */
1860
		free_extent_buffer_stale(mid);
1861
		return 0;
1862
	}
1863
	if (btrfs_header_nritems(mid) >
1864
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1865 1866
		return 0;

1867
	left = read_node_slot(fs_info, parent, pslot - 1);
1868 1869 1870
	if (IS_ERR(left))
		left = NULL;

1871
	if (left) {
1872
		btrfs_tree_lock(left);
1873
		btrfs_set_lock_blocking(left);
1874
		wret = btrfs_cow_block(trans, root, left,
1875
				       parent, pslot - 1, &left);
1876 1877 1878 1879
		if (wret) {
			ret = wret;
			goto enospc;
		}
1880
	}
1881

1882
	right = read_node_slot(fs_info, parent, pslot + 1);
1883 1884 1885
	if (IS_ERR(right))
		right = NULL;

1886
	if (right) {
1887
		btrfs_tree_lock(right);
1888
		btrfs_set_lock_blocking(right);
1889
		wret = btrfs_cow_block(trans, root, right,
1890
				       parent, pslot + 1, &right);
1891 1892 1893 1894 1895 1896 1897
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1898 1899
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1900
		wret = push_node_left(trans, fs_info, left, mid, 1);
1901 1902
		if (wret < 0)
			ret = wret;
1903
	}
1904 1905 1906 1907

	/*
	 * then try to empty the right most buffer into the middle
	 */
1908
	if (right) {
1909
		wret = push_node_left(trans, fs_info, mid, right, 1);
1910
		if (wret < 0 && wret != -ENOSPC)
1911
			ret = wret;
1912
		if (btrfs_header_nritems(right) == 0) {
1913
			clean_tree_block(fs_info, right);
1914
			btrfs_tree_unlock(right);
1915
			del_ptr(root, path, level + 1, pslot + 1);
1916
			root_sub_used(root, right->len);
1917
			btrfs_free_tree_block(trans, root, right, 0, 1);
1918
			free_extent_buffer_stale(right);
1919
			right = NULL;
1920
		} else {
1921 1922
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1923 1924 1925
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1926 1927
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1928 1929
		}
	}
1930
	if (btrfs_header_nritems(mid) == 1) {
1931 1932 1933 1934 1935 1936 1937 1938 1939
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1940 1941
		if (!left) {
			ret = -EROFS;
1942
			btrfs_handle_fs_error(fs_info, ret, NULL);
1943 1944
			goto enospc;
		}
1945
		wret = balance_node_right(trans, fs_info, mid, left);
1946
		if (wret < 0) {
1947
			ret = wret;
1948 1949
			goto enospc;
		}
1950
		if (wret == 1) {
1951
			wret = push_node_left(trans, fs_info, left, mid, 1);
1952 1953 1954
			if (wret < 0)
				ret = wret;
		}
1955 1956
		BUG_ON(wret == 1);
	}
1957
	if (btrfs_header_nritems(mid) == 0) {
1958
		clean_tree_block(fs_info, mid);
1959
		btrfs_tree_unlock(mid);
1960
		del_ptr(root, path, level + 1, pslot);
1961
		root_sub_used(root, mid->len);
1962
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1963
		free_extent_buffer_stale(mid);
1964
		mid = NULL;
1965 1966
	} else {
		/* update the parent key to reflect our changes */
1967 1968
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1969 1970 1971
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1972 1973
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1974
	}
1975

1976
	/* update the path */
1977 1978 1979
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
1980
			/* left was locked after cow */
1981
			path->nodes[level] = left;
1982 1983
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
1984 1985
			if (mid) {
				btrfs_tree_unlock(mid);
1986
				free_extent_buffer(mid);
1987
			}
1988
		} else {
1989
			orig_slot -= btrfs_header_nritems(left);
1990 1991 1992
			path->slots[level] = orig_slot;
		}
	}
1993
	/* double check we haven't messed things up */
C
Chris Mason 已提交
1994
	if (orig_ptr !=
1995
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1996
		BUG();
1997
enospc:
1998 1999
	if (right) {
		btrfs_tree_unlock(right);
2000
		free_extent_buffer(right);
2001 2002 2003 2004
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2005
		free_extent_buffer(left);
2006
	}
2007 2008 2009
	return ret;
}

C
Chris Mason 已提交
2010 2011 2012 2013
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2014
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2015 2016
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2017
{
2018
	struct btrfs_fs_info *fs_info = root->fs_info;
2019 2020 2021 2022
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2023 2024 2025 2026 2027 2028 2029 2030
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2031
	mid = path->nodes[level];
2032
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2033

L
Li Zefan 已提交
2034
	if (level < BTRFS_MAX_LEVEL - 1) {
2035
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2036 2037
		pslot = path->slots[level + 1];
	}
2038

2039
	if (!parent)
2040 2041
		return 1;

2042
	left = read_node_slot(fs_info, parent, pslot - 1);
2043 2044
	if (IS_ERR(left))
		left = NULL;
2045 2046

	/* first, try to make some room in the middle buffer */
2047
	if (left) {
2048
		u32 left_nr;
2049 2050

		btrfs_tree_lock(left);
2051 2052
		btrfs_set_lock_blocking(left);

2053
		left_nr = btrfs_header_nritems(left);
2054
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2055 2056
			wret = 1;
		} else {
2057
			ret = btrfs_cow_block(trans, root, left, parent,
2058
					      pslot - 1, &left);
2059 2060 2061
			if (ret)
				wret = 1;
			else {
2062
				wret = push_node_left(trans, fs_info,
2063
						      left, mid, 0);
2064
			}
C
Chris Mason 已提交
2065
		}
2066 2067 2068
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2069
			struct btrfs_disk_key disk_key;
2070
			orig_slot += left_nr;
2071
			btrfs_node_key(mid, &disk_key, 0);
2072 2073 2074
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2075 2076 2077 2078
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2079 2080
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2081
				btrfs_tree_unlock(mid);
2082
				free_extent_buffer(mid);
2083 2084
			} else {
				orig_slot -=
2085
					btrfs_header_nritems(left);
2086
				path->slots[level] = orig_slot;
2087
				btrfs_tree_unlock(left);
2088
				free_extent_buffer(left);
2089 2090 2091
			}
			return 0;
		}
2092
		btrfs_tree_unlock(left);
2093
		free_extent_buffer(left);
2094
	}
2095
	right = read_node_slot(fs_info, parent, pslot + 1);
2096 2097
	if (IS_ERR(right))
		right = NULL;
2098 2099 2100 2101

	/*
	 * then try to empty the right most buffer into the middle
	 */
2102
	if (right) {
C
Chris Mason 已提交
2103
		u32 right_nr;
2104

2105
		btrfs_tree_lock(right);
2106 2107
		btrfs_set_lock_blocking(right);

2108
		right_nr = btrfs_header_nritems(right);
2109
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2110 2111
			wret = 1;
		} else {
2112 2113
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2114
					      &right);
2115 2116 2117
			if (ret)
				wret = 1;
			else {
2118
				wret = balance_node_right(trans, fs_info,
2119
							  right, mid);
2120
			}
C
Chris Mason 已提交
2121
		}
2122 2123 2124
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2125 2126 2127
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2128 2129 2130
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2131 2132 2133 2134 2135
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2136 2137
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2138
					btrfs_header_nritems(mid);
2139
				btrfs_tree_unlock(mid);
2140
				free_extent_buffer(mid);
2141
			} else {
2142
				btrfs_tree_unlock(right);
2143
				free_extent_buffer(right);
2144 2145 2146
			}
			return 0;
		}
2147
		btrfs_tree_unlock(right);
2148
		free_extent_buffer(right);
2149 2150 2151 2152
	}
	return 1;
}

2153
/*
C
Chris Mason 已提交
2154 2155
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2156
 */
2157
static void reada_for_search(struct btrfs_fs_info *fs_info,
2158 2159
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2160
{
2161
	struct extent_buffer *node;
2162
	struct btrfs_disk_key disk_key;
2163 2164
	u32 nritems;
	u64 search;
2165
	u64 target;
2166
	u64 nread = 0;
2167
	struct extent_buffer *eb;
2168 2169 2170
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2171

2172
	if (level != 1)
2173 2174 2175
		return;

	if (!path->nodes[level])
2176 2177
		return;

2178
	node = path->nodes[level];
2179

2180
	search = btrfs_node_blockptr(node, slot);
2181 2182
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2183 2184
	if (eb) {
		free_extent_buffer(eb);
2185 2186 2187
		return;
	}

2188
	target = search;
2189

2190
	nritems = btrfs_header_nritems(node);
2191
	nr = slot;
2192

C
Chris Mason 已提交
2193
	while (1) {
2194
		if (path->reada == READA_BACK) {
2195 2196 2197
			if (nr == 0)
				break;
			nr--;
2198
		} else if (path->reada == READA_FORWARD) {
2199 2200 2201
			nr++;
			if (nr >= nritems)
				break;
2202
		}
2203
		if (path->reada == READA_BACK && objectid) {
2204 2205 2206 2207
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2208
		search = btrfs_node_blockptr(node, nr);
2209 2210
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2211
			readahead_tree_block(fs_info, search);
2212 2213 2214
			nread += blocksize;
		}
		nscan++;
2215
		if ((nread > 65536 || nscan > 32))
2216
			break;
2217 2218
	}
}
2219

2220
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2221
				       struct btrfs_path *path, int level)
2222 2223 2224 2225 2226 2227 2228 2229 2230
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2231
	parent = path->nodes[level + 1];
2232
	if (!parent)
J
Josef Bacik 已提交
2233
		return;
2234 2235

	nritems = btrfs_header_nritems(parent);
2236
	slot = path->slots[level + 1];
2237 2238 2239 2240

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2241
		eb = find_extent_buffer(fs_info, block1);
2242 2243 2244 2245 2246 2247
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2248 2249 2250
			block1 = 0;
		free_extent_buffer(eb);
	}
2251
	if (slot + 1 < nritems) {
2252 2253
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2254
		eb = find_extent_buffer(fs_info, block2);
2255
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2256 2257 2258
			block2 = 0;
		free_extent_buffer(eb);
	}
2259

J
Josef Bacik 已提交
2260
	if (block1)
2261
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2262
	if (block2)
2263
		readahead_tree_block(fs_info, block2);
2264 2265 2266
}


C
Chris Mason 已提交
2267
/*
C
Chris Mason 已提交
2268 2269 2270 2271
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2272
 *
C
Chris Mason 已提交
2273 2274 2275
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2276
 *
C
Chris Mason 已提交
2277 2278
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2279
 */
2280
static noinline void unlock_up(struct btrfs_path *path, int level,
2281 2282
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2283 2284 2285
{
	int i;
	int skip_level = level;
2286
	int no_skips = 0;
2287 2288 2289 2290 2291 2292 2293
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2294
		if (!no_skips && path->slots[i] == 0) {
2295 2296 2297
			skip_level = i + 1;
			continue;
		}
2298
		if (!no_skips && path->keep_locks) {
2299 2300 2301
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2302
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2303 2304 2305 2306
				skip_level = i + 1;
				continue;
			}
		}
2307 2308 2309
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2310
		t = path->nodes[i];
2311
		if (i >= lowest_unlock && i > skip_level) {
2312
			btrfs_tree_unlock_rw(t, path->locks[i]);
2313
			path->locks[i] = 0;
2314 2315 2316 2317 2318
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2319 2320 2321 2322
		}
	}
}

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2336
	if (path->keep_locks)
2337 2338 2339 2340
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2341
			continue;
2342
		if (!path->locks[i])
2343
			continue;
2344
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2345 2346 2347 2348
		path->locks[i] = 0;
	}
}

2349 2350 2351 2352 2353 2354 2355 2356 2357
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2358 2359
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2360
		      const struct btrfs_key *key)
2361
{
2362
	struct btrfs_fs_info *fs_info = root->fs_info;
2363 2364 2365 2366
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2367
	struct btrfs_key first_key;
2368
	int ret;
2369
	int parent_level;
2370 2371 2372

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2373 2374
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2375

2376
	tmp = find_extent_buffer(fs_info, blocknr);
2377
	if (tmp) {
2378
		/* first we do an atomic uptodate check */
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2393
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2394 2395 2396
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2397
		}
2398 2399 2400
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2401 2402 2403 2404 2405
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2406 2407 2408
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2409
	 */
2410 2411 2412
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2413
	if (p->reada != READA_NONE)
2414
		reada_for_search(fs_info, p, level, slot, key->objectid);
2415

2416
	ret = -EAGAIN;
2417
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2418
			      &first_key);
2419
	if (!IS_ERR(tmp)) {
2420 2421 2422 2423 2424 2425
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2426
		if (!extent_buffer_uptodate(tmp))
2427
			ret = -EIO;
2428
		free_extent_buffer(tmp);
2429 2430
	} else {
		ret = PTR_ERR(tmp);
2431
	}
2432 2433

	btrfs_release_path(p);
2434
	return ret;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2449 2450
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2451
{
2452
	struct btrfs_fs_info *fs_info = root->fs_info;
2453
	int ret;
2454

2455
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2456
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2457 2458
		int sret;

2459 2460 2461 2462 2463 2464
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2465
		btrfs_set_path_blocking(p);
2466
		reada_for_balance(fs_info, p, level);
2467 2468 2469 2470 2471 2472 2473 2474 2475
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2476
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2477 2478
		int sret;

2479 2480 2481 2482 2483 2484
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2485
		btrfs_set_path_blocking(p);
2486
		reada_for_balance(fs_info, p, level);
2487 2488 2489 2490 2491 2492 2493 2494
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2495
			btrfs_release_path(p);
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2508
static void key_search_validate(struct extent_buffer *b,
2509
				const struct btrfs_key *key,
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2528
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2529 2530 2531
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2532
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2533 2534 2535 2536 2537 2538 2539 2540 2541
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2542
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2543 2544 2545 2546 2547 2548
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2549 2550

	ASSERT(path);
2551
	ASSERT(found_key);
2552 2553 2554 2555 2556 2557

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2558
	if (ret < 0)
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2600
			down_read(&fs_info->commit_root_sem);
2601
			b = btrfs_clone_extent_buffer(root->commit_root);
2602
			up_read(&fs_info->commit_root_sem);
2603 2604 2605 2606 2607 2608 2609 2610
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
			extent_buffer_get(b);
		}
		level = btrfs_header_level(b);
2611 2612 2613 2614 2615
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2627 2628
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2629
	 */
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2662
/*
2663 2664
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2665
 *
2666 2667 2668 2669 2670 2671 2672 2673
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2674
 *
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2686
 */
2687 2688 2689
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2690
{
2691
	struct btrfs_fs_info *fs_info = root->fs_info;
2692
	struct extent_buffer *b;
2693 2694
	int slot;
	int ret;
2695
	int err;
2696
	int level;
2697
	int lowest_unlock = 1;
2698 2699
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2700
	u8 lowest_level = 0;
2701
	int min_write_lock_level;
2702
	int prev_cmp;
2703

2704
	lowest_level = p->lowest_level;
2705
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2706
	WARN_ON(p->nodes[0] != NULL);
2707
	BUG_ON(!cow && ins_len);
2708

2709
	if (ins_len < 0) {
2710
		lowest_unlock = 2;
2711

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2728
	if (cow && (p->keep_locks || p->lowest_level))
2729 2730
		write_lock_level = BTRFS_MAX_LEVEL;

2731 2732
	min_write_lock_level = write_lock_level;

2733
again:
2734
	prev_cmp = -1;
2735
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2736 2737 2738 2739
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2740

2741
	while (b) {
2742
		level = btrfs_header_level(b);
2743 2744 2745 2746 2747

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2748
		if (cow) {
2749 2750
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2751 2752 2753 2754 2755
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2756 2757
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2758
				goto cow_done;
2759
			}
2760

2761 2762 2763 2764
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2765 2766 2767 2768
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2769 2770 2771 2772 2773
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2774
			btrfs_set_path_blocking(p);
2775 2776 2777 2778 2779 2780 2781
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2782 2783
			if (err) {
				ret = err;
2784
				goto done;
2785
			}
C
Chris Mason 已提交
2786
		}
2787
cow_done:
2788
		p->nodes[level] = b;
L
Liu Bo 已提交
2789 2790 2791 2792
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2793 2794 2795 2796 2797 2798 2799

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2800 2801 2802 2803
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2804
		 */
2805 2806 2807 2808 2809 2810 2811 2812
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2813

2814
		ret = key_search(b, key, level, &prev_cmp, &slot);
2815 2816
		if (ret < 0)
			goto done;
2817

2818
		if (level != 0) {
2819 2820 2821
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2822
				slot -= 1;
2823
			}
2824
			p->slots[level] = slot;
2825
			err = setup_nodes_for_search(trans, root, p, b, level,
2826
					     ins_len, &write_lock_level);
2827
			if (err == -EAGAIN)
2828
				goto again;
2829 2830
			if (err) {
				ret = err;
2831
				goto done;
2832
			}
2833 2834
			b = p->nodes[level];
			slot = p->slots[level];
2835

2836 2837 2838 2839 2840 2841
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2842
			if (slot == 0 && ins_len &&
2843 2844 2845 2846 2847 2848
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2849 2850
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2851

2852
			if (level == lowest_level) {
2853 2854
				if (dec)
					p->slots[level]++;
2855
				goto done;
2856
			}
2857

2858
			err = read_block_for_search(root, p, &b, level,
2859
						    slot, key);
2860
			if (err == -EAGAIN)
2861
				goto again;
2862 2863
			if (err) {
				ret = err;
2864
				goto done;
2865
			}
2866

2867
			if (!p->skip_locking) {
2868 2869 2870 2871 2872 2873 2874 2875 2876
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2877
					err = btrfs_tree_read_lock_atomic(b);
2878 2879 2880 2881 2882
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2883
				}
2884
				p->nodes[level] = b;
2885
			}
2886 2887
		} else {
			p->slots[level] = slot;
2888
			if (ins_len > 0 &&
2889
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2890 2891 2892 2893 2894 2895
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2896
				btrfs_set_path_blocking(p);
2897 2898
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2899

2900 2901 2902
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2903 2904
					goto done;
				}
C
Chris Mason 已提交
2905
			}
2906
			if (!p->search_for_split)
2907
				unlock_up(p, level, lowest_unlock,
2908
					  min_write_lock_level, NULL);
2909
			goto done;
2910 2911
		}
	}
2912 2913
	ret = 1;
done:
2914 2915 2916 2917
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2918 2919
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2920
	if (ret < 0 && !p->skip_release_on_error)
2921
		btrfs_release_path(p);
2922
	return ret;
2923 2924
}

J
Jan Schmidt 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2936
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2937 2938
			  struct btrfs_path *p, u64 time_seq)
{
2939
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2940 2941 2942 2943 2944 2945 2946
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2947
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2959 2960 2961 2962
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2978
		/*
2979
		 * Since we can unwind ebs we want to do a real search every
2980 2981 2982
		 * time.
		 */
		prev_cmp = -1;
2983
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3000
			err = read_block_for_search(root, p, &b, level,
3001
						    slot, key);
J
Jan Schmidt 已提交
3002 3003 3004 3005 3006 3007 3008 3009
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3010
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3011 3012 3013 3014
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
			}
3015
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3016 3017 3018 3019
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3051 3052 3053
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3088 3089 3090 3091 3092
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3093 3094 3095
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3096
				return 0;
3097
			}
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3109 3110 3111 3112 3113 3114
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3115 3116 3117 3118 3119 3120
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3121
 *
C
Chris Mason 已提交
3122
 */
3123
static void fixup_low_keys(struct btrfs_path *path,
3124
			   struct btrfs_disk_key *key, int level)
3125 3126
{
	int i;
3127
	struct extent_buffer *t;
3128
	int ret;
3129

C
Chris Mason 已提交
3130
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3131
		int tslot = path->slots[i];
3132

3133
		if (!path->nodes[i])
3134
			break;
3135
		t = path->nodes[i];
3136 3137 3138
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3139
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3140
		btrfs_mark_buffer_dirty(path->nodes[i]);
3141 3142 3143 3144 3145
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3146 3147 3148 3149 3150 3151
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3152 3153
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3154
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3164
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3165 3166 3167
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3168
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3169 3170 3171 3172 3173 3174
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3175
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3176 3177
}

C
Chris Mason 已提交
3178 3179
/*
 * try to push data from one node into the next node left in the
3180
 * tree.
C
Chris Mason 已提交
3181 3182 3183
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3184
 */
3185
static int push_node_left(struct btrfs_trans_handle *trans,
3186 3187
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3188
			  struct extent_buffer *src, int empty)
3189 3190
{
	int push_items = 0;
3191 3192
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3193
	int ret = 0;
3194

3195 3196
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3197
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3198 3199
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3200

3201
	if (!empty && src_nritems <= 8)
3202 3203
		return 1;

C
Chris Mason 已提交
3204
	if (push_items <= 0)
3205 3206
		return 1;

3207
	if (empty) {
3208
		push_items = min(src_nritems, push_items);
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3221

3222
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3223 3224
				   push_items);
	if (ret) {
3225
		btrfs_abort_transaction(trans, ret);
3226 3227
		return ret;
	}
3228 3229 3230
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3231
			   push_items * sizeof(struct btrfs_key_ptr));
3232

3233
	if (push_items < src_nritems) {
3234
		/*
3235 3236
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3237
		 */
3238 3239 3240 3241 3242 3243 3244 3245 3246
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3247

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3260
static int balance_node_right(struct btrfs_trans_handle *trans,
3261
			      struct btrfs_fs_info *fs_info,
3262 3263
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3264 3265 3266 3267 3268 3269 3270
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3271 3272 3273
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3274 3275
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3276
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3277
	if (push_items <= 0)
3278
		return 1;
3279

C
Chris Mason 已提交
3280
	if (src_nritems < 4)
3281
		return 1;
3282 3283 3284

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3285
	if (max_push >= src_nritems)
3286
		return 1;
Y
Yan 已提交
3287

3288 3289 3290
	if (max_push < push_items)
		push_items = max_push;

3291 3292
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3293 3294 3295 3296
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3297

3298
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3299 3300
				   src_nritems - push_items, push_items);
	if (ret) {
3301
		btrfs_abort_transaction(trans, ret);
3302 3303
		return ret;
	}
3304 3305 3306
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3307
			   push_items * sizeof(struct btrfs_key_ptr));
3308

3309 3310
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3311

3312 3313
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3314

C
Chris Mason 已提交
3315
	return ret;
3316 3317
}

C
Chris Mason 已提交
3318 3319 3320 3321
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3322 3323
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3324
 */
C
Chris Mason 已提交
3325
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3326
			   struct btrfs_root *root,
3327
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3328
{
3329
	struct btrfs_fs_info *fs_info = root->fs_info;
3330
	u64 lower_gen;
3331 3332
	struct extent_buffer *lower;
	struct extent_buffer *c;
3333
	struct extent_buffer *old;
3334
	struct btrfs_disk_key lower_key;
3335
	int ret;
C
Chris Mason 已提交
3336 3337 3338 3339

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3340 3341 3342 3343 3344 3345
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3346 3347
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3348 3349
	if (IS_ERR(c))
		return PTR_ERR(c);
3350

3351
	root_add_used(root, fs_info->nodesize);
3352

3353 3354
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3355
	btrfs_set_node_blockptr(c, 0, lower->start);
3356
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3357
	WARN_ON(lower_gen != trans->transid);
3358 3359

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3360

3361
	btrfs_mark_buffer_dirty(c);
3362

3363
	old = root->node;
3364 3365
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3366
	rcu_assign_pointer(root->node, c);
3367 3368 3369 3370

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3371
	add_root_to_dirty_list(root);
3372 3373
	extent_buffer_get(c);
	path->nodes[level] = c;
3374
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3375 3376 3377 3378
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3379 3380 3381
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3382
 *
C
Chris Mason 已提交
3383 3384 3385
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3386
static void insert_ptr(struct btrfs_trans_handle *trans,
3387
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3388
		       struct btrfs_disk_key *key, u64 bytenr,
3389
		       int slot, int level)
C
Chris Mason 已提交
3390
{
3391
	struct extent_buffer *lower;
C
Chris Mason 已提交
3392
	int nritems;
3393
	int ret;
C
Chris Mason 已提交
3394 3395

	BUG_ON(!path->nodes[level]);
3396
	btrfs_assert_tree_locked(path->nodes[level]);
3397 3398
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3399
	BUG_ON(slot > nritems);
3400
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3401
	if (slot != nritems) {
3402 3403
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3404
					nritems - slot);
3405 3406
			BUG_ON(ret < 0);
		}
3407 3408 3409
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3410
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3411
	}
3412
	if (level) {
3413 3414
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3415 3416
		BUG_ON(ret < 0);
	}
3417
	btrfs_set_node_key(lower, key, slot);
3418
	btrfs_set_node_blockptr(lower, slot, bytenr);
3419 3420
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3421 3422
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3423 3424
}

C
Chris Mason 已提交
3425 3426 3427 3428 3429 3430
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3431 3432
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3433
 */
3434 3435 3436
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3437
{
3438
	struct btrfs_fs_info *fs_info = root->fs_info;
3439 3440 3441
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3442
	int mid;
C
Chris Mason 已提交
3443
	int ret;
3444
	u32 c_nritems;
3445

3446
	c = path->nodes[level];
3447
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3448
	if (c == root->node) {
3449
		/*
3450 3451
		 * trying to split the root, lets make a new one
		 *
3452
		 * tree mod log: We don't log_removal old root in
3453 3454 3455 3456 3457
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3458
		 */
3459
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3460 3461
		if (ret)
			return ret;
3462
	} else {
3463
		ret = push_nodes_for_insert(trans, root, path, level);
3464 3465
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3466
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3467
			return 0;
3468 3469
		if (ret < 0)
			return ret;
3470
	}
3471

3472
	c_nritems = btrfs_header_nritems(c);
3473 3474
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3475

3476 3477
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3478 3479 3480
	if (IS_ERR(split))
		return PTR_ERR(split);

3481
	root_add_used(root, fs_info->nodesize);
3482
	ASSERT(btrfs_header_level(c) == level);
3483

3484
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3485
	if (ret) {
3486
		btrfs_abort_transaction(trans, ret);
3487 3488
		return ret;
	}
3489 3490 3491 3492 3493 3494
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3495 3496
	ret = 0;

3497 3498 3499
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3500
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3501
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3502

C
Chris Mason 已提交
3503
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3504
		path->slots[level] -= mid;
3505
		btrfs_tree_unlock(c);
3506 3507
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3508 3509
		path->slots[level + 1] += 1;
	} else {
3510
		btrfs_tree_unlock(split);
3511
		free_extent_buffer(split);
3512
	}
C
Chris Mason 已提交
3513
	return ret;
3514 3515
}

C
Chris Mason 已提交
3516 3517 3518 3519 3520
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3521
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3522
{
J
Josef Bacik 已提交
3523 3524 3525
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3526
	int data_len;
3527
	int nritems = btrfs_header_nritems(l);
3528
	int end = min(nritems, start + nr) - 1;
3529 3530 3531

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3532
	btrfs_init_map_token(&token);
3533 3534
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3535 3536 3537
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3538
	data_len += sizeof(struct btrfs_item) * nr;
3539
	WARN_ON(data_len < 0);
3540 3541 3542
	return data_len;
}

3543 3544 3545 3546 3547
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3548
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3549
				   struct extent_buffer *leaf)
3550
{
3551 3552
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3553 3554

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3555
	if (ret < 0) {
3556 3557 3558 3559 3560
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3561 3562
	}
	return ret;
3563 3564
}

3565 3566 3567 3568
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3569
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3570 3571 3572
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3573 3574
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3575
{
3576
	struct extent_buffer *left = path->nodes[0];
3577
	struct extent_buffer *upper = path->nodes[1];
3578
	struct btrfs_map_token token;
3579
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3580
	int slot;
3581
	u32 i;
C
Chris Mason 已提交
3582 3583
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3584
	struct btrfs_item *item;
3585
	u32 nr;
3586
	u32 right_nritems;
3587
	u32 data_end;
3588
	u32 this_item_size;
C
Chris Mason 已提交
3589

3590 3591
	btrfs_init_map_token(&token);

3592 3593 3594
	if (empty)
		nr = 0;
	else
3595
		nr = max_t(u32, 1, min_slot);
3596

Z
Zheng Yan 已提交
3597
	if (path->slots[0] >= left_nritems)
3598
		push_space += data_size;
Z
Zheng Yan 已提交
3599

3600
	slot = path->slots[1];
3601 3602
	i = left_nritems - 1;
	while (i >= nr) {
3603
		item = btrfs_item_nr(i);
3604

Z
Zheng Yan 已提交
3605 3606 3607 3608
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3609
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3610 3611 3612 3613 3614
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3615
		if (path->slots[0] == i)
3616
			push_space += data_size;
3617 3618 3619

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3620
			break;
Z
Zheng Yan 已提交
3621

C
Chris Mason 已提交
3622
		push_items++;
3623
		push_space += this_item_size + sizeof(*item);
3624 3625 3626
		if (i == 0)
			break;
		i--;
3627
	}
3628

3629 3630
	if (push_items == 0)
		goto out_unlock;
3631

J
Julia Lawall 已提交
3632
	WARN_ON(!empty && push_items == left_nritems);
3633

C
Chris Mason 已提交
3634
	/* push left to right */
3635
	right_nritems = btrfs_header_nritems(right);
3636

3637
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3638
	push_space -= leaf_data_end(fs_info, left);
3639

C
Chris Mason 已提交
3640
	/* make room in the right data area */
3641
	data_end = leaf_data_end(fs_info, right);
3642
	memmove_extent_buffer(right,
3643 3644
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3645
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3646

C
Chris Mason 已提交
3647
	/* copy from the left data area */
3648
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3649
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3650
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3651
		     push_space);
3652 3653 3654 3655 3656

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3657
	/* copy the items from left to right */
3658 3659 3660
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3661 3662

	/* update the item pointers */
3663
	right_nritems += push_items;
3664
	btrfs_set_header_nritems(right, right_nritems);
3665
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3666
	for (i = 0; i < right_nritems; i++) {
3667
		item = btrfs_item_nr(i);
3668 3669
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3670 3671
	}

3672
	left_nritems -= push_items;
3673
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3674

3675 3676
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3677
	else
3678
		clean_tree_block(fs_info, left);
3679

3680
	btrfs_mark_buffer_dirty(right);
3681

3682 3683
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3684
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3685

C
Chris Mason 已提交
3686
	/* then fixup the leaf pointer in the path */
3687 3688
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3689
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3690
			clean_tree_block(fs_info, path->nodes[0]);
3691
		btrfs_tree_unlock(path->nodes[0]);
3692 3693
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3694 3695
		path->slots[1] += 1;
	} else {
3696
		btrfs_tree_unlock(right);
3697
		free_extent_buffer(right);
C
Chris Mason 已提交
3698 3699
	}
	return 0;
3700 3701 3702 3703 3704

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3705
}
3706

3707 3708 3709 3710 3711 3712
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3713 3714 3715
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3716 3717
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3718 3719 3720
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3721
{
3722
	struct btrfs_fs_info *fs_info = root->fs_info;
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3741
	right = read_node_slot(fs_info, upper, slot + 1);
3742 3743 3744 3745 3746
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3747 3748
		return 1;

3749 3750 3751
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3752
	free_space = btrfs_leaf_free_space(fs_info, right);
3753 3754 3755 3756 3757 3758 3759 3760 3761
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3762
	free_space = btrfs_leaf_free_space(fs_info, right);
3763 3764 3765 3766 3767 3768 3769
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3783
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3784
				right, free_space, left_nritems, min_slot);
3785 3786 3787 3788 3789 3790
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3791 3792 3793
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3794 3795 3796 3797
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3798
 */
3799
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3800 3801
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3802 3803
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3804
{
3805 3806
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3807 3808 3809
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3810
	struct btrfs_item *item;
3811
	u32 old_left_nritems;
3812
	u32 nr;
C
Chris Mason 已提交
3813
	int ret = 0;
3814 3815
	u32 this_item_size;
	u32 old_left_item_size;
3816 3817 3818
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3819

3820
	if (empty)
3821
		nr = min(right_nritems, max_slot);
3822
	else
3823
		nr = min(right_nritems - 1, max_slot);
3824 3825

	for (i = 0; i < nr; i++) {
3826
		item = btrfs_item_nr(i);
3827

Z
Zheng Yan 已提交
3828 3829 3830 3831
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3832
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3833 3834 3835 3836 3837
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3838
		if (path->slots[0] == i)
3839
			push_space += data_size;
3840 3841 3842

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3843
			break;
3844

3845
		push_items++;
3846 3847 3848
		push_space += this_item_size + sizeof(*item);
	}

3849
	if (push_items == 0) {
3850 3851
		ret = 1;
		goto out;
3852
	}
3853
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3854

3855
	/* push data from right to left */
3856 3857 3858 3859 3860
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3861
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3862
		     btrfs_item_offset_nr(right, push_items - 1);
3863

3864
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3865
		     leaf_data_end(fs_info, left) - push_space,
3866
		     BTRFS_LEAF_DATA_OFFSET +
3867
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3868
		     push_space);
3869
	old_left_nritems = btrfs_header_nritems(left);
3870
	BUG_ON(old_left_nritems <= 0);
3871

3872
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3873
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3874
		u32 ioff;
3875

3876
		item = btrfs_item_nr(i);
3877

3878 3879
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3880
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3881
		      &token);
3882
	}
3883
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3884 3885

	/* fixup right node */
J
Julia Lawall 已提交
3886 3887
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3888
		       right_nritems);
3889 3890 3891

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3892
						  leaf_data_end(fs_info, right);
3893
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3894
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3895
				      BTRFS_LEAF_DATA_OFFSET +
3896
				      leaf_data_end(fs_info, right), push_space);
3897 3898

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3899 3900 3901
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3902
	}
3903 3904
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3905
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3906
	for (i = 0; i < right_nritems; i++) {
3907
		item = btrfs_item_nr(i);
3908

3909 3910 3911
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3912
	}
3913

3914
	btrfs_mark_buffer_dirty(left);
3915 3916
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3917
	else
3918
		clean_tree_block(fs_info, right);
3919

3920
	btrfs_item_key(right, &disk_key, 0);
3921
	fixup_low_keys(path, &disk_key, 1);
3922 3923 3924 3925

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3926
		btrfs_tree_unlock(path->nodes[0]);
3927 3928
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3929 3930
		path->slots[1] -= 1;
	} else {
3931
		btrfs_tree_unlock(left);
3932
		free_extent_buffer(left);
3933 3934
		path->slots[0] -= push_items;
	}
3935
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3936
	return ret;
3937 3938 3939 3940
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3941 3942
}

3943 3944 3945
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3946 3947 3948 3949
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3950 3951
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3952 3953
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3954
{
3955
	struct btrfs_fs_info *fs_info = root->fs_info;
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3975
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3976 3977 3978 3979 3980
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3981 3982
		return 1;

3983 3984 3985
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

3986
	free_space = btrfs_leaf_free_space(fs_info, left);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3997 3998
		if (ret == -ENOSPC)
			ret = 1;
3999 4000 4001
		goto out;
	}

4002
	free_space = btrfs_leaf_free_space(fs_info, left);
4003 4004 4005 4006 4007
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4008
	return __push_leaf_left(fs_info, path, min_data_size,
4009 4010
			       empty, left, free_space, right_nritems,
			       max_slot);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4021
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4022
				    struct btrfs_fs_info *fs_info,
4023 4024 4025 4026
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4027 4028 4029 4030 4031
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4032 4033 4034
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4035 4036 4037

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4038
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4039 4040 4041 4042 4043 4044

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4045 4046
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4047
		     leaf_data_end(fs_info, l), data_copy_size);
4048

4049
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4050 4051

	for (i = 0; i < nritems; i++) {
4052
		struct btrfs_item *item = btrfs_item_nr(i);
4053 4054
		u32 ioff;

4055 4056 4057
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4058 4059 4060 4061
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4062
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4063
		   path->slots[1] + 1, 1);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4098
	struct btrfs_fs_info *fs_info = root->fs_info;
4099 4100 4101 4102
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4103
	int space_needed = data_size;
4104 4105

	slot = path->slots[0];
4106
	if (slot < btrfs_header_nritems(path->nodes[0]))
4107
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4108 4109 4110 4111 4112

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4113
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4128
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4129 4130 4131 4132
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4133 4134 4135
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4136
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4148 4149 4150
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4151 4152
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4153
 */
4154 4155
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4156
			       const struct btrfs_key *ins_key,
4157 4158
			       struct btrfs_path *path, int data_size,
			       int extend)
4159
{
4160
	struct btrfs_disk_key disk_key;
4161
	struct extent_buffer *l;
4162
	u32 nritems;
4163 4164
	int mid;
	int slot;
4165
	struct extent_buffer *right;
4166
	struct btrfs_fs_info *fs_info = root->fs_info;
4167
	int ret = 0;
C
Chris Mason 已提交
4168
	int wret;
4169
	int split;
4170
	int num_doubles = 0;
4171
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4172

4173 4174 4175
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4176
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4177 4178
		return -EOVERFLOW;

C
Chris Mason 已提交
4179
	/* first try to make some room by pushing left and right */
4180
	if (data_size && path->nodes[1]) {
4181 4182 4183
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4184
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4185 4186 4187

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4188
		if (wret < 0)
C
Chris Mason 已提交
4189
			return wret;
4190
		if (wret) {
4191 4192 4193 4194
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4195 4196
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4197 4198 4199 4200
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4201

4202
		/* did the pushes work? */
4203
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4204
			return 0;
4205
	}
C
Chris Mason 已提交
4206

C
Chris Mason 已提交
4207
	if (!path->nodes[1]) {
4208
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4209 4210 4211
		if (ret)
			return ret;
	}
4212
again:
4213
	split = 1;
4214
	l = path->nodes[0];
4215
	slot = path->slots[0];
4216
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4217
	mid = (nritems + 1) / 2;
4218

4219 4220 4221
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4222
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4223 4224 4225 4226 4227 4228
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4229
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230 4231
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4232 4233 4234 4235 4236 4237
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4238
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4239 4240 4241 4242 4243 4244 4245 4246
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4247
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4248 4249
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4250
					split = 2;
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4261 4262
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4263
	if (IS_ERR(right))
4264
		return PTR_ERR(right);
4265

4266
	root_add_used(root, fs_info->nodesize);
4267

4268 4269 4270
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4271 4272
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4273 4274 4275 4276 4277 4278 4279
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4280 4281
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4282 4283 4284 4285
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4286
			if (path->slots[1] == 0)
4287
				fixup_low_keys(path, &disk_key, 1);
4288
		}
4289 4290 4291 4292 4293
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4294
		return ret;
4295
	}
C
Chris Mason 已提交
4296

4297
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4298

4299
	if (split == 2) {
4300 4301 4302
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4303
	}
4304

4305
	return 0;
4306 4307 4308 4309

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4310
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4311 4312
		return 0;
	goto again;
4313 4314
}

Y
Yan, Zheng 已提交
4315 4316 4317
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4318
{
4319
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4320
	struct btrfs_key key;
4321
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4322 4323 4324 4325
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4326 4327

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4328 4329 4330 4331 4332
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4333
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4334
		return 0;
4335 4336

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4337 4338 4339 4340 4341
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4342
	btrfs_release_path(path);
4343 4344

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4345 4346
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4347
	path->search_for_split = 0;
4348 4349
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4350 4351
	if (ret < 0)
		goto err;
4352

Y
Yan, Zheng 已提交
4353 4354
	ret = -EAGAIN;
	leaf = path->nodes[0];
4355 4356
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4357 4358
		goto err;

4359
	/* the leaf has  changed, it now has room.  return now */
4360
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4361 4362
		goto err;

Y
Yan, Zheng 已提交
4363 4364 4365 4366 4367
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4368 4369
	}

4370
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4371
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4372 4373
	if (ret)
		goto err;
4374

Y
Yan, Zheng 已提交
4375
	path->keep_locks = 0;
4376
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4377 4378 4379 4380 4381 4382
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4383
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4384
			       struct btrfs_path *path,
4385
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4398
	leaf = path->nodes[0];
4399
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4400

4401 4402
	btrfs_set_path_blocking(path);

4403
	item = btrfs_item_nr(path->slots[0]);
4404 4405 4406 4407
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4408 4409 4410
	if (!buf)
		return -ENOMEM;

4411 4412 4413
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4414
	slot = path->slots[0] + 1;
4415 4416 4417 4418
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4419 4420
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4421 4422 4423 4424 4425
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4426
	new_item = btrfs_item_nr(slot);
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4448
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4449
	kfree(buf);
Y
Yan, Zheng 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4471
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4472 4473 4474 4475 4476 4477 4478 4479
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4480
	ret = split_item(root->fs_info, path, new_key, split_offset);
4481 4482 4483
	return ret;
}

Y
Yan, Zheng 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4495
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4509
	setup_items_for_insert(root, path, new_key, &item_size,
4510 4511
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4512 4513 4514 4515 4516 4517 4518 4519
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4520 4521 4522 4523 4524 4525
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4526 4527
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4528 4529
{
	int slot;
4530 4531
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4532 4533 4534 4535 4536 4537
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4538 4539 4540
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4541

4542
	leaf = path->nodes[0];
4543 4544 4545 4546
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4547
		return;
C
Chris Mason 已提交
4548

4549
	nritems = btrfs_header_nritems(leaf);
4550
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4551

4552
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4553

C
Chris Mason 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4564
		u32 ioff;
4565
		item = btrfs_item_nr(i);
4566

4567 4568 4569
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4570
	}
4571

C
Chris Mason 已提交
4572
	/* shift the data */
4573
	if (from_end) {
4574 4575
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4596
				      (unsigned long)fi,
4597
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4598 4599 4600
			}
		}

4601 4602
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4603 4604 4605 4606 4607 4608
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4609
			fixup_low_keys(path, &disk_key, 1);
4610
	}
4611

4612
	item = btrfs_item_nr(slot);
4613 4614
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4615

4616
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4617
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4618
		BUG();
4619
	}
C
Chris Mason 已提交
4620 4621
}

C
Chris Mason 已提交
4622
/*
S
Stefan Behrens 已提交
4623
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4624
 */
4625
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4626
		       u32 data_size)
4627 4628
{
	int slot;
4629 4630
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4631 4632 4633 4634 4635
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4636 4637 4638
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4639

4640
	leaf = path->nodes[0];
4641

4642
	nritems = btrfs_header_nritems(leaf);
4643
	data_end = leaf_data_end(fs_info, leaf);
4644

4645
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4646
		btrfs_print_leaf(leaf);
4647
		BUG();
4648
	}
4649
	slot = path->slots[0];
4650
	old_data = btrfs_item_end_nr(leaf, slot);
4651 4652

	BUG_ON(slot < 0);
4653
	if (slot >= nritems) {
4654
		btrfs_print_leaf(leaf);
4655 4656
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4657 4658
		BUG_ON(1);
	}
4659 4660 4661 4662 4663 4664

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4665
		u32 ioff;
4666
		item = btrfs_item_nr(i);
4667

4668 4669 4670
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4671
	}
4672

4673
	/* shift the data */
4674 4675
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4676
		      data_end, old_data - data_end);
4677

4678
	data_end = old_data;
4679
	old_size = btrfs_item_size_nr(leaf, slot);
4680
	item = btrfs_item_nr(slot);
4681 4682
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4683

4684
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4685
		btrfs_print_leaf(leaf);
4686
		BUG();
4687
	}
4688 4689
}

C
Chris Mason 已提交
4690
/*
4691 4692 4693
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4694
 */
4695
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4696
			    const struct btrfs_key *cpu_key, u32 *data_size,
4697
			    u32 total_data, u32 total_size, int nr)
4698
{
4699
	struct btrfs_fs_info *fs_info = root->fs_info;
4700
	struct btrfs_item *item;
4701
	int i;
4702
	u32 nritems;
4703
	unsigned int data_end;
C
Chris Mason 已提交
4704
	struct btrfs_disk_key disk_key;
4705 4706
	struct extent_buffer *leaf;
	int slot;
4707 4708
	struct btrfs_map_token token;

4709 4710
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4711
		fixup_low_keys(path, &disk_key, 1);
4712 4713 4714
	}
	btrfs_unlock_up_safe(path, 1);

4715
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4716

4717
	leaf = path->nodes[0];
4718
	slot = path->slots[0];
C
Chris Mason 已提交
4719

4720
	nritems = btrfs_header_nritems(leaf);
4721
	data_end = leaf_data_end(fs_info, leaf);
4722

4723
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4724
		btrfs_print_leaf(leaf);
4725
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4726
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4727
		BUG();
4728
	}
4729

4730
	if (slot != nritems) {
4731
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4732

4733
		if (old_data < data_end) {
4734
			btrfs_print_leaf(leaf);
4735
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4736
				   slot, old_data, data_end);
4737 4738
			BUG_ON(1);
		}
4739 4740 4741 4742
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4743
		for (i = slot; i < nritems; i++) {
4744
			u32 ioff;
4745

4746
			item = btrfs_item_nr(i);
4747 4748 4749
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4750
		}
4751
		/* shift the items */
4752
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4753
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4754
			      (nritems - slot) * sizeof(struct btrfs_item));
4755 4756

		/* shift the data */
4757 4758
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4759
			      data_end, old_data - data_end);
4760 4761
		data_end = old_data;
	}
4762

4763
	/* setup the item for the new data */
4764 4765 4766
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4767
		item = btrfs_item_nr(slot + i);
4768 4769
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4770
		data_end -= data_size[i];
4771
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4772
	}
4773

4774
	btrfs_set_header_nritems(leaf, nritems + nr);
4775
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4776

4777
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4778
		btrfs_print_leaf(leaf);
4779
		BUG();
4780
	}
4781 4782 4783 4784 4785 4786 4787 4788 4789
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4790
			    const struct btrfs_key *cpu_key, u32 *data_size,
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4807
		return ret;
4808 4809 4810 4811

	slot = path->slots[0];
	BUG_ON(slot < 0);

4812
	setup_items_for_insert(root, path, cpu_key, data_size,
4813
			       total_data, total_size, nr);
4814
	return 0;
4815 4816 4817 4818 4819 4820
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4821 4822 4823
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4824 4825
{
	int ret = 0;
C
Chris Mason 已提交
4826
	struct btrfs_path *path;
4827 4828
	struct extent_buffer *leaf;
	unsigned long ptr;
4829

C
Chris Mason 已提交
4830
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4831 4832
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4833
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4834
	if (!ret) {
4835 4836 4837 4838
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4839
	}
C
Chris Mason 已提交
4840
	btrfs_free_path(path);
C
Chris Mason 已提交
4841
	return ret;
4842 4843
}

C
Chris Mason 已提交
4844
/*
C
Chris Mason 已提交
4845
 * delete the pointer from a given node.
C
Chris Mason 已提交
4846
 *
C
Chris Mason 已提交
4847 4848
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4849
 */
4850 4851
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4852
{
4853
	struct extent_buffer *parent = path->nodes[level];
4854
	u32 nritems;
4855
	int ret;
4856

4857
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4858
	if (slot != nritems - 1) {
4859 4860
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4861
					nritems - slot - 1);
4862 4863
			BUG_ON(ret < 0);
		}
4864 4865 4866
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4867 4868
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4869
	} else if (level) {
4870 4871
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4872
		BUG_ON(ret < 0);
4873
	}
4874

4875
	nritems--;
4876
	btrfs_set_header_nritems(parent, nritems);
4877
	if (nritems == 0 && parent == root->node) {
4878
		BUG_ON(btrfs_header_level(root->node) != 1);
4879
		/* just turn the root into a leaf and break */
4880
		btrfs_set_header_level(root->node, 0);
4881
	} else if (slot == 0) {
4882 4883 4884
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4885
		fixup_low_keys(path, &disk_key, level + 1);
4886
	}
C
Chris Mason 已提交
4887
	btrfs_mark_buffer_dirty(parent);
4888 4889
}

4890 4891
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4892
 * path->nodes[1].
4893 4894 4895 4896 4897 4898 4899
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4900 4901 4902 4903
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4904
{
4905
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4906
	del_ptr(root, path, 1, path->slots[1]);
4907

4908 4909 4910 4911 4912 4913
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4914 4915
	root_sub_used(root, leaf->len);

4916
	extent_buffer_get(leaf);
4917
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4918
	free_extent_buffer_stale(leaf);
4919
}
C
Chris Mason 已提交
4920 4921 4922 4923
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4924 4925
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4926
{
4927
	struct btrfs_fs_info *fs_info = root->fs_info;
4928 4929
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4930 4931
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4932 4933
	int ret = 0;
	int wret;
4934
	int i;
4935
	u32 nritems;
4936 4937 4938
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4939

4940
	leaf = path->nodes[0];
4941 4942 4943 4944 4945
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4946
	nritems = btrfs_header_nritems(leaf);
4947

4948
	if (slot + nr != nritems) {
4949
		int data_end = leaf_data_end(fs_info, leaf);
4950

4951
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4952
			      data_end + dsize,
4953
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4954
			      last_off - data_end);
4955

4956
		for (i = slot + nr; i < nritems; i++) {
4957
			u32 ioff;
4958

4959
			item = btrfs_item_nr(i);
4960 4961 4962
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4963
		}
4964

4965
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4966
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4967
			      sizeof(struct btrfs_item) *
4968
			      (nritems - slot - nr));
4969
	}
4970 4971
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4972

C
Chris Mason 已提交
4973
	/* delete the leaf if we've emptied it */
4974
	if (nritems == 0) {
4975 4976
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4977
		} else {
4978
			btrfs_set_path_blocking(path);
4979
			clean_tree_block(fs_info, leaf);
4980
			btrfs_del_leaf(trans, root, path, leaf);
4981
		}
4982
	} else {
4983
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4984
		if (slot == 0) {
4985 4986 4987
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4988
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4989 4990
		}

C
Chris Mason 已提交
4991
		/* delete the leaf if it is mostly empty */
4992
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4993 4994 4995 4996
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4997
			slot = path->slots[1];
4998 4999
			extent_buffer_get(leaf);

5000
			btrfs_set_path_blocking(path);
5001 5002
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5003
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5004
				ret = wret;
5005 5006 5007

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5008 5009
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5010
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5011 5012
					ret = wret;
			}
5013 5014

			if (btrfs_header_nritems(leaf) == 0) {
5015
				path->slots[1] = slot;
5016
				btrfs_del_leaf(trans, root, path, leaf);
5017
				free_extent_buffer(leaf);
5018
				ret = 0;
C
Chris Mason 已提交
5019
			} else {
5020 5021 5022 5023 5024 5025 5026
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5027
				free_extent_buffer(leaf);
5028
			}
5029
		} else {
5030
			btrfs_mark_buffer_dirty(leaf);
5031 5032
		}
	}
C
Chris Mason 已提交
5033
	return ret;
5034 5035
}

5036
/*
5037
 * search the tree again to find a leaf with lesser keys
5038 5039
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5040 5041 5042
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5043
 */
5044
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5045
{
5046 5047 5048
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5049

5050
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5051

5052
	if (key.offset > 0) {
5053
		key.offset--;
5054
	} else if (key.type > 0) {
5055
		key.type--;
5056 5057
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5058
		key.objectid--;
5059 5060 5061
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5062
		return 1;
5063
	}
5064

5065
	btrfs_release_path(path);
5066 5067 5068 5069 5070
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5082 5083
		return 0;
	return 1;
5084 5085
}

5086 5087
/*
 * A helper function to walk down the tree starting at min_key, and looking
5088 5089
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5090 5091 5092 5093 5094 5095 5096 5097
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5098 5099 5100 5101
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5102 5103 5104 5105
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5106
			 struct btrfs_path *path,
5107 5108
			 u64 min_trans)
{
5109
	struct btrfs_fs_info *fs_info = root->fs_info;
5110 5111 5112
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5113
	int sret;
5114 5115 5116
	u32 nritems;
	int level;
	int ret = 1;
5117
	int keep_locks = path->keep_locks;
5118

5119
	path->keep_locks = 1;
5120
again:
5121
	cur = btrfs_read_lock_root_node(root);
5122
	level = btrfs_header_level(cur);
5123
	WARN_ON(path->nodes[level]);
5124
	path->nodes[level] = cur;
5125
	path->locks[level] = BTRFS_READ_LOCK;
5126 5127 5128 5129 5130

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5131
	while (1) {
5132 5133
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5134
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5135

5136 5137
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5138 5139
			if (slot >= nritems)
				goto find_next_key;
5140 5141 5142 5143 5144
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5145 5146
		if (sret && slot > 0)
			slot--;
5147
		/*
5148 5149
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5150
		 */
C
Chris Mason 已提交
5151
		while (slot < nritems) {
5152
			u64 gen;
5153

5154 5155 5156 5157 5158
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5159
			break;
5160
		}
5161
find_next_key:
5162 5163 5164 5165 5166
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5167
			path->slots[level] = slot;
5168
			btrfs_set_path_blocking(path);
5169
			sret = btrfs_find_next_key(root, path, min_key, level,
5170
						  min_trans);
5171
			if (sret == 0) {
5172
				btrfs_release_path(path);
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5185
		btrfs_set_path_blocking(path);
5186
		cur = read_node_slot(fs_info, cur, slot);
5187 5188 5189 5190
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5191

5192
		btrfs_tree_read_lock(cur);
5193

5194
		path->locks[level - 1] = BTRFS_READ_LOCK;
5195
		path->nodes[level - 1] = cur;
5196
		unlock_up(path, level, 1, 0, NULL);
5197 5198
	}
out:
5199 5200 5201 5202
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5203
		memcpy(min_key, &found_key, sizeof(found_key));
5204
	}
5205 5206 5207
	return ret;
}

5208
static int tree_move_down(struct btrfs_fs_info *fs_info,
5209
			   struct btrfs_path *path,
5210
			   int *level)
5211
{
5212 5213
	struct extent_buffer *eb;

5214
	BUG_ON(*level == 0);
5215
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5216 5217 5218 5219
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5220 5221
	path->slots[*level - 1] = 0;
	(*level)--;
5222
	return 0;
5223 5224
}

5225
static int tree_move_next_or_upnext(struct btrfs_path *path,
5226 5227 5228 5229 5230 5231 5232 5233
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5234
	while (path->slots[*level] >= nritems) {
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5255
static int tree_advance(struct btrfs_fs_info *fs_info,
5256 5257 5258 5259 5260 5261 5262 5263
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5264
		ret = tree_move_next_or_upnext(path, level, root_level);
5265
	} else {
5266
		ret = tree_move_down(fs_info, path, level);
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5279
static int tree_compare_item(struct btrfs_path *left_path,
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5324
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5342 5343
	u64 left_gen;
	u64 right_gen;
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5356
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5357
	if (!tmp_buf) {
5358 5359
		ret = -ENOMEM;
		goto out;
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5403
	down_read(&fs_info->commit_root_sem);
5404 5405
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5406 5407 5408 5409 5410 5411 5412
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5413 5414 5415

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5416 5417 5418 5419 5420 5421 5422
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5423
	up_read(&fs_info->commit_root_sem);
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5443
			ret = tree_advance(fs_info, left_path, &left_level,
5444 5445 5446
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5447
			if (ret == -1)
5448
				left_end_reached = ADVANCE;
5449 5450
			else if (ret < 0)
				goto out;
5451 5452 5453
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5454
			ret = tree_advance(fs_info, right_path, &right_level,
5455 5456 5457
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5458
			if (ret == -1)
5459
				right_end_reached = ADVANCE;
5460 5461
			else if (ret < 0)
				goto out;
5462 5463 5464 5465 5466 5467 5468 5469
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5470
				ret = changed_cb(left_path, right_path,
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5481
				ret = changed_cb(left_path, right_path,
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5495
				ret = changed_cb(left_path, right_path,
5496 5497 5498 5499 5500 5501 5502
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5503
				ret = changed_cb(left_path, right_path,
5504 5505 5506 5507 5508 5509 5510
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5511
				enum btrfs_compare_tree_result result;
5512

5513
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5514 5515
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5516
				if (ret)
5517
					result = BTRFS_COMPARE_TREE_CHANGED;
5518
				else
5519
					result = BTRFS_COMPARE_TREE_SAME;
5520
				ret = changed_cb(left_path, right_path,
5521
						 &left_key, result, ctx);
5522 5523
				if (ret < 0)
					goto out;
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5540 5541 5542 5543 5544 5545 5546 5547
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5569
	kvfree(tmp_buf);
5570 5571 5572
	return ret;
}

5573 5574 5575
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5576
 * tree based on the current path and the min_trans parameters.
5577 5578 5579 5580 5581 5582 5583
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5584
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5585
			struct btrfs_key *key, int level, u64 min_trans)
5586 5587 5588 5589
{
	int slot;
	struct extent_buffer *c;

5590
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5591
	while (level < BTRFS_MAX_LEVEL) {
5592 5593 5594 5595 5596
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5597
next:
5598
		if (slot >= btrfs_header_nritems(c)) {
5599 5600 5601 5602 5603
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5604
				return 1;
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5618
			btrfs_release_path(path);
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5631
		}
5632

5633 5634
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5635 5636 5637 5638 5639 5640 5641
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5642
			btrfs_node_key_to_cpu(c, key, slot);
5643
		}
5644 5645 5646 5647 5648
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5649
/*
5650
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5651 5652
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5653
 */
C
Chris Mason 已提交
5654
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5655 5656 5657 5658 5659 5660
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5661 5662
{
	int slot;
5663
	int level;
5664
	struct extent_buffer *c;
5665
	struct extent_buffer *next;
5666 5667 5668
	struct btrfs_key key;
	u32 nritems;
	int ret;
5669
	int old_spinning = path->leave_spinning;
5670
	int next_rw_lock = 0;
5671 5672

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5673
	if (nritems == 0)
5674 5675
		return 1;

5676 5677 5678 5679
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5680
	next_rw_lock = 0;
5681
	btrfs_release_path(path);
5682

5683
	path->keep_locks = 1;
5684
	path->leave_spinning = 1;
5685

J
Jan Schmidt 已提交
5686 5687 5688 5689
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5690 5691 5692 5693 5694
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5695
	nritems = btrfs_header_nritems(path->nodes[0]);
5696 5697 5698 5699 5700 5701
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5702
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5703 5704
		if (ret == 0)
			path->slots[0]++;
5705
		ret = 0;
5706 5707
		goto done;
	}
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5726

C
Chris Mason 已提交
5727
	while (level < BTRFS_MAX_LEVEL) {
5728 5729 5730 5731
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5732

5733 5734
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5735
		if (slot >= btrfs_header_nritems(c)) {
5736
			level++;
5737 5738 5739 5740
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5741 5742
			continue;
		}
5743

5744
		if (next) {
5745
			btrfs_tree_unlock_rw(next, next_rw_lock);
5746
			free_extent_buffer(next);
5747
		}
5748

5749
		next = c;
5750
		next_rw_lock = path->locks[level];
5751
		ret = read_block_for_search(root, path, &next, level,
5752
					    slot, &key);
5753 5754
		if (ret == -EAGAIN)
			goto again;
5755

5756
		if (ret < 0) {
5757
			btrfs_release_path(path);
5758 5759 5760
			goto done;
		}

5761
		if (!path->skip_locking) {
5762
			ret = btrfs_try_tree_read_lock(next);
5763 5764 5765 5766 5767 5768 5769 5770
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5771
				free_extent_buffer(next);
5772 5773 5774 5775
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5776 5777
			if (!ret) {
				btrfs_set_path_blocking(path);
5778
				btrfs_tree_read_lock(next);
5779
			}
5780
			next_rw_lock = BTRFS_READ_LOCK;
5781
		}
5782 5783 5784
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5785
	while (1) {
5786 5787
		level--;
		c = path->nodes[level];
5788
		if (path->locks[level])
5789
			btrfs_tree_unlock_rw(c, path->locks[level]);
5790

5791
		free_extent_buffer(c);
5792 5793
		path->nodes[level] = next;
		path->slots[level] = 0;
5794
		if (!path->skip_locking)
5795
			path->locks[level] = next_rw_lock;
5796 5797
		if (!level)
			break;
5798

5799
		ret = read_block_for_search(root, path, &next, level,
5800
					    0, &key);
5801 5802 5803
		if (ret == -EAGAIN)
			goto again;

5804
		if (ret < 0) {
5805
			btrfs_release_path(path);
5806 5807 5808
			goto done;
		}

5809
		if (!path->skip_locking) {
5810
			ret = btrfs_try_tree_read_lock(next);
5811 5812
			if (!ret) {
				btrfs_set_path_blocking(path);
5813 5814
				btrfs_tree_read_lock(next);
			}
5815
			next_rw_lock = BTRFS_READ_LOCK;
5816
		}
5817
	}
5818
	ret = 0;
5819
done:
5820
	unlock_up(path, 0, 1, 0, NULL);
5821 5822 5823 5824 5825
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5826
}
5827

5828 5829 5830 5831 5832 5833
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5834 5835 5836 5837 5838 5839
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5840
	u32 nritems;
5841 5842
	int ret;

C
Chris Mason 已提交
5843
	while (1) {
5844
		if (path->slots[0] == 0) {
5845
			btrfs_set_path_blocking(path);
5846 5847 5848 5849 5850 5851 5852
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5853 5854 5855 5856 5857 5858
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5859
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5860 5861
		if (found_key.objectid < min_objectid)
			break;
5862 5863
		if (found_key.type == type)
			return 0;
5864 5865 5866
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5867 5868 5869
	}
	return 1;
}
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}