intel_dp.c 227.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43

44
#include "i915_debugfs.h"
45
#include "i915_drv.h"
46
#include "i915_trace.h"
47
#include "intel_atomic.h"
48
#include "intel_audio.h"
49
#include "intel_connector.h"
50
#include "intel_ddi.h"
51
#include "intel_display_debugfs.h"
52
#include "intel_display_types.h"
53
#include "intel_dp.h"
54
#include "intel_dp_link_training.h"
55
#include "intel_dp_mst.h"
56
#include "intel_dpio_phy.h"
57
#include "intel_fifo_underrun.h"
58
#include "intel_hdcp.h"
59
#include "intel_hdmi.h"
60
#include "intel_hotplug.h"
61
#include "intel_lspcon.h"
62
#include "intel_lvds.h"
63
#include "intel_panel.h"
64
#include "intel_psr.h"
65
#include "intel_sideband.h"
66
#include "intel_tc.h"
67
#include "intel_vdsc.h"
68

69
#define DP_DPRX_ESI_LEN 14
70

71 72 73 74 75
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

76 77
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78

79 80 81 82 83 84
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

85
struct dp_link_dpll {
86
	int clock;
87 88 89
	struct dpll dpll;
};

90
static const struct dp_link_dpll g4x_dpll[] = {
91
	{ 162000,
92
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93
	{ 270000,
94 95 96 97
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
98
	{ 162000,
99
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100
	{ 270000,
101 102 103
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

104
static const struct dp_link_dpll vlv_dpll[] = {
105
	{ 162000,
C
Chon Ming Lee 已提交
106
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107
	{ 270000,
108 109 110
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

111 112 113 114 115 116 117 118 119 120
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
121
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 125
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
126

127 128 129 130 131 132 133 134
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

135
/**
136
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137 138 139 140 141
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
142
bool intel_dp_is_edp(struct intel_dp *intel_dp)
143
{
144 145 146
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 148
}

149 150
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
151
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
152
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
153 154
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
155
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
156
				      enum pipe pipe);
157
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
158

159 160 161
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
162
	static const int dp_rates[] = {
163
		162000, 270000, 540000, 810000
164
	};
165
	int i, max_rate;
166

167
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
168

169 170
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
171
			break;
172
		intel_dp->sink_rates[i] = dp_rates[i];
173
	}
174

175
	intel_dp->num_sink_rates = i;
176 177
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

200 201
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
202
{
203
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
204 205
}

206 207
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
208 209
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
210 211
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
212
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
213

214
	return min3(source_max, sink_max, fia_max);
215 216
}

217
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
218 219 220 221
{
	return intel_dp->max_link_lane_count;
}

222
int
223
intel_dp_link_required(int pixel_clock, int bpp)
224
{
225 226
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
227 228
}

229
int
230 231
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
232 233 234 235 236 237 238
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

264
static int cnl_max_source_rate(struct intel_dp *intel_dp)
265 266 267 268 269
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

270
	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
271 272 273

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
274
		return 540000;
275 276 277

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
278
		return 810000;
279

280
	/* For other SKUs, max rate on ports A and D is 5.4G */
281
	if (port == PORT_A || port == PORT_D)
282
		return 540000;
283

284
	return 810000;
285 286
}

287 288 289
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
292

293
	if (intel_phy_is_combo(dev_priv, phy) &&
294
	    !IS_ELKHARTLAKE(dev_priv) &&
295
	    !intel_dp_is_edp(intel_dp))
296 297 298 299 300
		return 540000;

	return 810000;
}

301 302
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
303
{
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
320
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
321
	struct intel_encoder *encoder = &dig_port->base;
322
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
323
	const int *source_rates;
324
	int size, max_rate = 0, vbt_max_rate;
325

326
	/* This should only be done once */
327 328
	drm_WARN_ON(&dev_priv->drm,
		    intel_dp->source_rates || intel_dp->num_source_rates);
329

330
	if (INTEL_GEN(dev_priv) >= 10) {
331
		source_rates = cnl_rates;
332
		size = ARRAY_SIZE(cnl_rates);
333
		if (IS_GEN(dev_priv, 10))
334 335 336
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
337 338 339
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
340
	} else if (IS_GEN9_BC(dev_priv)) {
341
		source_rates = skl_rates;
342
		size = ARRAY_SIZE(skl_rates);
343 344
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
345 346
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
347
	} else {
348 349
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
350 351
	}

352
	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
353 354 355 356 357
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

358 359 360
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

361 362
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

388 389 390 391 392 393 394 395 396 397 398 399
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

400
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
401
{
402
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
403

404 405 406 407 408 409 410 411
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
412
		intel_dp->common_rates[0] = 162000;
413 414 415 416
		intel_dp->num_common_rates = 1;
	}
}

417
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
418
				       u8 lane_count)
419 420 421 422 423 424
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
425 426
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
427 428
		return false;

429 430
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
431 432 433 434 435
		return false;

	return true;
}

436 437
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
438
						     u8 lane_count)
439 440 441 442 443 444 445 446 447 448 449 450 451
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

452
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
453
					    int link_rate, u8 lane_count)
454
{
455
	int index;
456

457 458 459 460
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
461 462 463 464 465 466 467
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
468 469
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
470
	} else if (lane_count > 1) {
471 472 473 474 475 476 477
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
478
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
479
		intel_dp->max_link_lane_count = lane_count >> 1;
480 481 482 483 484 485 486 487
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

488 489 490 491 492 493
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

494 495 496 497 498 499 500 501 502 503 504
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
505 506 507 508 509 510 511 512 513 514 515 516 517
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
518
	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
519 520

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
521 522
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
523 524
	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
		    max_bpp_small_joiner_ram);
525 526 527 528 529 530 531 532 533

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
534 535
		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
			    bits_per_pixel, valid_dsc_bpp[0]);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
				  int hdisplay)
{
	/*
	 * Older platforms don't like hdisplay==4096 with DP.
	 *
	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
	 * and frame counter increment), but we don't get vblank interrupts,
	 * and the pipe underruns immediately. The link also doesn't seem
	 * to get trained properly.
	 *
	 * On CHV the vblank interrupts don't seem to disappear but
	 * otherwise the symptoms are similar.
	 *
	 * TODO: confirm the behaviour on HSW+
	 */
	return hdisplay == 4096 && !HAS_DDI(dev_priv);
}

610
static enum drm_mode_status
611 612 613
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
614
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
615 616
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
617
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
618 619
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
620
	int max_dotclk;
621 622
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
623

624 625 626
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

627
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
628

629
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
630
		if (mode->hdisplay > fixed_mode->hdisplay)
631 632
			return MODE_PANEL;

633
		if (mode->vdisplay > fixed_mode->vdisplay)
634
			return MODE_PANEL;
635 636

		target_clock = fixed_mode->clock;
637 638
	}

639
	max_link_clock = intel_dp_max_link_rate(intel_dp);
640
	max_lanes = intel_dp_max_lane_count(intel_dp);
641 642 643 644

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

645 646 647
	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
		return MODE_H_ILLEGAL;

648 649 650 651 652 653 654 655 656 657 658 659
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
660
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
661
			dsc_max_output_bpp =
662 663
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
664 665 666 667 668 669 670 671 672 673 674 675
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
676
		return MODE_CLOCK_HIGH;
677 678 679 680

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

681 682 683
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

684
	return intel_mode_valid_max_plane_size(dev_priv, mode);
685 686
}

687
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
688
{
689 690
	int i;
	u32 v = 0;
691 692 693 694

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
695
		v |= ((u32)src[i]) << ((3 - i) * 8);
696 697 698
	return v;
}

699
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
700 701 702 703 704 705 706 707
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

708
static void
709
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
710
static void
711
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
712
					      bool force_disable_vdd);
713
static void
714
intel_dp_pps_init(struct intel_dp *intel_dp);
715

716 717
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
718
{
719
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
720
	intel_wakeref_t wakeref;
721 722

	/*
723
	 * See intel_power_sequencer_reset() why we need
724 725
	 * a power domain reference here.
	 */
726 727
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
728 729

	mutex_lock(&dev_priv->pps_mutex);
730 731

	return wakeref;
732 733
}

734 735
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
736
{
737
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
738 739

	mutex_unlock(&dev_priv->pps_mutex);
740 741 742 743
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
744 745
}

746 747 748
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

749 750 751
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
752
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
753 754
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
755 756 757
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
758
	u32 DP;
759

760 761 762 763 764
	if (drm_WARN(&dev_priv->drm,
		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		     pipe_name(pipe), intel_dig_port->base.base.base.id,
		     intel_dig_port->base.base.name))
765 766
		return;

767 768 769 770
	drm_dbg_kms(&dev_priv->drm,
		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
771 772 773 774

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
775
	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
776 777 778 779
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

780
	if (IS_CHERRYVIEW(dev_priv))
781 782 783
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
784

785
	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
786 787 788 789 790

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
791
	if (!pll_enabled) {
792
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
793 794
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

795
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
796
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
797 798 799
			drm_err(&dev_priv->drm,
				"Failed to force on pll for pipe %c!\n",
				pipe_name(pipe));
800 801
			return;
		}
802
	}
803

804 805 806
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
807
	 * to make this power sequencer lock onto the port.
808 809
	 * Otherwise even VDD force bit won't work.
	 */
810 811
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
812

813 814
	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
815

816 817
	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
818

819
	if (!pll_enabled) {
820
		vlv_force_pll_off(dev_priv, pipe);
821 822 823 824

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
825 826
}

827 828 829 830 831 832 833 834 835
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
836
	for_each_intel_dp(&dev_priv->drm, encoder) {
837
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
838 839

		if (encoder->type == INTEL_OUTPUT_EDP) {
840 841 842 843
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->active_pipe != INVALID_PIPE &&
				    intel_dp->active_pipe !=
				    intel_dp->pps_pipe);
844 845 846 847

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
848 849
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->pps_pipe != INVALID_PIPE);
850 851 852 853 854 855 856 857 858 859 860 861

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

862 863 864
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
865
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
866
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
867
	enum pipe pipe;
868

V
Ville Syrjälä 已提交
869
	lockdep_assert_held(&dev_priv->pps_mutex);
870

871
	/* We should never land here with regular DP ports */
872
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
873

874 875
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
		    intel_dp->active_pipe != intel_dp->pps_pipe);
876

877 878 879
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

880
	pipe = vlv_find_free_pps(dev_priv);
881 882 883 884 885

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
886
	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
887
		pipe = PIPE_A;
888

889
	vlv_steal_power_sequencer(dev_priv, pipe);
890
	intel_dp->pps_pipe = pipe;
891

892 893 894 895 896
	drm_dbg_kms(&dev_priv->drm,
		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe),
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
897 898

	/* init power sequencer on this pipe and port */
899 900
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
901

902 903 904 905 906
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
907 908 909 910

	return intel_dp->pps_pipe;
}

911 912 913
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
914
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
915
	int backlight_controller = dev_priv->vbt.backlight.controller;
916 917 918 919

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
920
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
921 922

	if (!intel_dp->pps_reset)
923
		return backlight_controller;
924 925 926 927 928 929 930

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
931
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
932

933
	return backlight_controller;
934 935
}

936 937 938 939 940 941
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
942
	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
943 944 945 946 947
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
948
	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
949 950 951 952 953 954 955
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
956

957
static enum pipe
958 959 960
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
961 962
{
	enum pipe pipe;
963 964

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
965
		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
966
			PANEL_PORT_SELECT_MASK;
967 968 969 970

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

971 972 973
		if (!pipe_check(dev_priv, pipe))
			continue;

974
		return pipe;
975 976
	}

977 978 979 980 981 982
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
983
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
984
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
985
	enum port port = intel_dig_port->base.port;
986 987 988 989

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
990 991 992 993 994 995 996 997 998 999 1000
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
1001 1002 1003

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
1004 1005 1006 1007
		drm_dbg_kms(&dev_priv->drm,
			    "no initial power sequencer for [ENCODER:%d:%s]\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
1008
		return;
1009 1010
	}

1011 1012 1013 1014 1015
	drm_dbg_kms(&dev_priv->drm,
		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    pipe_name(intel_dp->pps_pipe));
1016

1017 1018
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1019 1020
}

1021
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1022 1023 1024
{
	struct intel_encoder *encoder;

1025 1026 1027 1028
	if (drm_WARN_ON(&dev_priv->drm,
			!(IS_VALLEYVIEW(dev_priv) ||
			  IS_CHERRYVIEW(dev_priv) ||
			  IS_GEN9_LP(dev_priv))))
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1041
	for_each_intel_dp(&dev_priv->drm, encoder) {
1042
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1043

1044 1045
		drm_WARN_ON(&dev_priv->drm,
			    intel_dp->active_pipe != INVALID_PIPE);
1046 1047 1048 1049

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1050
		if (IS_GEN9_LP(dev_priv))
1051 1052 1053
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1054
	}
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1065
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1066 1067
				    struct pps_registers *regs)
{
1068
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1069 1070
	int pps_idx = 0;

1071 1072
	memset(regs, 0, sizeof(*regs));

1073
	if (IS_GEN9_LP(dev_priv))
1074 1075 1076
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1077

1078 1079 1080 1081
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1082 1083

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1084
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1085 1086
		regs->pp_div = INVALID_MMIO_REG;
	else
1087
		regs->pp_div = PP_DIVISOR(pps_idx);
1088 1089
}

1090 1091
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1092
{
1093
	struct pps_registers regs;
1094

1095
	intel_pps_get_registers(intel_dp, &regs);
1096 1097

	return regs.pp_ctrl;
1098 1099
}

1100 1101
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1102
{
1103
	struct pps_registers regs;
1104

1105
	intel_pps_get_registers(intel_dp, &regs);
1106 1107

	return regs.pp_stat;
1108 1109
}

1110 1111 1112 1113 1114 1115 1116
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1117
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1118
	intel_wakeref_t wakeref;
1119

1120
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1121 1122
		return 0;

1123 1124 1125 1126 1127 1128 1129 1130
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
1131
			pp_div = intel_de_read(dev_priv, pp_div_reg);
1132 1133 1134
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1135 1136 1137
			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
			intel_de_write(dev_priv, pp_ctrl_reg,
				       PANEL_UNLOCK_REGS);
1138 1139
			msleep(intel_dp->panel_power_cycle_delay);
		}
1140 1141 1142 1143 1144
	}

	return 0;
}

1145
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1146
{
1147
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1148

V
Ville Syrjälä 已提交
1149 1150
	lockdep_assert_held(&dev_priv->pps_mutex);

1151
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1152 1153 1154
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1155
	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1156 1157
}

1158
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1159
{
1160
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1161

V
Ville Syrjälä 已提交
1162 1163
	lockdep_assert_held(&dev_priv->pps_mutex);

1164
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1165 1166 1167
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1168
	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1169 1170
}

1171 1172 1173
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1174
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1175

1176
	if (!intel_dp_is_edp(intel_dp))
1177
		return;
1178

1179
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1180 1181
		drm_WARN(&dev_priv->drm, 1,
			 "eDP powered off while attempting aux channel communication.\n");
1182
		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1183 1184
			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1185 1186 1187
	}
}

1188
static u32
1189
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1190
{
1191
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1192
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1193
	const unsigned int timeout_ms = 10;
1194
	u32 status;
1195 1196
	bool done;

1197 1198
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1199
				  msecs_to_jiffies_timeout(timeout_ms));
1200 1201 1202 1203

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1204
	if (!done)
1205
		drm_err(&i915->drm,
1206
			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1207
			intel_dp->aux.name, timeout_ms, status);
1208 1209 1210 1211 1212
#undef C

	return status;
}

1213
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1214
{
1215
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1216

1217 1218 1219
	if (index)
		return 0;

1220 1221
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1222
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1223
	 */
1224
	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1225 1226
}

1227
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228
{
1229
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1230
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1231
	u32 freq;
1232 1233 1234 1235

	if (index)
		return 0;

1236 1237 1238 1239 1240
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1241
	if (dig_port->aux_ch == AUX_CH_A)
1242
		freq = dev_priv->cdclk.hw.cdclk;
1243
	else
1244 1245
		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
	return DIV_ROUND_CLOSEST(freq, 2000);
1246 1247
}

1248
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1249
{
1250
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1251
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1252

1253
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1254
		/* Workaround for non-ULT HSW */
1255 1256 1257 1258 1259
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1260
	}
1261 1262

	return ilk_get_aux_clock_divider(intel_dp, index);
1263 1264
}

1265
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1266 1267 1268 1269 1270 1271 1272 1273 1274
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1275 1276 1277
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1278 1279
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1280 1281
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1282
	u32 precharge, timeout;
1283

1284
	if (IS_GEN(dev_priv, 6))
1285 1286 1287 1288
		precharge = 3;
	else
		precharge = 5;

1289
	if (IS_BROADWELL(dev_priv))
1290 1291 1292 1293 1294
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1295
	       DP_AUX_CH_CTL_DONE |
1296
	       DP_AUX_CH_CTL_INTERRUPT |
1297
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1298
	       timeout |
1299
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1300 1301
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1302
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1303 1304
}

1305 1306 1307
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1308
{
1309
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310 1311 1312
	struct drm_i915_private *i915 =
			to_i915(intel_dig_port->base.base.dev);
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1313
	u32 ret;
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1325 1326
	if (intel_phy_is_tc(i915, phy) &&
	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1327 1328 1329
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1330 1331
}

1332
static int
1333
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1334 1335
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1336
		  u32 aux_send_ctl_flags)
1337 1338
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1339
	struct drm_i915_private *i915 =
1340
			to_i915(intel_dig_port->base.base.dev);
1341
	struct intel_uncore *uncore = &i915->uncore;
1342 1343
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1344
	i915_reg_t ch_ctl, ch_data[5];
1345
	u32 aux_clock_divider;
1346 1347 1348 1349
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1350
	int i, ret, recv_bytes;
1351
	int try, clock = 0;
1352
	u32 status;
1353 1354
	bool vdd;

1355 1356 1357 1358
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1359 1360 1361
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1362
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1363
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1364

1365 1366 1367 1368 1369 1370
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1371
	vdd = edp_panel_vdd_on(intel_dp);
1372 1373 1374 1375 1376

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1377
	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1378 1379

	intel_dp_check_edp(intel_dp);
1380

1381 1382
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1383
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1384 1385 1386 1387
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1388 1389
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1390 1391

	if (try == 3) {
1392
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1393

1394
		if (status != intel_dp->aux_busy_last_status) {
1395 1396 1397
			drm_WARN(&i915->drm, 1,
				 "%s: not started (status 0x%08x)\n",
				 intel_dp->aux.name, status);
1398
			intel_dp->aux_busy_last_status = status;
1399 1400
		}

1401 1402
		ret = -EBUSY;
		goto out;
1403 1404
	}

1405
	/* Only 5 data registers! */
1406
	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1407 1408 1409 1410
		ret = -E2BIG;
		goto out;
	}

1411
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1412 1413 1414 1415 1416
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1417

1418 1419 1420 1421
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1422 1423 1424 1425
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1426 1427

			/* Send the command and wait for it to complete */
1428
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1429

1430
			status = intel_dp_aux_wait_done(intel_dp);
1431 1432

			/* Clear done status and any errors */
1433 1434 1435 1436 1437 1438
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1439

1440 1441 1442 1443 1444
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1445 1446 1447
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1448 1449
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1450
				continue;
1451
			}
1452
			if (status & DP_AUX_CH_CTL_DONE)
1453
				goto done;
1454
		}
1455 1456 1457
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1458 1459
		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
			intel_dp->aux.name, status);
1460 1461
		ret = -EBUSY;
		goto out;
1462 1463
	}

1464
done:
1465 1466 1467
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1468
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1469 1470
		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
			intel_dp->aux.name, status);
1471 1472
		ret = -EIO;
		goto out;
1473
	}
1474 1475 1476

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1477
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1478 1479
		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
			    intel_dp->aux.name, status);
1480 1481
		ret = -ETIMEDOUT;
		goto out;
1482 1483 1484 1485 1486
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1487 1488 1489 1490 1491 1492 1493

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
1494
		drm_dbg_kms(&i915->drm,
1495 1496
			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
			    intel_dp->aux.name, recv_bytes);
1497 1498 1499 1500
		ret = -EBUSY;
		goto out;
	}

1501 1502
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1503

1504
	for (i = 0; i < recv_bytes; i += 4)
1505
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1506
				    recv + i, recv_bytes - i);
1507

1508 1509
	ret = recv_bytes;
out:
1510
	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1511

1512 1513 1514
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1515
	pps_unlock(intel_dp, pps_wakeref);
1516
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1517

1518 1519 1520
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1521
	return ret;
1522 1523
}

1524 1525
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1537 1538
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1539
{
1540
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1541
	u8 txbuf[20], rxbuf[20];
1542
	size_t txsize, rxsize;
1543 1544
	int ret;

1545
	intel_dp_aux_header(txbuf, msg);
1546

1547 1548 1549
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1550
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1551
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1552
		rxsize = 2; /* 0 or 1 data bytes */
1553

1554 1555
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1556

1557 1558
		WARN_ON(!msg->buffer != !msg->size);

1559 1560
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1561

1562
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1563
					rxbuf, rxsize, 0);
1564 1565
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1566

1567 1568 1569 1570 1571 1572 1573
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1574 1575
		}
		break;
1576

1577 1578
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1579
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1580
		rxsize = msg->size + 1;
1581

1582 1583
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1584

1585
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1586
					rxbuf, rxsize, 0);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1597
		}
1598 1599 1600 1601 1602
		break;

	default:
		ret = -EINVAL;
		break;
1603
	}
1604

1605
	return ret;
1606 1607
}

1608

1609
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1610
{
1611
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1612 1613
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1614

1615 1616 1617 1618 1619
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1620
	default:
1621 1622
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1623 1624 1625
	}
}

1626
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1627
{
1628
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 1630
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1631

1632 1633 1634 1635 1636
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1637
	default:
1638 1639
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1640 1641 1642
	}
}

1643
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1644
{
1645
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 1647
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1648

1649 1650 1651 1652 1653 1654 1655
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1656
	default:
1657 1658
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1659 1660 1661
	}
}

1662
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1663
{
1664
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 1666
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1667

1668 1669 1670 1671 1672 1673 1674
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1675
	default:
1676 1677
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1678 1679 1680
	}
}

1681
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1682
{
1683
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1684 1685
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1686

1687 1688 1689 1690 1691
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1692
	case AUX_CH_E:
1693
	case AUX_CH_F:
1694
	case AUX_CH_G:
1695
		return DP_AUX_CH_CTL(aux_ch);
1696
	default:
1697 1698
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1699 1700 1701
	}
}

1702
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1703
{
1704
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 1706
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1707

1708 1709 1710 1711 1712
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1713
	case AUX_CH_E:
1714
	case AUX_CH_F:
1715
	case AUX_CH_G:
1716
		return DP_AUX_CH_DATA(aux_ch, index);
1717
	default:
1718 1719
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1720 1721 1722
	}
}

1723 1724 1725 1726 1727 1728 1729 1730
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1731
{
1732
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1733 1734
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1746

1747 1748 1749 1750 1751 1752 1753 1754
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1755

1756 1757 1758 1759
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1760

1761
	drm_dp_aux_init(&intel_dp->aux);
1762

1763
	/* Failure to allocate our preferred name is not critical */
1764 1765
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
				       aux_ch_name(dig_port->aux_ch),
1766
				       port_name(encoder->port));
1767
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1768 1769
}

1770
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1771
{
1772
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1773

1774
	return max_rate >= 540000;
1775 1776
}

1777 1778 1779 1780 1781 1782 1783
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1784 1785
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1786
		   struct intel_crtc_state *pipe_config)
1787
{
1788
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1789 1790
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1791

1792
	if (IS_G4X(dev_priv)) {
1793 1794
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1795
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1796 1797
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1798
	} else if (IS_CHERRYVIEW(dev_priv)) {
1799 1800
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1801
	} else if (IS_VALLEYVIEW(dev_priv)) {
1802 1803
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1804
	}
1805 1806 1807

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1808
			if (pipe_config->port_clock == divisor[i].clock) {
1809 1810 1811 1812 1813
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1814 1815 1816
	}
}

1817 1818 1819 1820 1821 1822 1823 1824
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1825
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

1837
	if (!drm_debug_enabled(DRM_UT_KMS))
1838 1839
		return;

1840 1841
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1842 1843
	DRM_DEBUG_KMS("source rates: %s\n", str);

1844 1845
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1846 1847
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1848 1849
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1850
	DRM_DEBUG_KMS("common rates: %s\n", str);
1851 1852
}

1853 1854 1855 1856 1857
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1858
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1859 1860 1861
	if (WARN_ON(len <= 0))
		return 162000;

1862
	return intel_dp->common_rates[len - 1];
1863 1864
}

1865 1866
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1867 1868
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1869 1870 1871 1872 1873

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1874 1875
}

1876
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1877
			   u8 *link_bw, u8 *rate_select)
1878
{
1879 1880
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1881 1882 1883 1884 1885 1886 1887 1888 1889
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1890
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1891 1892 1893 1894
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1895 1896 1897 1898 1899 1900 1901 1902
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1903 1904 1905 1906 1907 1908 1909 1910 1911
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

1912
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1913
				  const struct intel_crtc_state *crtc_state)
1914
{
1915 1916 1917
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1918 1919
		return false;

1920
	return intel_dsc_source_support(encoder, crtc_state) &&
1921 1922 1923
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1924 1925
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1926
{
1927
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1928
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1929 1930 1931 1932 1933 1934 1935 1936
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1937 1938 1939 1940
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1941 1942 1943
			drm_dbg_kms(&dev_priv->drm,
				    "clamping bpp for eDP panel to BIOS-provided %i\n",
				    dev_priv->vbt.edp.bpp);
1944 1945 1946 1947
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1948 1949 1950
	return bpp;
}

1951
/* Adjust link config limits based on compliance test requests. */
1952
void
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

2000
/* Optimize link config in order: max bpp, min clock, min lanes */
2001
static int
2002 2003 2004 2005
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
2006
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2007 2008 2009 2010
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2011 2012
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

2013
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2014
						   output_bpp);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

2029
					return 0;
2030 2031 2032 2033 2034
				}
			}
		}
	}

2035
	return -EINVAL;
2036 2037
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2053 2054 2055 2056 2057
#define DSC_SUPPORTED_VERSION_MIN		1

static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
				       struct intel_crtc_state *crtc_state)
{
2058
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2059 2060 2061 2062 2063 2064 2065 2066
	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
	u8 line_buf_depth;
	int ret;

	ret = intel_dsc_compute_params(encoder, crtc_state);
	if (ret)
		return ret;

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	/*
	 * Slice Height of 8 works for all currently available panels. So start
	 * with that if pic_height is an integral multiple of 8. Eventually add
	 * logic to try multiple slice heights.
	 */
	if (vdsc_cfg->pic_height % 8 == 0)
		vdsc_cfg->slice_height = 8;
	else if (vdsc_cfg->pic_height % 4 == 0)
		vdsc_cfg->slice_height = 4;
	else
		vdsc_cfg->slice_height = 2;

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	vdsc_cfg->dsc_version_major =
		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
	vdsc_cfg->dsc_version_minor =
		min(DSC_SUPPORTED_VERSION_MIN,
		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);

	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
		DP_DSC_RGB;

	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
	if (!line_buf_depth) {
		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
		return -EINVAL;
	}

	if (vdsc_cfg->dsc_version_minor == 2)
		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
	else
		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;

	vdsc_cfg->block_pred_enable =
		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;

	return drm_dsc_compute_rc_parameters(vdsc_cfg);
}

2110 2111 2112 2113
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2114 2115 2116
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2117
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2118 2119
	u8 dsc_max_bpc;
	int pipe_bpp;
2120
	int ret;
2121

2122 2123 2124
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2125
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2126
		return -EINVAL;
2127

2128 2129 2130 2131 2132 2133
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2134 2135

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2136 2137 2138

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2139 2140
		drm_dbg_kms(&dev_priv->drm,
			    "No DSC support for less than 8bpc\n");
2141
		return -EINVAL;
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
2154
		pipe_config->dsc.compressed_bpp =
2155 2156
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
2157
		pipe_config->dsc.slice_count =
2158 2159 2160 2161 2162 2163 2164
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2165 2166
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2167 2168 2169 2170 2171 2172 2173 2174
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2175 2176
			drm_dbg_kms(&dev_priv->drm,
				    "Compressed BPP/Slice Count not supported\n");
2177
			return -EINVAL;
2178
		}
2179
		pipe_config->dsc.compressed_bpp = min_t(u16,
2180 2181
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
2182
		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2183 2184 2185 2186 2187 2188 2189
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2190 2191
		if (pipe_config->dsc.slice_count > 1) {
			pipe_config->dsc.dsc_split = true;
2192
		} else {
2193 2194
			drm_dbg_kms(&dev_priv->drm,
				    "Cannot split stream to use 2 VDSC instances\n");
2195
			return -EINVAL;
2196 2197
		}
	}
2198

2199
	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2200
	if (ret < 0) {
2201 2202 2203 2204 2205
		drm_dbg_kms(&dev_priv->drm,
			    "Cannot compute valid DSC parameters for Input Bpp = %d "
			    "Compressed BPP = %d\n",
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);
2206
		return ret;
2207
	}
2208

2209
	pipe_config->dsc.compression_enable = true;
2210 2211 2212 2213 2214
	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
		    "Compressed Bpp = %d Slice Count = %d\n",
		    pipe_config->pipe_bpp,
		    pipe_config->dsc.compressed_bpp,
		    pipe_config->dsc.slice_count);
2215

2216
	return 0;
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2227
static int
2228
intel_dp_compute_link_config(struct intel_encoder *encoder,
2229 2230
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2231
{
2232
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2233
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2234
	struct link_config_limits limits;
2235
	int common_len;
2236
	int ret;
2237

2238
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2239
						    intel_dp->max_link_rate);
2240 2241

	/* No common link rates between source and sink */
2242
	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2243

2244 2245 2246 2247 2248 2249
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2250
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2251
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2252

2253
	if (intel_dp_is_edp(intel_dp)) {
2254 2255
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2256 2257 2258 2259
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2260
		 */
2261 2262
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2263
	}
2264

2265 2266
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2267 2268 2269 2270 2271 2272
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2273 2274 2275 2276 2277
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2278 2279

	/* enable compression if the mode doesn't fit available BW */
2280
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2281 2282 2283 2284 2285
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2286
	}
2287

2288
	if (pipe_config->dsc.compression_enable) {
2289 2290 2291
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
2292
			      pipe_config->dsc.compressed_bpp);
2293 2294 2295

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
2296
						     pipe_config->dsc.compressed_bpp),
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2310
	return 0;
2311 2312
}

2313 2314 2315 2316 2317 2318 2319
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
2320
		&crtc_state->hw.adjusted_mode;
2321
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2343 2344 2345 2346 2347 2348
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
2349
		&crtc_state->hw.adjusted_mode;
2350

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
				    enum port port)
{
	if (IS_G4X(dev_priv))
		return false;
	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
		return false;

	return true;
}

2387
int
2388 2389 2390 2391 2392
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2393
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2394 2395
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2396
	enum port port = encoder->port;
2397
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2398 2399 2400
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
L
Lyude Paul 已提交
2401
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2402
					   DP_DPCD_QUIRK_CONSTANT_N);
2403
	int ret = 0, output_bpp;
2404 2405 2406 2407

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2408
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2409

2410 2411
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2412 2413 2414 2415 2416 2417
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2418

2419
	pipe_config->has_drrs = false;
2420
	if (!intel_dp_port_has_audio(dev_priv, port))
2421 2422 2423 2424 2425 2426 2427
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2428 2429
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2430 2431 2432 2433 2434 2435 2436

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2437
		if (HAS_GMCH(dev_priv))
2438 2439 2440 2441 2442 2443 2444
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2445
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2446
		return -EINVAL;
2447

R
Rodrigo Vivi 已提交
2448
	if (HAS_GMCH(dev_priv) &&
2449
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2450
		return -EINVAL;
2451 2452

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2453
		return -EINVAL;
2454

2455 2456 2457
	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
		return -EINVAL;

2458 2459 2460
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2461

2462 2463
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2464

2465 2466
	if (pipe_config->dsc.compression_enable)
		output_bpp = pipe_config->dsc.compressed_bpp;
2467
	else
2468
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2469 2470 2471 2472 2473 2474

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2475
			       constant_n, pipe_config->fec_enable);
2476

2477
	if (intel_connector->panel.downclock_mode != NULL &&
2478
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2479
			pipe_config->has_drrs = true;
2480
			intel_link_compute_m_n(output_bpp,
2481 2482 2483 2484
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2485
					       constant_n, pipe_config->fec_enable);
2486 2487
	}

2488
	if (!HAS_DDI(dev_priv))
2489
		intel_dp_set_clock(encoder, pipe_config);
2490

2491 2492
	intel_psr_compute_config(intel_dp, pipe_config);

2493
	return 0;
2494 2495
}

2496
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2497
			      int link_rate, u8 lane_count,
2498
			      bool link_mst)
2499
{
2500
	intel_dp->link_trained = false;
2501 2502 2503
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2504 2505
}

2506
static void intel_dp_prepare(struct intel_encoder *encoder,
2507
			     const struct intel_crtc_state *pipe_config)
2508
{
2509
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2510
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2511
	enum port port = encoder->port;
2512
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2513
	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2514

2515 2516 2517 2518
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2519

2520 2521 2522
	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);

2523
	/*
K
Keith Packard 已提交
2524
	 * There are four kinds of DP registers:
2525 2526
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2527 2528
	 * 	SNB CPU
	 *	IVB CPU
2529 2530 2531 2532 2533 2534 2535 2536
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
2537
	 * configuration happens (oddly) in ilk_pch_enable
2538
	 */
2539

2540 2541 2542
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
2543
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2544

2545 2546
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2547
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2548

2549
	/* Split out the IBX/CPU vs CPT settings */
2550

2551
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2552 2553 2554 2555 2556 2557
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2558
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2559 2560
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2561
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2562
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2563 2564
		u32 trans_dp;

2565
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2566

2567
		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2568 2569 2570 2571
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2572
		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2573
	} else {
2574
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2575
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2576 2577 2578 2579 2580 2581 2582

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2583
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2584 2585
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2586
		if (IS_CHERRYVIEW(dev_priv))
2587 2588 2589
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2590
	}
2591 2592
}

2593 2594
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2595

2596 2597
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2598

2599 2600
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2601

2602
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2603

2604
static void wait_panel_status(struct intel_dp *intel_dp,
2605 2606
				       u32 mask,
				       u32 value)
2607
{
2608
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2609
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2610

V
Ville Syrjälä 已提交
2611 2612
	lockdep_assert_held(&dev_priv->pps_mutex);

2613
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2614

2615 2616
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2617

2618 2619 2620
	drm_dbg_kms(&dev_priv->drm,
		    "mask %08x value %08x status %08x control %08x\n",
		    mask, value,
2621 2622
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2623

2624 2625
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2626 2627
		drm_err(&dev_priv->drm,
			"Panel status timeout: status %08x control %08x\n",
2628 2629
			intel_de_read(dev_priv, pp_stat_reg),
			intel_de_read(dev_priv, pp_ctrl_reg));
2630

2631
	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2632
}
2633

2634
static void wait_panel_on(struct intel_dp *intel_dp)
2635 2636
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2637
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2638 2639
}

2640
static void wait_panel_off(struct intel_dp *intel_dp)
2641 2642
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2643
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2644 2645
}

2646
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2647
{
2648 2649 2650
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2651
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2652

2653 2654 2655 2656 2657
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2658 2659
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2660 2661 2662
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2663

2664
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2665 2666
}

2667
static void wait_backlight_on(struct intel_dp *intel_dp)
2668 2669 2670 2671 2672
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2673
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2674 2675 2676 2677
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2678

2679 2680 2681 2682
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2683
static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2684
{
2685
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2686
	u32 control;
2687

V
Ville Syrjälä 已提交
2688 2689
	lockdep_assert_held(&dev_priv->pps_mutex);

2690
	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2691 2692
	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2693 2694 2695
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2696
	return control;
2697 2698
}

2699 2700 2701 2702 2703
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2704
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2705
{
2706
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2707
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2708
	u32 pp;
2709
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2710
	bool need_to_disable = !intel_dp->want_panel_vdd;
2711

V
Ville Syrjälä 已提交
2712 2713
	lockdep_assert_held(&dev_priv->pps_mutex);

2714
	if (!intel_dp_is_edp(intel_dp))
2715
		return false;
2716

2717
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2718
	intel_dp->want_panel_vdd = true;
2719

2720
	if (edp_have_panel_vdd(intel_dp))
2721
		return need_to_disable;
2722

2723 2724
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2725

2726 2727 2728
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2729

2730 2731
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2732

2733
	pp = ilk_get_pp_control(intel_dp);
2734
	pp |= EDP_FORCE_VDD;
2735

2736 2737
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2738

2739 2740
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2741
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2742 2743
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2744 2745 2746
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2747
	if (!edp_have_panel_power(intel_dp)) {
2748 2749 2750 2751
		drm_dbg_kms(&dev_priv->drm,
			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
2752 2753
		msleep(intel_dp->panel_power_up_delay);
	}
2754 2755 2756 2757

	return need_to_disable;
}

2758 2759 2760 2761 2762 2763 2764
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2765
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2766
{
2767
	intel_wakeref_t wakeref;
2768
	bool vdd;
2769

2770
	if (!intel_dp_is_edp(intel_dp))
2771 2772
		return;

2773 2774 2775
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2776 2777 2778
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2779 2780
}

2781
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2782
{
2783
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2784 2785
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2786
	u32 pp;
2787
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2788

V
Ville Syrjälä 已提交
2789
	lockdep_assert_held(&dev_priv->pps_mutex);
2790

2791
	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2792

2793
	if (!edp_have_panel_vdd(intel_dp))
2794
		return;
2795

2796 2797 2798
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2799

2800
	pp = ilk_get_pp_control(intel_dp);
2801
	pp &= ~EDP_FORCE_VDD;
2802

2803 2804
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2805

2806 2807
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
P
Paulo Zanoni 已提交
2808

2809
	/* Make sure sequencer is idle before allowing subsequent activity */
2810
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2811 2812
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2813

2814
	if ((pp & PANEL_POWER_ON) == 0)
2815
		intel_dp->panel_power_off_time = ktime_get_boottime();
2816

2817 2818
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2819
}
2820

2821
static void edp_panel_vdd_work(struct work_struct *__work)
2822
{
2823 2824 2825 2826
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2827

2828 2829 2830 2831
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2832 2833
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2847 2848 2849 2850 2851
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2852
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2853
{
2854
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2855 2856 2857

	lockdep_assert_held(&dev_priv->pps_mutex);

2858
	if (!intel_dp_is_edp(intel_dp))
2859
		return;
2860

2861 2862 2863
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2864

2865 2866
	intel_dp->want_panel_vdd = false;

2867
	if (sync)
2868
		edp_panel_vdd_off_sync(intel_dp);
2869 2870
	else
		edp_panel_vdd_schedule_off(intel_dp);
2871 2872
}

2873
static void edp_panel_on(struct intel_dp *intel_dp)
2874
{
2875
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2876
	u32 pp;
2877
	i915_reg_t pp_ctrl_reg;
2878

2879 2880
	lockdep_assert_held(&dev_priv->pps_mutex);

2881
	if (!intel_dp_is_edp(intel_dp))
2882
		return;
2883

2884 2885 2886
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
		    dp_to_dig_port(intel_dp)->base.base.base.id,
		    dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
2887

2888 2889 2890 2891
	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
		     "[ENCODER:%d:%s] panel power already on\n",
		     dp_to_dig_port(intel_dp)->base.base.base.id,
		     dp_to_dig_port(intel_dp)->base.base.name))
2892
		return;
2893

2894
	wait_panel_power_cycle(intel_dp);
2895

2896
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2897
	pp = ilk_get_pp_control(intel_dp);
2898
	if (IS_GEN(dev_priv, 5)) {
2899 2900
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2901 2902
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2903
	}
2904

2905
	pp |= PANEL_POWER_ON;
2906
	if (!IS_GEN(dev_priv, 5))
2907 2908
		pp |= PANEL_POWER_RESET;

2909 2910
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2911

2912
	wait_panel_on(intel_dp);
2913
	intel_dp->last_power_on = jiffies;
2914

2915
	if (IS_GEN(dev_priv, 5)) {
2916
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2917 2918
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2919
	}
2920
}
V
Ville Syrjälä 已提交
2921

2922 2923
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2924 2925
	intel_wakeref_t wakeref;

2926
	if (!intel_dp_is_edp(intel_dp))
2927 2928
		return;

2929 2930
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2931 2932
}

2933 2934

static void edp_panel_off(struct intel_dp *intel_dp)
2935
{
2936
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2937
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2938
	u32 pp;
2939
	i915_reg_t pp_ctrl_reg;
2940

2941 2942
	lockdep_assert_held(&dev_priv->pps_mutex);

2943
	if (!intel_dp_is_edp(intel_dp))
2944
		return;
2945

2946 2947
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
		    dig_port->base.base.base.id, dig_port->base.base.name);
2948

2949 2950 2951
	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
		 dig_port->base.base.base.id, dig_port->base.base.name);
2952

2953
	pp = ilk_get_pp_control(intel_dp);
2954 2955
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2956
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2957
		EDP_BLC_ENABLE);
2958

2959
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2960

2961 2962
	intel_dp->want_panel_vdd = false;

2963 2964
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2965

2966
	wait_panel_off(intel_dp);
2967
	intel_dp->panel_power_off_time = ktime_get_boottime();
2968 2969

	/* We got a reference when we enabled the VDD. */
2970
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2971
}
V
Ville Syrjälä 已提交
2972

2973 2974
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2975 2976
	intel_wakeref_t wakeref;

2977
	if (!intel_dp_is_edp(intel_dp))
2978
		return;
V
Ville Syrjälä 已提交
2979

2980 2981
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2982 2983
}

2984 2985
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2986
{
2987
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2988
	intel_wakeref_t wakeref;
2989

2990 2991 2992 2993 2994 2995
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2996
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2997

2998 2999 3000
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
3001

3002
		pp = ilk_get_pp_control(intel_dp);
3003
		pp |= EDP_BLC_ENABLE;
3004

3005 3006
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3007
	}
3008 3009
}

3010
/* Enable backlight PWM and backlight PP control. */
3011 3012
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
3013
{
3014
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3015

3016
	if (!intel_dp_is_edp(intel_dp))
3017 3018 3019 3020
		return;

	DRM_DEBUG_KMS("\n");

3021
	intel_panel_enable_backlight(crtc_state, conn_state);
3022 3023 3024 3025 3026
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3027
{
3028
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3029
	intel_wakeref_t wakeref;
3030

3031
	if (!intel_dp_is_edp(intel_dp))
3032 3033
		return;

3034 3035 3036
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
3037

3038
		pp = ilk_get_pp_control(intel_dp);
3039
		pp &= ~EDP_BLC_ENABLE;
3040

3041 3042
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3043
	}
V
Ville Syrjälä 已提交
3044 3045

	intel_dp->last_backlight_off = jiffies;
3046
	edp_wait_backlight_off(intel_dp);
3047
}
3048

3049
/* Disable backlight PP control and backlight PWM. */
3050
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3051
{
3052
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3053

3054
	if (!intel_dp_is_edp(intel_dp))
3055 3056 3057
		return;

	DRM_DEBUG_KMS("\n");
3058

3059
	_intel_edp_backlight_off(intel_dp);
3060
	intel_panel_disable_backlight(old_conn_state);
3061
}
3062

3063 3064 3065 3066 3067 3068 3069
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
3070
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3071
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
3072 3073
	bool is_enabled;

3074 3075
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
3076
		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3077 3078 3079
	if (is_enabled == enable)
		return;

3080 3081
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
3082 3083 3084 3085 3086 3087 3088

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

3089 3090 3091 3092
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3093
	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3094 3095

	I915_STATE_WARN(cur_state != state,
3096 3097
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
3098
			onoff(state), onoff(cur_state));
3099 3100 3101 3102 3103
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
3104
	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3105 3106 3107

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
3108
			onoff(state), onoff(cur_state));
3109 3110 3111 3112
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

3113 3114
static void ilk_edp_pll_on(struct intel_dp *intel_dp,
			   const struct intel_crtc_state *pipe_config)
3115
{
3116
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3117
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3118

3119
	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3120 3121
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3122

3123 3124
	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
		    pipe_config->port_clock);
3125 3126 3127

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3128
	if (pipe_config->port_clock == 162000)
3129 3130 3131 3132
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

3133 3134
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3135 3136
	udelay(500);

3137 3138 3139 3140 3141 3142
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3143
	if (IS_GEN(dev_priv, 5))
3144
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3145

3146
	intel_dp->DP |= DP_PLL_ENABLE;
3147

3148 3149
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3150
	udelay(200);
3151 3152
}

3153 3154
static void ilk_edp_pll_off(struct intel_dp *intel_dp,
			    const struct intel_crtc_state *old_crtc_state)
3155
{
3156
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3157
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3158

3159
	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3160 3161
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3162

3163
	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3164

3165
	intel_dp->DP &= ~DP_PLL_ENABLE;
3166

3167 3168
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3169 3170 3171
	udelay(200);
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3183
		drm_dp_is_branch(intel_dp->dpcd) &&
3184 3185 3186
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3187 3188 3189 3190 3191 3192
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

3193
	if (!crtc_state->dsc.compression_enable)
3194 3195 3196 3197 3198 3199 3200 3201 3202
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

3203
/* If the sink supports it, try to set the power state appropriately */
3204
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3205 3206 3207 3208 3209 3210 3211 3212
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3213 3214 3215
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3216 3217
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3218
	} else {
3219 3220
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3221 3222 3223 3224 3225
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3226 3227
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3228 3229 3230 3231
			if (ret == 1)
				break;
			msleep(1);
		}
3232 3233 3234

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3235
	}
3236 3237 3238 3239

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3240 3241
}

3242 3243 3244 3245 3246 3247
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
3248
		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3249 3250 3251 3252 3253 3254 3255

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

3256 3257
	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
		    port_name(port));
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

3272
	val = intel_de_read(dev_priv, dp_reg);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3289 3290
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3291
{
3292
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3293
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3294
	intel_wakeref_t wakeref;
3295
	bool ret;
3296

3297 3298 3299
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3300 3301
		return false;

3302 3303
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3304

3305
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3306 3307

	return ret;
3308
}
3309

3310
static void intel_dp_get_config(struct intel_encoder *encoder,
3311
				struct intel_crtc_state *pipe_config)
3312
{
3313
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3314
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3315
	u32 tmp, flags = 0;
3316
	enum port port = encoder->port;
3317
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3318

3319 3320 3321 3322
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3323

3324
	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3325 3326

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3327

3328
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3329 3330
		u32 trans_dp = intel_de_read(dev_priv,
					     TRANS_DP_CTL(crtc->pipe));
3331 3332

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3333 3334 3335
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3336

3337
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3338 3339 3340 3341
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3342
		if (tmp & DP_SYNC_HS_HIGH)
3343 3344 3345
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3346

3347
		if (tmp & DP_SYNC_VS_HIGH)
3348 3349 3350 3351
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3352

3353
	pipe_config->hw.adjusted_mode.flags |= flags;
3354

3355
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3356 3357
		pipe_config->limited_color_range = true;

3358 3359 3360
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3361 3362
	intel_dp_get_m_n(crtc, pipe_config);

3363
	if (port == PORT_A) {
3364
		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3365 3366 3367 3368
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3369

3370
	pipe_config->hw.adjusted_mode.crtc_clock =
3371 3372
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3373

3374
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3375
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
3389 3390 3391
		drm_dbg_kms(&dev_priv->drm,
			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3392
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3393
	}
3394 3395
}

3396
static void intel_disable_dp(struct intel_encoder *encoder,
3397 3398
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3399
{
3400
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3401

3402 3403
	intel_dp->link_trained = false;

3404
	if (old_crtc_state->has_audio)
3405 3406
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3407 3408 3409

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3410
	intel_edp_panel_vdd_on(intel_dp);
3411
	intel_edp_backlight_off(old_conn_state);
3412
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3413
	intel_edp_panel_off(intel_dp);
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3428 3429
}

3430
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3431 3432
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3433
{
3434
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3435
	enum port port = encoder->port;
3436

3437 3438 3439 3440 3441 3442
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3443
	intel_dp_link_down(encoder, old_crtc_state);
3444 3445

	/* Only ilk+ has port A */
3446
	if (port == PORT_A)
3447
		ilk_edp_pll_off(intel_dp, old_crtc_state);
3448 3449
}

3450
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3451 3452
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3453
{
3454
	intel_dp_link_down(encoder, old_crtc_state);
3455 3456
}

3457
static void chv_post_disable_dp(struct intel_encoder *encoder,
3458 3459
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3460
{
3461
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3462

3463
	intel_dp_link_down(encoder, old_crtc_state);
3464

3465
	vlv_dpio_get(dev_priv);
3466 3467

	/* Assert data lane reset */
3468
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3469

3470
	vlv_dpio_put(dev_priv);
3471 3472
}

3473 3474
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3475 3476
			 u32 *DP,
			 u8 dp_train_pat)
3477
{
3478
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3479
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3480
	enum port port = intel_dig_port->base.port;
3481
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3482

3483
	if (dp_train_pat & train_pat_mask)
3484 3485 3486
		drm_dbg_kms(&dev_priv->drm,
			    "Using DP training pattern TPS%d\n",
			    dp_train_pat & train_pat_mask);
3487

3488
	if (HAS_DDI(dev_priv)) {
3489
		u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3490 3491 3492 3493 3494 3495 3496

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3497
		switch (dp_train_pat & train_pat_mask) {
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3511 3512 3513
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3514
		}
3515
		intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3516

3517
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3518
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3532 3533
			drm_dbg_kms(&dev_priv->drm,
				    "TPS3 not supported, using TPS2 instead\n");
3534 3535 3536 3537 3538
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3539
		*DP &= ~DP_LINK_TRAIN_MASK;
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3552 3553
			drm_dbg_kms(&dev_priv->drm,
				    "TPS3 not supported, using TPS2 instead\n");
3554
			*DP |= DP_LINK_TRAIN_PAT_2;
3555 3556 3557 3558 3559
			break;
		}
	}
}

3560
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3561
				 const struct intel_crtc_state *old_crtc_state)
3562
{
3563
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3564 3565 3566

	/* enable with pattern 1 (as per spec) */

3567
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3568 3569 3570 3571 3572 3573 3574 3575

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3576
	if (old_crtc_state->has_audio)
3577
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3578

3579 3580
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3581 3582
}

3583
static void intel_enable_dp(struct intel_encoder *encoder,
3584 3585
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3586
{
3587
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3588
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3589
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3590
	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3591
	enum pipe pipe = crtc->pipe;
3592
	intel_wakeref_t wakeref;
3593

3594
	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3595
		return;
3596

3597 3598 3599
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3600

3601
		intel_dp_enable_port(intel_dp, pipe_config);
3602

3603 3604 3605 3606
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3607

3608
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3609 3610
		unsigned int lane_mask = 0x0;

3611
		if (IS_CHERRYVIEW(dev_priv))
3612
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3613

3614 3615
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3616
	}
3617

3618
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3619
	intel_dp_start_link_train(intel_dp);
3620
	intel_dp_stop_link_train(intel_dp);
3621

3622
	if (pipe_config->has_audio) {
3623 3624
		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
			pipe_name(pipe));
3625
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3626
	}
3627
}
3628

3629
static void g4x_enable_dp(struct intel_encoder *encoder,
3630 3631
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3632
{
3633
	intel_enable_dp(encoder, pipe_config, conn_state);
3634
	intel_edp_backlight_on(pipe_config, conn_state);
3635
}
3636

3637
static void vlv_enable_dp(struct intel_encoder *encoder,
3638 3639
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3640
{
3641
	intel_edp_backlight_on(pipe_config, conn_state);
3642 3643
}

3644
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3645 3646
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3647
{
3648
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3649
	enum port port = encoder->port;
3650

3651
	intel_dp_prepare(encoder, pipe_config);
3652

3653
	/* Only ilk+ has port A */
3654
	if (port == PORT_A)
3655
		ilk_edp_pll_on(intel_dp, pipe_config);
3656 3657
}

3658 3659 3660
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3661
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3662
	enum pipe pipe = intel_dp->pps_pipe;
3663
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3664

3665
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3666

3667
	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3668 3669
		return;

3670 3671 3672
	edp_panel_vdd_off_sync(intel_dp);

	/*
3673
	 * VLV seems to get confused when multiple power sequencers
3674 3675 3676
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3677
	 * selected in multiple power sequencers, but let's clear the
3678 3679 3680
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3681 3682 3683 3684
	drm_dbg_kms(&dev_priv->drm,
		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
3685 3686
	intel_de_write(dev_priv, pp_on_reg, 0);
	intel_de_posting_read(dev_priv, pp_on_reg);
3687 3688 3689 3690

	intel_dp->pps_pipe = INVALID_PIPE;
}

3691
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3692 3693 3694 3695 3696 3697
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3698
	for_each_intel_dp(&dev_priv->drm, encoder) {
3699
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3700

3701 3702 3703 3704
		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
			 pipe_name(pipe), encoder->base.base.id,
			 encoder->base.name);
3705

3706 3707 3708
		if (intel_dp->pps_pipe != pipe)
			continue;

3709 3710 3711 3712
		drm_dbg_kms(&dev_priv->drm,
			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			    pipe_name(pipe), encoder->base.base.id,
			    encoder->base.name);
3713 3714

		/* make sure vdd is off before we steal it */
3715
		vlv_detach_power_sequencer(intel_dp);
3716 3717 3718
	}
}

3719 3720
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3721
{
3722
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3723
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3724
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3725 3726 3727

	lockdep_assert_held(&dev_priv->pps_mutex);

3728
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3729

3730 3731 3732 3733 3734 3735 3736
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3737
		vlv_detach_power_sequencer(intel_dp);
3738
	}
3739 3740 3741 3742 3743

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3744
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3745

3746 3747
	intel_dp->active_pipe = crtc->pipe;

3748
	if (!intel_dp_is_edp(intel_dp))
3749 3750
		return;

3751 3752 3753
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3754 3755 3756 3757
	drm_dbg_kms(&dev_priv->drm,
		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		    encoder->base.name);
3758 3759

	/* init power sequencer on this pipe and port */
3760 3761
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3762 3763
}

3764
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3765 3766
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3767
{
3768
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3769

3770
	intel_enable_dp(encoder, pipe_config, conn_state);
3771 3772
}

3773
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3774 3775
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3776
{
3777
	intel_dp_prepare(encoder, pipe_config);
3778

3779
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3780 3781
}

3782
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3783 3784
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3785
{
3786
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3787

3788
	intel_enable_dp(encoder, pipe_config, conn_state);
3789 3790

	/* Second common lane will stay alive on its own now */
3791
	chv_phy_release_cl2_override(encoder);
3792 3793
}

3794
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3795 3796
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3797
{
3798
	intel_dp_prepare(encoder, pipe_config);
3799

3800
	chv_phy_pre_pll_enable(encoder, pipe_config);
3801 3802
}

3803
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3804 3805
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3806
{
3807
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3808 3809
}

3810 3811 3812 3813
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3814
bool
3815
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3816
{
3817 3818
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3819 3820
}

3821
/* These are source-specific values. */
3822
u8
K
Keith Packard 已提交
3823
intel_dp_voltage_max(struct intel_dp *intel_dp)
3824
{
3825
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3826 3827
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3828

3829
	if (HAS_DDI(dev_priv))
3830
		return intel_ddi_dp_voltage_max(encoder);
3831
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3832
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3833
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3834
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3835
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3836
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3837
	else
3838
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3839 3840
}

3841 3842
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3843
{
3844
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3845 3846
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3847

3848 3849
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3850
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3851
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3852 3853 3854 3855 3856 3857 3858
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3859
		default:
3860
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3861
		}
3862
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3863
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3864 3865 3866 3867 3868
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3869
		default:
3870
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3871 3872 3873
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3874 3875 3876 3877 3878 3879 3880
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3881
		default:
3882
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3883
		}
3884 3885 3886
	}
}

3887
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3888
{
3889
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3890 3891
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3892
	u8 train_set = intel_dp->train_set[0];
3893 3894

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3895
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3896 3897
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3898
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3899 3900 3901
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3902
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3903 3904 3905
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3906
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3907 3908 3909
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3910
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3911 3912 3913 3914 3915 3916 3917
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3918
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3919 3920
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3921
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3922 3923 3924
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3925
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3926 3927 3928
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3929
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3930 3931 3932 3933 3934 3935 3936
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3937
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3938 3939
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3940
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3941 3942 3943
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3944
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3945 3946 3947 3948 3949 3950 3951
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3952
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3953 3954
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3955
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3967 3968
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3969 3970 3971 3972

	return 0;
}

3973
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3974
{
3975 3976 3977
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3978
	u8 train_set = intel_dp->train_set[0];
3979 3980

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3981
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3982
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3983
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3984 3985 3986
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3987
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3988 3989 3990
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3991
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3992 3993 3994
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3995
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3996 3997
			deemph_reg_value = 128;
			margin_reg_value = 154;
3998
			uniq_trans_scale = true;
3999 4000 4001 4002 4003
			break;
		default:
			return 0;
		}
		break;
4004
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4005
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4006
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4007 4008 4009
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
4010
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4011 4012 4013
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
4014
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4015 4016 4017 4018 4019 4020 4021
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
4022
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4023
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4024
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4025 4026 4027
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
4028
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4029 4030 4031 4032 4033 4034 4035
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
4036
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4037
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4038
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

4050 4051
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
4052 4053 4054 4055

	return 0;
}

4056 4057
static u32
g4x_signal_levels(u8 train_set)
4058
{
4059
	u32 signal_levels = 0;
4060

4061
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4062
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4063 4064 4065
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
4066
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4067 4068
		signal_levels |= DP_VOLTAGE_0_6;
		break;
4069
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4070 4071
		signal_levels |= DP_VOLTAGE_0_8;
		break;
4072
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4073 4074 4075
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
4076
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4077
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4078 4079 4080
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
4081
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4082 4083
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
4084
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4085 4086
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
4087
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4088 4089 4090 4091 4092 4093
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

4094
/* SNB CPU eDP voltage swing and pre-emphasis control */
4095 4096
static u32
snb_cpu_edp_signal_levels(u8 train_set)
4097
{
4098 4099 4100
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4101 4102
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4103
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4104
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4105
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4106 4107
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4108
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4109 4110
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4111
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4112 4113
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4114
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4115
	default:
4116 4117 4118
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4119 4120 4121
	}
}

4122
/* IVB CPU eDP voltage swing and pre-emphasis control */
4123 4124
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4125 4126 4127 4128
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4129
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4130
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4131
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4132
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4133
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4134 4135
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4136
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4137
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4138
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4139 4140
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4141
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4142
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4143
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4153
void
4154
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4155
{
4156
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4157
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4158
	enum port port = intel_dig_port->base.port;
4159 4160
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
4161

R
Rodrigo Vivi 已提交
4162
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4163 4164
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
4165
		signal_levels = ddi_signal_levels(intel_dp);
4166
		mask = DDI_BUF_EMP_MASK;
4167
	} else if (IS_CHERRYVIEW(dev_priv)) {
4168
		signal_levels = chv_signal_levels(intel_dp);
4169
	} else if (IS_VALLEYVIEW(dev_priv)) {
4170
		signal_levels = vlv_signal_levels(intel_dp);
4171
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4172
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4173
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4174
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4175
		signal_levels = snb_cpu_edp_signal_levels(train_set);
4176 4177
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
4178
		signal_levels = g4x_signal_levels(train_set);
4179 4180 4181
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

4182
	if (mask)
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
		drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
			    signal_levels);

	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
		    " (max)" : "");
4194

4195
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4196

4197 4198
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4199 4200
}

4201
void
4202
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4203
				       u8 dp_train_pat)
4204
{
4205
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4206 4207
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
4208

4209
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4210

4211 4212
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4213 4214
}

4215
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4216
{
4217
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4218
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4219
	enum port port = intel_dig_port->base.port;
4220
	u32 val;
4221

4222
	if (!HAS_DDI(dev_priv))
4223 4224
		return;

4225
	val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4226 4227
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4228
	intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4229 4230

	/*
4231 4232 4233
	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
	 * reason we need to set idle transmission mode is to work around a HW
	 * issue where we enable the pipe while not in idle link-training mode.
4234 4235 4236
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
4237
	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4238 4239
		return;

4240
	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4241
				  DP_TP_STATUS_IDLE_DONE, 1))
4242 4243
		drm_err(&dev_priv->drm,
			"Timed out waiting for DP idle patterns\n");
4244 4245
}

4246
static void
4247 4248
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4249
{
4250
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4251
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4252
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4253
	enum port port = encoder->port;
4254
	u32 DP = intel_dp->DP;
4255

4256 4257 4258
	if (drm_WARN_ON(&dev_priv->drm,
			(intel_de_read(dev_priv, intel_dp->output_reg) &
			 DP_PORT_EN) == 0))
4259 4260
		return;

4261
	drm_dbg_kms(&dev_priv->drm, "\n");
4262

4263
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4264
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4265
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4266
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4267
	} else {
4268
		DP &= ~DP_LINK_TRAIN_MASK;
4269
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4270
	}
4271 4272
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4273

4274
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4275 4276
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4277 4278 4279 4280 4281 4282

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4283
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4284 4285 4286 4287 4288 4289 4290
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4291
		/* always enable with pattern 1 (as per spec) */
4292 4293 4294
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4295 4296
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4297 4298

		DP &= ~DP_PORT_EN;
4299 4300
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4301

4302
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4303 4304
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4305 4306
	}

4307
	msleep(intel_dp->panel_power_down_delay);
4308 4309

	intel_dp->DP = DP;
4310 4311

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4312 4313 4314 4315
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4316
	}
4317 4318
}

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4355
bool
4356
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4357
{
4358 4359
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4360
		return false; /* aux transfer failed */
4361

4362 4363
	intel_dp_extended_receiver_capabilities(intel_dp);

4364
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4365

4366 4367
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4379 4380 4381 4382 4383 4384 4385 4386
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4387 4388 4389
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4402

4403
		/* FEC is supported only on DP 1.4 */
4404 4405 4406 4407
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4408

4409
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4410 4411 4412
	}
}

4413 4414 4415 4416 4417
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4418

4419
	/* this function is meant to be called only once */
4420
	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4421

4422
	if (!intel_dp_read_dpcd(intel_dp))
4423 4424
		return false;

4425 4426
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4427

4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4438 4439
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4440 4441 4442
		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
			    (int)sizeof(intel_dp->edp_dpcd),
			    intel_dp->edp_dpcd);
4443

4444 4445 4446 4447 4448 4449
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4450 4451
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4452
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4453 4454
		int i;

4455 4456
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4457

4458 4459
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4460 4461 4462 4463

			if (val == 0)
				break;

4464 4465 4466 4467 4468 4469
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4470
			intel_dp->sink_rates[i] = (val * 200) / 10;
4471
		}
4472
		intel_dp->num_sink_rates = i;
4473
	}
4474

4475 4476 4477 4478
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4479 4480 4481 4482 4483
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4484 4485
	intel_dp_set_common_rates(intel_dp);

4486 4487 4488 4489
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4500 4501 4502 4503
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4504
	if (!intel_dp_is_edp(intel_dp)) {
4505 4506 4507
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4508
		intel_dp_set_sink_rates(intel_dp);
4509 4510
		intel_dp_set_common_rates(intel_dp);
	}
4511

4512
	/*
4513 4514
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4515
	 */
4516
	if (!intel_dp_is_edp(intel_dp) &&
L
Lyude Paul 已提交
4517 4518
	    !drm_dp_has_quirk(&intel_dp->desc, 0,
			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4519 4520
		u8 count;
		ssize_t r;
4521

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4543

4544
	if (!drm_dp_is_branch(intel_dp->dpcd))
4545 4546 4547 4548 4549
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4550 4551 4552
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4553 4554 4555
		return false; /* downstream port status fetch failed */

	return true;
4556 4557
}

4558
static bool
4559
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4560
{
4561
	u8 mstm_cap;
4562 4563 4564 4565

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4566
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4567
		return false;
4568

4569
	return mstm_cap & DP_MST_CAP;
4570 4571
}

4572 4573 4574 4575 4576 4577 4578 4579
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4580 4581 4582
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4583 4584 4585 4586
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4587
	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4588 4589 4590
		      encoder->base.base.id, encoder->base.name,
		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
		      yesno(i915_modparams.enable_dp_mst));
4591 4592 4593 4594

	if (!intel_dp->can_mst)
		return;

4595 4596
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4597 4598 4599

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4600 4601 4602 4603 4604
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4605 4606 4607
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4608 4609
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
{
	/*
	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
	 * of Color Encoding Format and Content Color Gamut], in order to
	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		return true;

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_SYCC_601:
	case DRM_MODE_COLORIMETRY_OPYCC_601:
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		return true;
	default:
		break;
	}

	return false;
}

4636
static void
4637 4638 4639
intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
		       const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		/* RGB: DB16[7:4] = 0h */
		break;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc_sdp.db[16] |= 0x1;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc_sdp.db[16] |= 0x2;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc_sdp.db[16] |= 0x3;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc_sdp.db[16] |= 0x4;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc_sdp.db[16] |= 0x5;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc_sdp.db[16] |= 0x6;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc_sdp.db[16] |= 0x7;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
		break;
	default:
		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */

		/* RGB->YCBCR color conversion uses the BT.709 color space. */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
		break;
	}
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
static void
intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					  const struct intel_crtc_state *crtc_state,
					  const struct drm_connector_state *conn_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp infoframe_sdp = {};
	struct hdmi_drm_infoframe drm_infoframe = {};
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;
	int ret;

	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
	if (ret) {
		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
		return;
	}

	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Packet ID, 00h for non-Audio INFOFRAME */
	infoframe_sdp.sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
	 */
	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1,
	 */
	infoframe_sdp.sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	infoframe_sdp.db[0] = drm_infoframe.version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	infoframe_sdp.db[1] = drm_infoframe.length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
					HDMI_PACKET_TYPE_GAMUT_METADATA,
					&infoframe_sdp,
					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
}

4840 4841 4842
void intel_dp_vsc_enable(struct intel_dp *intel_dp,
			 const struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
4843
{
4844
	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4845 4846
		return;

4847
	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4848 4849
}

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	if (!conn_state->hdr_output_metadata)
		return;

	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
						  crtc_state,
						  conn_state);
}

4862
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4863
{
4864
	int status = 0;
4865
	int test_link_rate;
4866
	u8 test_lane_count, test_link_bw;
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4887 4888 4889 4890

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4891 4892 4893 4894 4895 4896
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4897 4898
}

4899
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4900
{
4901 4902
	u8 test_pattern;
	u8 test_misc;
4903 4904 4905 4906
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4907 4908
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4930 4931
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
4955
	intel_dp->compliance.test_active = true;
4956 4957

	return DP_TEST_ACK;
4958 4959
}

4960
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4961
{
4962
	u8 test_result = DP_TEST_ACK;
4963 4964 4965 4966
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4967
	    connector->edid_corrupt ||
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4981
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4982
	} else {
4983 4984 4985 4986 4987 4988 4989
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4990 4991
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4992 4993 4994
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4995
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4996 4997 4998
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4999
	intel_dp->compliance.test_active = true;
5000

5001 5002 5003
	return test_result;
}

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
{
	struct drm_dp_phy_test_params *data =
		&intel_dp->compliance.test_data.phytest;

	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
		return DP_TEST_NAK;
	}

	/*
	 * link_mst is set to false to avoid executing mst related code
	 * during compliance testing.
	 */
	intel_dp->link_mst = false;

	return DP_TEST_ACK;
}

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_dp_phy_test_params *data =
			&intel_dp->compliance.test_data.phytest;
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 pattern_val;

	switch (data->phy_pattern) {
	case DP_PHY_TEST_PATTERN_NONE:
		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
		break;
	case DP_PHY_TEST_PATTERN_D10_2:
		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
		break;
	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE |
			       DDI_DP_COMP_CTL_SCRAMBLED_0);
		break;
	case DP_PHY_TEST_PATTERN_PRBS7:
		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
		break;
	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
		/*
		 * FIXME: Ideally pattern should come from DPCD 0x250. As
		 * current firmware of DPR-100 could not set it, so hardcoding
		 * now for complaince test.
		 */
		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
		pattern_val = 0x3e0f83e0;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
		pattern_val = 0x0f83e0f8;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
		pattern_val = 0x0000f83e;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE |
			       DDI_DP_COMP_CTL_CUSTOM80);
		break;
	case DP_PHY_TEST_PATTERN_CP2520:
		/*
		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
		 * current firmware of DPR-100 could not set it, so hardcoding
		 * now for complaince test.
		 */
		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
		pattern_val = 0xFB;
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
			       pattern_val);
		break;
	default:
		WARN(1, "Invalid Phy Test Pattern\n");
	}
}

static void
intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;

	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
						 TRANS_DDI_FUNC_CTL(pipe));
	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));

	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
				      TGL_TRANS_DDI_PORT_MASK);
	trans_conf_value &= ~PIPECONF_ENABLE;
	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;

	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
		       trans_ddi_func_ctl_value);
	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
}

static void
intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	enum port port = intel_dig_port->base.port;
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;

	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
						 TRANS_DDI_FUNC_CTL(pipe));
	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));

	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
				    TGL_TRANS_DDI_SELECT_PORT(port);
	trans_conf_value |= PIPECONF_ENABLE;
	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;

	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
		       trans_ddi_func_ctl_value);
}

void intel_dp_process_phy_request(struct intel_dp *intel_dp)
{
	struct drm_dp_phy_test_params *data =
		&intel_dp->compliance.test_data.phytest;
	u8 link_status[DP_LINK_STATUS_SIZE];

	if (!intel_dp_get_link_status(intel_dp, link_status)) {
		DRM_DEBUG_KMS("failed to get link status\n");
		return;
	}

	/* retrieve vswing & pre-emphasis setting */
	intel_dp_get_adjust_train(intel_dp, link_status);

	intel_dp_autotest_phy_ddi_disable(intel_dp);

	intel_dp_set_signal_levels(intel_dp);

	intel_dp_phy_pattern_update(intel_dp);

	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);

	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
				    link_status[DP_DPCD_REV]);
}

5168
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5169
{
5170
	u8 test_result = DP_TEST_NAK;
5171 5172 5173 5174 5175

	test_result = intel_dp_prepare_phytest(intel_dp);
	if (test_result != DP_TEST_ACK)
		DRM_ERROR("Phy test preparation failed\n");

5176 5177
	intel_dp_process_phy_request(intel_dp);

5178 5179 5180 5181 5182
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
5183 5184
	u8 response = DP_TEST_NAK;
	u8 request = 0;
5185
	int status;
5186

5187
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5188 5189 5190 5191 5192
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

5193
	switch (request) {
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
5211
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5212 5213 5214
		break;
	}

5215 5216 5217
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

5218
update_status:
5219
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5220 5221
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
5222 5223
}

5224 5225 5226 5227 5228 5229
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
5230
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5231 5232 5233
		int ret = 0;
		int retry;
		bool handled;
5234 5235

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5236 5237 5238 5239 5240
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
5241
			if (intel_dp->active_mst_links > 0 &&
5242
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5243 5244 5245 5246 5247
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

5248
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
5264
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5265 5266 5267 5268 5269 5270 5271 5272 5273
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
5274 5275
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
5276 5277 5278 5279 5280
		}
	}
	return -EINVAL;
}

5281 5282 5283 5284 5285
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

5286
	if (!intel_dp->link_trained)
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
5298 5299 5300
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
5317 5318
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5319
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

5348
	drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5349

5350
	if (!crtc_state->hw.active)
5351 5352 5353 5354 5355 5356 5357 5358
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
5359 5360 5361

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5362
	if (crtc_state->has_pch_encoder)
5363 5364 5365 5366 5367 5368 5369
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
5370
	intel_wait_for_vblank(dev_priv, crtc->pipe);
5371 5372

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5373
	if (crtc_state->has_pch_encoder)
5374 5375
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
5376 5377

	return 0;
5378 5379
}

5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
5392 5393 5394 5395
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
5396
{
5397
	struct drm_modeset_acquire_ctx ctx;
5398
	enum intel_hotplug_state state;
5399
	int ret;
5400

5401
	state = intel_encoder_hotplug(encoder, connector, irq_received);
5402

5403
	drm_modeset_acquire_init(&ctx, 0);
5404

5405 5406
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
5407

5408 5409 5410 5411
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
5412

5413 5414
		break;
	}
5415

5416 5417
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
5418 5419
	drm_WARN(encoder->base.dev, ret,
		 "Acquiring modeset locks failed with %i\n", ret);
5420

5421 5422 5423 5424 5425 5426 5427
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

5428
	return state;
5429 5430
}

5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

5447
	if (val & DP_CP_IRQ)
5448
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5449 5450 5451

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5452 5453
}

5454 5455 5456 5457 5458 5459 5460
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
5461 5462 5463 5464 5465
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
5466
 */
5467
static bool
5468
intel_dp_short_pulse(struct intel_dp *intel_dp)
5469
{
5470
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5471 5472
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5473

5474 5475 5476 5477
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5478
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5479

5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5491 5492
	}

5493
	intel_dp_check_service_irq(intel_dp);
5494

5495 5496 5497
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5498 5499 5500
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5501

5502 5503
	intel_psr_short_pulse(intel_dp);

5504
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5505 5506
		drm_dbg_kms(&dev_priv->drm,
			    "Link Training Compliance Test requested\n");
5507
		/* Send a Hotplug Uevent to userspace to start modeset */
5508
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5509
	}
5510 5511

	return true;
5512 5513
}

5514
/* XXX this is probably wrong for multiple downstream ports */
5515
static enum drm_connector_status
5516
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5517
{
5518
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5519 5520
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5521

5522 5523 5524
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5525 5526 5527
	if (lspcon->active)
		lspcon_resume(lspcon);

5528 5529 5530 5531
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5532
	if (!drm_dp_is_branch(dpcd))
5533
		return connector_status_connected;
5534 5535

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5536 5537
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5538

5539 5540
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5541 5542
	}

5543 5544 5545
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5546
	/* If no HPD, poke DDC gently */
5547
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5548
		return connector_status_connected;
5549 5550

	/* Well we tried, say unknown for unreliable port types */
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5563 5564 5565

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5566
	return connector_status_disconnected;
5567 5568
}

5569 5570 5571
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5572
	return connector_status_connected;
5573 5574
}

5575
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5576
{
5577
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5578
	u32 bit;
5579

5580 5581
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5582 5583
		bit = SDE_PORTB_HOTPLUG;
		break;
5584
	case HPD_PORT_C:
5585 5586
		bit = SDE_PORTC_HOTPLUG;
		break;
5587
	case HPD_PORT_D:
5588 5589 5590
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5591
		MISSING_CASE(encoder->hpd_pin);
5592 5593 5594
		return false;
	}

5595
	return intel_de_read(dev_priv, SDEISR) & bit;
5596 5597
}

5598
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5599
{
5600
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5601 5602
	u32 bit;

5603 5604
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5605 5606
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5607
	case HPD_PORT_C:
5608 5609
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5610
	case HPD_PORT_D:
5611 5612
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5613
	default:
5614
		MISSING_CASE(encoder->hpd_pin);
5615 5616 5617
		return false;
	}

5618
	return intel_de_read(dev_priv, SDEISR) & bit;
5619 5620
}

5621
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5622
{
5623
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5624 5625
	u32 bit;

5626 5627
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5628 5629
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5630
	case HPD_PORT_E:
5631 5632
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5633
	default:
5634
		return cpt_digital_port_connected(encoder);
5635
	}
5636

5637
	return intel_de_read(dev_priv, SDEISR) & bit;
5638 5639
}

5640
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5641
{
5642
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5643
	u32 bit;
5644

5645 5646
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5647 5648
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5649
	case HPD_PORT_C:
5650 5651
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5652
	case HPD_PORT_D:
5653 5654 5655
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5656
		MISSING_CASE(encoder->hpd_pin);
5657 5658 5659
		return false;
	}

5660
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5661 5662
}

5663
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5664
{
5665
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5666 5667
	u32 bit;

5668 5669
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5670
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5671
		break;
5672
	case HPD_PORT_C:
5673
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5674
		break;
5675
	case HPD_PORT_D:
5676
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5677 5678
		break;
	default:
5679
		MISSING_CASE(encoder->hpd_pin);
5680
		return false;
5681 5682
	}

5683
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5684 5685
}

5686
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5687
{
5688 5689 5690
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5691
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5692
	else
5693
		return ibx_digital_port_connected(encoder);
5694 5695
}

5696
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5697
{
5698 5699 5700
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5701
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5702
	else
5703
		return cpt_digital_port_connected(encoder);
5704 5705
}

5706
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5707
{
5708 5709 5710
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5711
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5712
	else
5713
		return cpt_digital_port_connected(encoder);
5714 5715
}

5716
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5717
{
5718 5719 5720
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5721
		return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5722
	else
5723
		return cpt_digital_port_connected(encoder);
5724 5725
}

5726
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5727
{
5728
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5729 5730
	u32 bit;

5731 5732
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5733 5734
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5735
	case HPD_PORT_B:
5736 5737
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5738
	case HPD_PORT_C:
5739 5740 5741
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5742
		MISSING_CASE(encoder->hpd_pin);
5743 5744 5745
		return false;
	}

5746
	return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5747 5748
}

5749 5750
static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
				      enum phy phy)
5751
{
5752
	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5753
		return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5754

5755
	return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5756 5757
}

5758
static bool icp_digital_port_connected(struct intel_encoder *encoder)
5759 5760
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5761
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5762
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5763

5764
	if (intel_phy_is_combo(dev_priv, phy))
5765
		return intel_combo_phy_connected(dev_priv, phy);
5766
	else if (intel_phy_is_tc(dev_priv, phy))
5767
		return intel_tc_port_connected(dig_port);
5768
	else
5769
		MISSING_CASE(encoder->hpd_pin);
5770 5771

	return false;
5772 5773
}

5774 5775
/*
 * intel_digital_port_connected - is the specified port connected?
5776
 * @encoder: intel_encoder
5777
 *
5778 5779 5780 5781 5782
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5783
 * Return %true if port is connected, %false otherwise.
5784
 */
5785
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5786
{
5787 5788
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5789
	if (HAS_GMCH(dev_priv)) {
5790
		if (IS_GM45(dev_priv))
5791
			return gm45_digital_port_connected(encoder);
5792
		else
5793
			return g4x_digital_port_connected(encoder);
5794 5795
	}

5796 5797 5798
	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
		return icp_digital_port_connected(encoder);
	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5799
		return spt_digital_port_connected(encoder);
5800
	else if (IS_GEN9_LP(dev_priv))
5801
		return bxt_digital_port_connected(encoder);
5802
	else if (IS_GEN(dev_priv, 8))
5803
		return bdw_digital_port_connected(encoder);
5804
	else if (IS_GEN(dev_priv, 7))
5805
		return ivb_digital_port_connected(encoder);
5806
	else if (IS_GEN(dev_priv, 6))
5807
		return snb_digital_port_connected(encoder);
5808
	else if (IS_GEN(dev_priv, 5))
5809 5810 5811 5812
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5813 5814
}

5815 5816 5817
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5818
	bool is_connected = false;
5819 5820 5821 5822 5823 5824 5825 5826
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5827
static struct edid *
5828
intel_dp_get_edid(struct intel_dp *intel_dp)
5829
{
5830
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5831

5832 5833 5834 5835
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5836 5837
			return NULL;

J
Jani Nikula 已提交
5838
		return drm_edid_duplicate(intel_connector->edid);
5839 5840 5841 5842
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5843

5844 5845 5846 5847 5848
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5849

5850
	intel_dp_unset_edid(intel_dp);
5851 5852 5853
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5854
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5855
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
L
Lyude Paul 已提交
5856
	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
5857 5858
}

5859 5860
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5861
{
5862
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5863

5864
	drm_dp_cec_unset_edid(&intel_dp->aux);
5865 5866
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5867

5868
	intel_dp->has_audio = false;
L
Lyude Paul 已提交
5869
	intel_dp->edid_quirks = 0;
5870
}
5871

5872
static int
5873 5874 5875
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5876
{
5877
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5878
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5879 5880
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5881 5882
	enum drm_connector_status status;

5883 5884
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
5885 5886
	drm_WARN_ON(&dev_priv->drm,
		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5887

5888
	/* Can't disconnect eDP */
5889
	if (intel_dp_is_edp(intel_dp))
5890
		status = edp_detect(intel_dp);
5891
	else if (intel_digital_port_connected(encoder))
5892
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5893
	else
5894 5895
		status = connector_status_disconnected;

5896
	if (status == connector_status_disconnected) {
5897
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5898
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5899

5900
		if (intel_dp->is_mst) {
5901 5902 5903 5904
			drm_dbg_kms(&dev_priv->drm,
				    "MST device may have disappeared %d vs %d\n",
				    intel_dp->is_mst,
				    intel_dp->mst_mgr.mst_state);
5905 5906 5907 5908 5909
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5910
		goto out;
5911
	}
Z
Zhenyu Wang 已提交
5912

5913
	if (intel_dp->reset_link_params) {
5914 5915
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5916

5917 5918
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5919 5920 5921

		intel_dp->reset_link_params = false;
	}
5922

5923 5924
	intel_dp_print_rates(intel_dp);

5925 5926 5927 5928
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5929 5930 5931
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5932 5933 5934 5935 5936
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5937 5938
		status = connector_status_disconnected;
		goto out;
5939 5940 5941 5942 5943 5944
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5945 5946 5947 5948
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5949
		if (ret)
5950 5951
			return ret;
	}
5952

5953 5954 5955 5956 5957 5958 5959 5960
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5961
	intel_dp_set_edid(intel_dp);
5962 5963
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5964
		status = connector_status_connected;
5965

5966
	intel_dp_check_service_irq(intel_dp);
5967

5968
out:
5969
	if (status != connector_status_connected && !intel_dp->is_mst)
5970
		intel_dp_unset_edid(intel_dp);
5971

5972 5973 5974 5975 5976 5977
	/*
	 * Make sure the refs for power wells enabled during detect are
	 * dropped to avoid a new detect cycle triggered by HPD polling.
	 */
	intel_display_power_flush_work(dev_priv);

5978
	return status;
5979 5980
}

5981 5982
static void
intel_dp_force(struct drm_connector *connector)
5983
{
5984
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5985 5986
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5987
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5988 5989
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5990
	intel_wakeref_t wakeref;
5991

5992 5993
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
5994
	intel_dp_unset_edid(intel_dp);
5995

5996 5997
	if (connector->status != connector_status_connected)
		return;
5998

5999
	wakeref = intel_display_power_get(dev_priv, aux_domain);
6000 6001 6002

	intel_dp_set_edid(intel_dp);

6003
	intel_display_power_put(dev_priv, aux_domain, wakeref);
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
6017

6018
	/* if eDP has no EDID, fall back to fixed mode */
6019
	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6020
	    intel_connector->panel.fixed_mode) {
6021
		struct drm_display_mode *mode;
6022 6023

		mode = drm_mode_duplicate(connector->dev,
6024
					  intel_connector->panel.fixed_mode);
6025
		if (mode) {
6026 6027 6028 6029
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
6030

6031
	return 0;
6032 6033
}

6034 6035 6036
static int
intel_dp_connector_register(struct drm_connector *connector)
{
6037
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6038 6039 6040 6041 6042
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
6043

6044
	intel_connector_debugfs_add(connector);
6045 6046 6047 6048 6049

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
6050 6051
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
6052
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6053
	return ret;
6054 6055
}

6056 6057 6058
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
6059
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6060 6061 6062

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
6063 6064 6065
	intel_connector_unregister(connector);
}

6066
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6067
{
6068
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6069
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6070

6071
	intel_dp_mst_encoder_cleanup(intel_dig_port);
6072
	if (intel_dp_is_edp(intel_dp)) {
6073 6074
		intel_wakeref_t wakeref;

6075
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6076 6077 6078 6079
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
6080 6081
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
6082

6083 6084 6085 6086
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
6087
	}
6088 6089

	intel_dp_aux_fini(intel_dp);
6090 6091 6092 6093 6094
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
6095

6096
	drm_encoder_cleanup(encoder);
6097
	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6098 6099
}

6100
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6101
{
6102
	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6103
	intel_wakeref_t wakeref;
6104

6105
	if (!intel_dp_is_edp(intel_dp))
6106 6107
		return;

6108 6109 6110 6111
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
6112
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6113 6114
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
6115 6116
}

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

6129 6130 6131 6132
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
6133
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6134 6135 6136 6137 6138
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
6139
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6140 6141 6142 6143 6144 6145 6146
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6147 6148
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
6149 6150 6151 6152 6153 6154 6155 6156 6157
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
6158
	intel_dp_aux_header(txbuf, &msg);
6159

6160
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6161 6162
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6163
	if (ret < 0) {
6164
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
6165 6166
		return ret;
	} else if (ret == 0) {
6167
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
6168 6169 6170 6171
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6172 6173 6174 6175 6176 6177
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
6178 6179 6180 6181 6182 6183 6184 6185 6186
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
6187
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
6205
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6206 6207 6208 6209 6210 6211
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
6212 6213
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
6214 6215
{
	ssize_t ret;
6216

6217
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6218
			       bcaps, 1);
6219
	if (ret != 1) {
6220
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6221 6222
		return ret >= 0 ? -EIO : ret;
	}
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
6250
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6265
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
6287 6288
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6308
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
6327

6328 6329 6330
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6331
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6332
		return false;
6333
	}
6334

6335 6336 6337
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6353 6354 6355 6356 6357
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

6358
struct hdcp2_dp_msg_data {
6359 6360 6361 6362 6363
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
6364 6365
};

6366
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6395 6396
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6397 6398 6399 6400
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6454
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6475 6476 6477 6478 6479 6480 6481
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

6493
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6494 6495 6496
{
	int i;

6497 6498 6499
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6500 6501 6502 6503 6504 6505 6506 6507

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6508 6509
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6510 6511 6512
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6513
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6525 6526
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6577
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
6625
	int ret;
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

6641
	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6642
					sizeof(stream_type_msg));
6643 6644 6645

	return ret < 0 ? ret : 0;

6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6700
	.hdcp_capable = intel_dp_hdcp_capable,
6701 6702 6703 6704 6705 6706
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6707 6708
};

6709 6710
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6711
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6712
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
6725 6726
	drm_dbg_kms(&dev_priv->drm,
		    "VDD left on by BIOS, adjusting state tracking\n");
6727
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6728 6729 6730 6731

	edp_panel_vdd_schedule_off(intel_dp);
}

6732 6733
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6734
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6735 6736
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6737

6738 6739 6740
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6741

6742
	return INVALID_PIPE;
6743 6744
}

6745
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6746
{
6747
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6748
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6749
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6750
	intel_wakeref_t wakeref;
6751 6752

	if (!HAS_DDI(dev_priv))
6753
		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6754

6755
	if (lspcon->active)
6756 6757
		lspcon_resume(lspcon);

6758 6759
	intel_dp->reset_link_params = true;

6760 6761 6762 6763
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6764 6765 6766
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6767

6768 6769 6770 6771 6772 6773 6774 6775
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6776
	}
6777 6778
}

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
static int intel_modeset_tile_group(struct intel_atomic_state *state,
				    int tile_group_id)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector;
	int ret = 0;

	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!connector->has_tile ||
		    connector->tile_group->id != tile_group_id)
			continue;

		conn_state = drm_atomic_get_connector_state(&state->base,
							    connector);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			break;
		}

		crtc = to_intel_crtc(conn_state->crtc);

		if (!crtc)
			continue;

		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			break;
	}
6816
	drm_connector_list_iter_end(&conn_iter);
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855

	return ret;
}

static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	if (transcoders == 0)
		return 0;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;
		int ret;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (!crtc_state->hw.enable)
			continue;

		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
			continue;

		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
		if (ret)
			return ret;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			return ret;

		transcoders &= ~BIT(crtc_state->cpu_transcoder);
	}

6856
	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912

	return 0;
}

static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
				      struct drm_connector *connector)
{
	const struct drm_connector_state *old_conn_state =
		drm_atomic_get_old_connector_state(&state->base, connector);
	const struct intel_crtc_state *old_crtc_state;
	struct intel_crtc *crtc;
	u8 transcoders;

	crtc = to_intel_crtc(old_conn_state->crtc);
	if (!crtc)
		return 0;

	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);

	if (!old_crtc_state->hw.active)
		return 0;

	transcoders = old_crtc_state->sync_mode_slaves_mask;
	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
		transcoders |= BIT(old_crtc_state->master_transcoder);

	return intel_modeset_affected_transcoders(state,
						  transcoders);
}

static int intel_dp_connector_atomic_check(struct drm_connector *conn,
					   struct drm_atomic_state *_state)
{
	struct drm_i915_private *dev_priv = to_i915(conn->dev);
	struct intel_atomic_state *state = to_intel_atomic_state(_state);
	int ret;

	ret = intel_digital_connector_atomic_check(conn, &state->base);
	if (ret)
		return ret;

	if (INTEL_GEN(dev_priv) < 11)
		return 0;

	if (!intel_connector_needs_modeset(state, conn))
		return 0;

	if (conn->has_tile) {
		ret = intel_modeset_tile_group(state, conn->tile_group->id);
		if (ret)
			return ret;
	}

	return intel_modeset_synced_crtcs(state, conn);
}

6913
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6914
	.force = intel_dp_force,
6915
	.fill_modes = drm_helper_probe_single_connector_modes,
6916 6917
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6918
	.late_register = intel_dp_connector_register,
6919
	.early_unregister = intel_dp_connector_unregister,
6920
	.destroy = intel_connector_destroy,
6921
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6922
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6923 6924 6925
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6926
	.detect_ctx = intel_dp_detect,
6927 6928
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6929
	.atomic_check = intel_dp_connector_atomic_check,
6930 6931 6932
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6933
	.reset = intel_dp_encoder_reset,
6934
	.destroy = intel_dp_encoder_destroy,
6935 6936
};

6937
enum irqreturn
6938 6939 6940
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6941

6942 6943 6944 6945 6946 6947 6948
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
6949 6950 6951
		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
6952
		return IRQ_HANDLED;
6953 6954
	}

6955 6956 6957
	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
6958
		      long_hpd ? "long" : "short");
6959

6960
	if (long_hpd) {
6961
		intel_dp->reset_link_params = true;
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6976 6977

			return IRQ_NONE;
6978
		}
6979
	}
6980

6981
	if (!intel_dp->is_mst) {
6982
		bool handled;
6983 6984 6985

		handled = intel_dp_short_pulse(intel_dp);

6986
		if (!handled)
6987
			return IRQ_NONE;
6988
	}
6989

6990
	return IRQ_HANDLED;
6991 6992
}

6993
/* check the VBT to see whether the eDP is on another port */
6994
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6995
{
6996 6997 6998 6999
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
7000
	if (INTEL_GEN(dev_priv) < 5)
7001 7002
		return false;

7003
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7004 7005
		return true;

7006
	return intel_bios_is_port_edp(dev_priv, port);
7007 7008
}

7009
static void
7010 7011
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
7012
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7013 7014 7015 7016
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
7017

7018
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
7019
	if (HAS_GMCH(dev_priv))
7020 7021 7022
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
7023

7024 7025
	intel_attach_colorspace_property(connector);

7026 7027 7028 7029 7030
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
		drm_object_attach_property(&connector->base,
					   connector->dev->mode_config.hdr_output_metadata_property,
					   0);

7031
	if (intel_dp_is_edp(intel_dp)) {
7032 7033 7034
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
7035
		if (!HAS_GMCH(dev_priv))
7036 7037 7038 7039
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

7040
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7041

7042
	}
7043 7044
}

7045 7046
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
7047
	intel_dp->panel_power_off_time = ktime_get_boottime();
7048 7049 7050 7051
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

7052
static void
7053
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7054
{
7055
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7056
	u32 pp_on, pp_off, pp_ctl;
7057
	struct pps_registers regs;
7058

7059
	intel_pps_get_registers(intel_dp, &regs);
7060

7061
	pp_ctl = ilk_get_pp_control(intel_dp);
7062

7063 7064
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
7065
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7066

7067 7068
	pp_on = intel_de_read(dev_priv, regs.pp_on);
	pp_off = intel_de_read(dev_priv, regs.pp_off);
7069 7070

	/* Pull timing values out of registers */
7071 7072 7073 7074
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7075

7076 7077 7078
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

7079
		pp_div = intel_de_read(dev_priv, regs.pp_div);
7080

7081
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7082
	} else {
7083
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7084
	}
7085 7086
}

I
Imre Deak 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
7096
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
7097 7098 7099 7100
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

7101
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

7111
static void
7112
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7113
{
7114
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7115 7116 7117 7118 7119 7120 7121 7122 7123
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

7124
	intel_pps_readout_hw_state(intel_dp, &cur);
7125

I
Imre Deak 已提交
7126
	intel_pps_dump_state("cur", &cur);
7127

7128
	vbt = dev_priv->vbt.edp.pps;
7129 7130 7131 7132 7133 7134
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7135
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7136 7137 7138
		drm_dbg_kms(&dev_priv->drm,
			    "Increasing T12 panel delay as per the quirk to %d\n",
			    vbt.t11_t12);
7139
	}
7140 7141 7142 7143 7144
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
7158
	intel_pps_dump_state("vbt", &vbt);
7159 7160 7161

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
7162
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7163 7164 7165 7166 7167 7168 7169 7170 7171
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

7172
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7173 7174 7175 7176 7177 7178 7179
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

7180 7181 7182 7183 7184
	drm_dbg_kms(&dev_priv->drm,
		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
		    intel_dp->panel_power_up_delay,
		    intel_dp->panel_power_down_delay,
		    intel_dp->panel_power_cycle_delay);
7185

7186 7187 7188
	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
		    intel_dp->backlight_on_delay,
		    intel_dp->backlight_off_delay);
I
Imre Deak 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
7199 7200 7201 7202 7203 7204

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7205 7206 7207
}

static void
7208
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7209
					      bool force_disable_vdd)
7210
{
7211
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7212
	u32 pp_on, pp_off, port_sel = 0;
7213
	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7214
	struct pps_registers regs;
7215
	enum port port = dp_to_dig_port(intel_dp)->base.port;
7216
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7217

V
Ville Syrjälä 已提交
7218
	lockdep_assert_held(&dev_priv->pps_mutex);
7219

7220
	intel_pps_get_registers(intel_dp, &regs);
7221

7222 7223
	/*
	 * On some VLV machines the BIOS can leave the VDD
7224
	 * enabled even on power sequencers which aren't
7225 7226 7227 7228 7229 7230 7231
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
7232
	 * soon as the new power sequencer gets initialized.
7233 7234
	 */
	if (force_disable_vdd) {
7235
		u32 pp = ilk_get_pp_control(intel_dp);
7236

7237 7238
		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
			 "Panel power already on\n");
7239 7240

		if (pp & EDP_FORCE_VDD)
7241 7242
			drm_dbg_kms(&dev_priv->drm,
				    "VDD already on, disabling first\n");
7243 7244 7245

		pp &= ~EDP_FORCE_VDD;

7246
		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7247 7248
	}

7249 7250 7251 7252
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7253 7254 7255

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
7256
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7257
		port_sel = PANEL_PORT_SELECT_VLV(port);
7258
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7259 7260
		switch (port) {
		case PORT_A:
7261
			port_sel = PANEL_PORT_SELECT_DPA;
7262 7263 7264 7265 7266
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
7267
			port_sel = PANEL_PORT_SELECT_DPD;
7268 7269 7270 7271 7272
			break;
		default:
			MISSING_CASE(port);
			break;
		}
7273 7274
	}

7275 7276
	pp_on |= port_sel;

7277 7278
	intel_de_write(dev_priv, regs.pp_on, pp_on);
	intel_de_write(dev_priv, regs.pp_off, pp_off);
7279 7280 7281 7282 7283

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
7284 7285
		intel_de_write(dev_priv, regs.pp_div,
			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7286 7287 7288
	} else {
		u32 pp_ctl;

7289
		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7290
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7291
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7292
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7293
	}
7294

7295 7296
	drm_dbg_kms(&dev_priv->drm,
		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7297 7298
		    intel_de_read(dev_priv, regs.pp_on),
		    intel_de_read(dev_priv, regs.pp_off),
7299
		    i915_mmio_reg_valid(regs.pp_div) ?
7300 7301
		    intel_de_read(dev_priv, regs.pp_div) :
		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7302 7303
}

7304
static void intel_dp_pps_init(struct intel_dp *intel_dp)
7305
{
7306
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7307 7308

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7309 7310
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
7311 7312
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7313 7314 7315
	}
}

7316 7317
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7318
 * @dev_priv: i915 device
7319
 * @crtc_state: a pointer to the active intel_crtc_state
7320 7321 7322 7323 7324 7325 7326 7327 7328
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
7329
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7330
				    const struct intel_crtc_state *crtc_state,
7331
				    int refresh_rate)
7332
{
7333
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7334
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7335
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7336 7337

	if (refresh_rate <= 0) {
7338 7339
		drm_dbg_kms(&dev_priv->drm,
			    "Refresh rate should be positive non-zero.\n");
7340 7341 7342
		return;
	}

7343
	if (intel_dp == NULL) {
7344
		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7345 7346 7347 7348
		return;
	}

	if (!intel_crtc) {
7349 7350
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS: intel_crtc not initialized\n");
7351 7352 7353
		return;
	}

7354
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7355
		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7356 7357 7358
		return;
	}

7359 7360
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
7361 7362
		index = DRRS_LOW_RR;

7363
	if (index == dev_priv->drrs.refresh_rate_type) {
7364 7365
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS requested for previously set RR...ignoring\n");
7366 7367 7368
		return;
	}

7369
	if (!crtc_state->hw.active) {
7370 7371
		drm_dbg_kms(&dev_priv->drm,
			    "eDP encoder disabled. CRTC not Active\n");
7372 7373 7374
		return;
	}

7375
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7376 7377
		switch (index) {
		case DRRS_HIGH_RR:
7378
			intel_dp_set_m_n(crtc_state, M1_N1);
7379 7380
			break;
		case DRRS_LOW_RR:
7381
			intel_dp_set_m_n(crtc_state, M2_N2);
7382 7383 7384
			break;
		case DRRS_MAX_RR:
		default:
7385 7386
			drm_err(&dev_priv->drm,
				"Unsupported refreshrate type\n");
7387
		}
7388 7389
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7390
		u32 val;
7391

7392
		val = intel_de_read(dev_priv, reg);
7393
		if (index > DRRS_HIGH_RR) {
7394
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7395 7396 7397
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7398
		} else {
7399
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7400 7401 7402
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7403
		}
7404
		intel_de_write(dev_priv, reg, val);
7405 7406
	}

7407 7408
	dev_priv->drrs.refresh_rate_type = index;

7409 7410
	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
		    refresh_rate);
7411 7412
}

7413 7414 7415
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
7416
 * @crtc_state: A pointer to the active crtc state.
7417 7418 7419
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
7420
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7421
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
7422
{
7423
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7424

7425
	if (!crtc_state->has_drrs) {
7426
		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
V
Vandana Kannan 已提交
7427 7428 7429
		return;
	}

7430
	if (dev_priv->psr.enabled) {
7431 7432
		drm_dbg_kms(&dev_priv->drm,
			    "PSR enabled. Not enabling DRRS.\n");
7433 7434 7435
		return;
	}

V
Vandana Kannan 已提交
7436
	mutex_lock(&dev_priv->drrs.mutex);
7437
	if (dev_priv->drrs.dp) {
7438
		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
V
Vandana Kannan 已提交
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

7450 7451 7452
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
7453
 * @old_crtc_state: Pointer to old crtc_state.
7454 7455
 *
 */
7456
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7457
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
7458
{
7459
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7460

7461
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7471 7472
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
7473 7474 7475 7476 7477 7478 7479

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

7493
	/*
7494 7495
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
7496 7497
	 */

7498 7499
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7500

7501 7502 7503 7504 7505 7506
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7507

7508 7509
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7510 7511
}

7512
/**
7513
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7514
 * @dev_priv: i915 device
7515 7516
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7517 7518
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7519 7520 7521
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7522 7523
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7524 7525 7526 7527
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7528
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7529 7530
		return;

7531
	cancel_delayed_work(&dev_priv->drrs.work);
7532

7533
	mutex_lock(&dev_priv->drrs.mutex);
7534 7535 7536 7537 7538
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7539 7540 7541
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7542 7543 7544
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7545
	/* invalidate means busy screen hence upclock */
7546
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7547 7548
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7549 7550 7551 7552

	mutex_unlock(&dev_priv->drrs.mutex);
}

7553
/**
7554
 * intel_edp_drrs_flush - Restart Idleness DRRS
7555
 * @dev_priv: i915 device
7556 7557
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7558 7559 7560 7561
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7562 7563 7564
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7565 7566
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7567 7568 7569 7570
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7571
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7572 7573
		return;

7574
	cancel_delayed_work(&dev_priv->drrs.work);
7575

7576
	mutex_lock(&dev_priv->drrs.mutex);
7577 7578 7579 7580 7581
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7582 7583
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7584 7585

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7586 7587
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7588
	/* flush means busy screen hence upclock */
7589
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7590 7591
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7592 7593 7594 7595 7596 7597

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7598 7599 7600 7601 7602
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7626 7627 7628 7629 7630 7631 7632 7633
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7634 7635 7636 7637 7638 7639 7640 7641
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7642
 * @connector: eDP connector
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7653
static struct drm_display_mode *
7654 7655
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7656
{
7657
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7658 7659
	struct drm_display_mode *downclock_mode = NULL;

7660 7661 7662
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7663
	if (INTEL_GEN(dev_priv) <= 6) {
7664 7665
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS supported for Gen7 and above\n");
7666 7667 7668 7669
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7670
		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7671 7672 7673
		return NULL;
	}

7674
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7675
	if (!downclock_mode) {
7676 7677
		drm_dbg_kms(&dev_priv->drm,
			    "Downclock mode is not found. DRRS not supported\n");
7678 7679 7680
		return NULL;
	}

7681
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7682

7683
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7684 7685
	drm_dbg_kms(&dev_priv->drm,
		    "seamless DRRS supported for eDP panel.\n");
7686 7687 7688
	return downclock_mode;
}

7689
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7690
				     struct intel_connector *intel_connector)
7691
{
7692 7693
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7694
	struct drm_connector *connector = &intel_connector->base;
7695
	struct drm_display_mode *fixed_mode = NULL;
7696
	struct drm_display_mode *downclock_mode = NULL;
7697
	bool has_dpcd;
7698
	enum pipe pipe = INVALID_PIPE;
7699 7700
	intel_wakeref_t wakeref;
	struct edid *edid;
7701

7702
	if (!intel_dp_is_edp(intel_dp))
7703 7704
		return true;

7705 7706
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7707 7708 7709 7710 7711 7712
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7713
	if (intel_get_lvds_encoder(dev_priv)) {
7714 7715
		drm_WARN_ON(dev,
			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7716 7717
		drm_info(&dev_priv->drm,
			 "LVDS was detected, not registering eDP\n");
7718 7719 7720 7721

		return false;
	}

7722 7723 7724 7725 7726
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7727

7728
	/* Cache DPCD and EDID for edp. */
7729
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7730

7731
	if (!has_dpcd) {
7732
		/* if this fails, presume the device is a ghost */
7733 7734
		drm_info(&dev_priv->drm,
			 "failed to retrieve link info, disabling eDP\n");
7735
		goto out_vdd_off;
7736 7737
	}

7738
	mutex_lock(&dev->mode_config.mutex);
7739
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7740 7741
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
L
Lyude Paul 已提交
7742 7743
			drm_connector_update_edid_property(connector, edid);
			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7744 7745 7746 7747 7748 7749 7750 7751 7752
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7753 7754 7755
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7756 7757

	/* fallback to VBT if available for eDP */
7758 7759
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7760
	mutex_unlock(&dev->mode_config.mutex);
7761

7762
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7763 7764
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7765 7766 7767 7768 7769 7770

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7771
		pipe = vlv_active_pipe(intel_dp);
7772 7773 7774 7775 7776 7777 7778

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

7779 7780 7781
		drm_dbg_kms(&dev_priv->drm,
			    "using pipe %c for initial backlight setup\n",
			    pipe_name(pipe));
7782 7783
	}

7784
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7785
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7786
	intel_panel_setup_backlight(connector, pipe);
7787

7788 7789
	if (fixed_mode) {
		drm_connector_set_panel_orientation_with_quirk(connector,
7790
				dev_priv->vbt.orientation,
7791 7792
				fixed_mode->hdisplay, fixed_mode->vdisplay);
	}
7793

7794
	return true;
7795 7796 7797 7798 7799 7800 7801

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7802 7803
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7804 7805

	return false;
7806 7807
}

7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7824 7825
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7826 7827 7828 7829 7830
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7831
bool
7832 7833
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7834
{
7835 7836 7837 7838
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7839
	struct drm_i915_private *dev_priv = to_i915(dev);
7840
	enum port port = intel_encoder->port;
7841
	enum phy phy = intel_port_to_phy(dev_priv, port);
7842
	int type;
7843

7844 7845 7846 7847
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7848 7849 7850 7851
	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
		     intel_encoder->base.name))
7852 7853
		return false;

7854 7855
	intel_dp_set_source_rates(intel_dp);

7856
	intel_dp->reset_link_params = true;
7857
	intel_dp->pps_pipe = INVALID_PIPE;
7858
	intel_dp->active_pipe = INVALID_PIPE;
7859

7860
	/* Preserve the current hw state. */
7861
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7862
	intel_dp->attached_connector = intel_connector;
7863

7864 7865 7866 7867 7868
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
7869
		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7870
		type = DRM_MODE_CONNECTOR_eDP;
7871
	} else {
7872
		type = DRM_MODE_CONNECTOR_DisplayPort;
7873
	}
7874

7875 7876 7877
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7878 7879 7880 7881 7882 7883 7884 7885
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7886
	/* eDP only on port B and/or C on vlv/chv */
7887 7888 7889 7890
	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
			      IS_CHERRYVIEW(dev_priv)) &&
			intel_dp_is_edp(intel_dp) &&
			port != PORT_B && port != PORT_C))
7891 7892
		return false;

7893 7894 7895 7896
	drm_dbg_kms(&dev_priv->drm,
		    "Adding %s connector on [ENCODER:%d:%s]\n",
		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		    intel_encoder->base.base.id, intel_encoder->base.name);
7897

7898
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7899 7900
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7901
	if (!HAS_GMCH(dev_priv))
7902
		connector->interlace_allowed = true;
7903 7904
	connector->doublescan_allowed = 0;

7905 7906 7907
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

7908
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7909
	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7910

7911
	intel_dp_aux_init(intel_dp);
7912

7913
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7914

7915
	if (HAS_DDI(dev_priv))
7916 7917 7918 7919
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7920
	/* init MST on ports that can support it */
7921 7922
	intel_dp_mst_encoder_init(intel_dig_port,
				  intel_connector->base.base.id);
7923

7924
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7925 7926 7927
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7928
	}
7929

7930
	intel_dp_add_properties(intel_dp, connector);
7931

7932
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7933 7934
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
7935 7936
			drm_dbg_kms(&dev_priv->drm,
				    "HDCP init failed, skipping.\n");
7937
	}
7938

7939 7940 7941 7942
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7943
	if (IS_G45(dev_priv)) {
7944 7945 7946
		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
			       (temp & ~0xf) | 0xd);
7947
	}
7948 7949

	return true;
7950 7951 7952 7953 7954

fail:
	drm_connector_cleanup(connector);

	return false;
7955
}
7956

7957
bool intel_dp_init(struct drm_i915_private *dev_priv,
7958 7959
		   i915_reg_t output_reg,
		   enum port port)
7960 7961 7962 7963 7964 7965
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7966
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7967
	if (!intel_dig_port)
7968
		return false;
7969

7970
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7971 7972
	if (!intel_connector)
		goto err_connector_alloc;
7973 7974 7975 7976

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7977 7978 7979
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7980
		goto err_encoder_init;
7981

7982
	intel_encoder->hotplug = intel_dp_hotplug;
7983
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7984
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7985
	intel_encoder->get_config = intel_dp_get_config;
7986
	intel_encoder->update_pipe = intel_panel_update_backlight;
7987
	intel_encoder->suspend = intel_dp_encoder_suspend;
7988
	if (IS_CHERRYVIEW(dev_priv)) {
7989
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7990 7991
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7992
		intel_encoder->disable = vlv_disable_dp;
7993
		intel_encoder->post_disable = chv_post_disable_dp;
7994
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7995
	} else if (IS_VALLEYVIEW(dev_priv)) {
7996
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7997 7998
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7999
		intel_encoder->disable = vlv_disable_dp;
8000
		intel_encoder->post_disable = vlv_post_disable_dp;
8001
	} else {
8002 8003
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
8004
		intel_encoder->disable = g4x_disable_dp;
8005
		intel_encoder->post_disable = g4x_post_disable_dp;
8006
	}
8007 8008

	intel_dig_port->dp.output_reg = output_reg;
8009
	intel_dig_port->max_lanes = 4;
8010

8011
	intel_encoder->type = INTEL_OUTPUT_DP;
8012
	intel_encoder->power_domain = intel_port_to_power_domain(port);
8013
	if (IS_CHERRYVIEW(dev_priv)) {
8014
		if (port == PORT_D)
V
Ville Syrjälä 已提交
8015
			intel_encoder->pipe_mask = BIT(PIPE_C);
8016
		else
V
Ville Syrjälä 已提交
8017
			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8018
	} else {
8019
		intel_encoder->pipe_mask = ~0;
8020
	}
8021
	intel_encoder->cloneable = 0;
8022
	intel_encoder->port = port;
8023

8024 8025
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

8026 8027 8028
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

8029
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
8030 8031 8032
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

8033
	return true;
S
Sudip Mukherjee 已提交
8034 8035 8036

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
8037
err_encoder_init:
S
Sudip Mukherjee 已提交
8038 8039 8040
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
8041
	return false;
8042
}
8043

8044
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8045
{
8046 8047 8048 8049
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8050

8051 8052
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
8053

8054
		intel_dp = enc_to_intel_dp(encoder);
8055

8056
		if (!intel_dp->can_mst)
8057 8058
			continue;

8059 8060
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8061 8062 8063
	}
}

8064
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8065
{
8066
	struct intel_encoder *encoder;
8067

8068 8069
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8070
		int ret;
8071

8072 8073 8074
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

8075
		intel_dp = enc_to_intel_dp(encoder);
8076 8077

		if (!intel_dp->can_mst)
8078
			continue;
8079

8080 8081
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
						     true);
8082 8083 8084 8085 8086
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
8087 8088
	}
}