intel_dp.c 210.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_debugfs.h"
46
#include "i915_drv.h"
47
#include "intel_atomic.h"
48
#include "intel_audio.h"
49
#include "intel_connector.h"
50
#include "intel_ddi.h"
51
#include "intel_dp.h"
52
#include "intel_dp_link_training.h"
53
#include "intel_dp_mst.h"
54
#include "intel_dpio_phy.h"
55
#include "intel_drv.h"
56
#include "intel_fifo_underrun.h"
57
#include "intel_hdcp.h"
58
#include "intel_hdmi.h"
59
#include "intel_hotplug.h"
60
#include "intel_lspcon.h"
61
#include "intel_lvds.h"
62
#include "intel_panel.h"
63
#include "intel_psr.h"
64
#include "intel_sideband.h"
65
#include "intel_vdsc.h"
66

67
#define DP_DPRX_ESI_LEN 14
68

69 70
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
71 72
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
73 74 75 76 77 78 79 80 81

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

82 83 84 85 86 87
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

88
struct dp_link_dpll {
89
	int clock;
90 91 92
	struct dpll dpll;
};

93
static const struct dp_link_dpll g4x_dpll[] = {
94
	{ 162000,
95
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
96
	{ 270000,
97 98 99 100
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
101
	{ 162000,
102
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
103
	{ 270000,
104 105 106
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

107
static const struct dp_link_dpll vlv_dpll[] = {
108
	{ 162000,
C
Chon Ming Lee 已提交
109
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
110
	{ 270000,
111 112 113
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

114 115 116 117 118 119 120 121 122 123
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
124
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
125
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
126
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
127 128
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
129

130 131 132 133 134 135 136 137
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

138
/**
139
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
140 141 142 143 144
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
145
bool intel_dp_is_edp(struct intel_dp *intel_dp)
146
{
147 148 149
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
150 151
}

152 153
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
154
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
155 156
}

157 158
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
159
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
160
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
161 162
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
163
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
164
				      enum pipe pipe);
165
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
166

167 168 169
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
170
	static const int dp_rates[] = {
171
		162000, 270000, 540000, 810000
172
	};
173
	int i, max_rate;
174

175
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
176

177 178
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
179
			break;
180
		intel_dp->sink_rates[i] = dp_rates[i];
181
	}
182

183
	intel_dp->num_sink_rates = i;
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

208 209
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
210
{
211
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
212 213
}

214 215 216 217 218
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
219
	intel_wakeref_t wakeref;
220 221 222 223 224
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

225
	lane_info = 0;
226 227 228 229
	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
				DP_LANE_ASSIGNMENT_SHIFT(tc_port);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

247 248
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
249 250
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
251 252
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
253
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
254

255
	return min3(source_max, sink_max, fia_max);
256 257
}

258
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
259 260 261 262
{
	return intel_dp->max_link_lane_count;
}

263
int
264
intel_dp_link_required(int pixel_clock, int bpp)
265
{
266 267
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
268 269
}

270
int
271 272
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
273 274 275 276 277 278 279
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
280 281
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

305
static int cnl_max_source_rate(struct intel_dp *intel_dp)
306 307 308 309 310 311 312 313 314
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
315
		return 540000;
316 317 318

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
319
		return 810000;
320

321
	/* For other SKUs, max rate on ports A and D is 5.4G */
322
	if (port == PORT_A || port == PORT_D)
323
		return 540000;
324

325
	return 810000;
326 327
}

328 329 330
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
332 333
	enum port port = dig_port->base.port;

334
	if (intel_port_is_combophy(dev_priv, port) &&
335
	    !IS_ELKHARTLAKE(dev_priv) &&
336
	    !intel_dp_is_edp(intel_dp))
337 338 339 340 341
		return 540000;

	return 810000;
}

342 343
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
344
{
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
361 362
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
363 364
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
365
	const int *source_rates;
366
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
367

368 369 370
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

371
	if (INTEL_GEN(dev_priv) >= 10) {
372
		source_rates = cnl_rates;
373
		size = ARRAY_SIZE(cnl_rates);
374
		if (IS_GEN(dev_priv, 10))
375 376 377
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
378 379 380
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
381
	} else if (IS_GEN9_BC(dev_priv)) {
382
		source_rates = skl_rates;
383
		size = ARRAY_SIZE(skl_rates);
384 385
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
386 387
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
388
	} else {
389 390
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
391 392
	}

393 394 395 396 397
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

398 399 400
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

401 402
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

428 429 430 431 432 433 434 435 436 437 438 439
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

440
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
441
{
442
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
443

444 445 446 447 448 449 450 451
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
452
		intel_dp->common_rates[0] = 162000;
453 454 455 456
		intel_dp->num_common_rates = 1;
	}
}

457
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
458
				       u8 lane_count)
459 460 461 462 463 464
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
465 466
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
467 468
		return false;

469 470
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
471 472 473 474 475
		return false;

	return true;
}

476 477
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
478
						     u8 lane_count)
479 480 481 482 483 484 485 486 487 488 489 490 491
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

492
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
493
					    int link_rate, u8 lane_count)
494
{
495
	int index;
496

497 498 499 500
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
501 502 503 504 505 506 507
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
508 509
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
510
	} else if (lane_count > 1) {
511 512 513 514 515 516 517
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
518
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
519
		intel_dp->max_link_lane_count = lane_count >> 1;
520 521 522 523 524 525 526 527
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

528
static enum drm_mode_status
529 530 531
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
532
	struct intel_dp *intel_dp = intel_attached_dp(connector);
533 534
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
535
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
536 537
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
538
	int max_dotclk;
539 540
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
541

542 543 544
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

545
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
546

547
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
548
		if (mode->hdisplay > fixed_mode->hdisplay)
549 550
			return MODE_PANEL;

551
		if (mode->vdisplay > fixed_mode->vdisplay)
552
			return MODE_PANEL;
553 554

		target_clock = fixed_mode->clock;
555 556
	}

557
	max_link_clock = intel_dp_max_link_rate(intel_dp);
558
	max_lanes = intel_dp_max_lane_count(intel_dp);
559 560 561 562

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

563 564 565 566 567 568 569 570 571 572 573 574
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
575
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
576 577 578 579 580 581 582 583 584 585 586 587 588 589
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
590
		return MODE_CLOCK_HIGH;
591 592 593 594

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

595 596 597
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

598 599 600
	return MODE_OK;
}

601
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
602
{
603 604
	int i;
	u32 v = 0;
605 606 607 608

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
609
		v |= ((u32)src[i]) << ((3 - i) * 8);
610 611 612
	return v;
}

613
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
614 615 616 617 618 619 620 621
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

622
static void
623
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
624
static void
625
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
626
					      bool force_disable_vdd);
627
static void
628
intel_dp_pps_init(struct intel_dp *intel_dp);
629

630 631
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
632
{
633
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
634
	intel_wakeref_t wakeref;
635 636

	/*
637
	 * See intel_power_sequencer_reset() why we need
638 639
	 * a power domain reference here.
	 */
640 641
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
642 643

	mutex_lock(&dev_priv->pps_mutex);
644 645

	return wakeref;
646 647
}

648 649
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
650
{
651
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
652 653

	mutex_unlock(&dev_priv->pps_mutex);
654 655 656 657
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
658 659
}

660 661 662
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

663 664 665
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
666
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
667 668
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
669 670 671
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
672
	u32 DP;
673 674

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
675
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
676
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
677 678 679
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
680
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
681 682 683 684 685 686 687 688 689

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

690
	if (IS_CHERRYVIEW(dev_priv))
691 692 693
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
694

695 696 697 698 699 700
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
701
	if (!pll_enabled) {
702
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
703 704
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

705
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
706 707 708 709 710
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
711
	}
712

713 714 715
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
716
	 * to make this power sequencer lock onto the port.
717 718 719 720 721 722 723 724 725 726
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
727

728
	if (!pll_enabled) {
729
		vlv_force_pll_off(dev_priv, pipe);
730 731 732 733

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
734 735
}

736 737 738 739 740 741 742 743 744
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
745 746
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

768 769 770
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
771
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
772
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
773
	enum pipe pipe;
774

V
Ville Syrjälä 已提交
775
	lockdep_assert_held(&dev_priv->pps_mutex);
776

777
	/* We should never land here with regular DP ports */
778
	WARN_ON(!intel_dp_is_edp(intel_dp));
779

780 781 782
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

783 784 785
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

786
	pipe = vlv_find_free_pps(dev_priv);
787 788 789 790 791

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
792
	if (WARN_ON(pipe == INVALID_PIPE))
793
		pipe = PIPE_A;
794

795
	vlv_steal_power_sequencer(dev_priv, pipe);
796
	intel_dp->pps_pipe = pipe;
797 798 799

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
800
		      port_name(intel_dig_port->base.port));
801 802

	/* init power sequencer on this pipe and port */
803 804
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
805

806 807 808 809 810
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
811 812 813 814

	return intel_dp->pps_pipe;
}

815 816 817
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
818
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
819
	int backlight_controller = dev_priv->vbt.backlight.controller;
820 821 822 823

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
824
	WARN_ON(!intel_dp_is_edp(intel_dp));
825 826

	if (!intel_dp->pps_reset)
827
		return backlight_controller;
828 829 830 831 832 833 834

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
835
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
836

837
	return backlight_controller;
838 839
}

840 841 842 843 844 845
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
846
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
847 848 849 850 851
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
852
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
853 854 855 856 857 858 859
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
860

861
static enum pipe
862 863 864
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
865 866
{
	enum pipe pipe;
867 868

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
869
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
870
			PANEL_PORT_SELECT_MASK;
871 872 873 874

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

875 876 877
		if (!pipe_check(dev_priv, pipe))
			continue;

878
		return pipe;
879 880
	}

881 882 883 884 885 886
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
887
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
888
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
889
	enum port port = intel_dig_port->base.port;
890 891 892 893

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
894 895 896 897 898 899 900 901 902 903 904
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
905 906 907 908 909 910

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
911 912
	}

913 914 915
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

916 917
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
918 919
}

920
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
921 922 923
{
	struct intel_encoder *encoder;

924
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
925
		    !IS_GEN9_LP(dev_priv)))
926 927 928 929 930 931 932 933 934 935 936 937
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

938 939
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
940

941 942 943 944 945
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

946
		if (IS_GEN9_LP(dev_priv))
947 948 949
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
950
	}
951 952
}

953 954 955 956 957 958 959 960
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

961
static void intel_pps_get_registers(struct intel_dp *intel_dp,
962 963
				    struct pps_registers *regs)
{
964
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
965 966
	int pps_idx = 0;

967 968
	memset(regs, 0, sizeof(*regs));

969
	if (IS_GEN9_LP(dev_priv))
970 971 972
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
973

974 975 976 977
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
978 979

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
980
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
981 982
		regs->pp_div = INVALID_MMIO_REG;
	else
983
		regs->pp_div = PP_DIVISOR(pps_idx);
984 985
}

986 987
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
988
{
989
	struct pps_registers regs;
990

991
	intel_pps_get_registers(intel_dp, &regs);
992 993

	return regs.pp_ctrl;
994 995
}

996 997
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
998
{
999
	struct pps_registers regs;
1000

1001
	intel_pps_get_registers(intel_dp, &regs);
1002 1003

	return regs.pp_stat;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1013
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1014
	intel_wakeref_t wakeref;
1015

1016
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1017 1018
		return 0;

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1032
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1033 1034
			msleep(intel_dp->panel_power_cycle_delay);
		}
1035 1036 1037 1038 1039
	}

	return 0;
}

1040
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1041
{
1042
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1043

V
Ville Syrjälä 已提交
1044 1045
	lockdep_assert_held(&dev_priv->pps_mutex);

1046
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1047 1048 1049
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1050
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1051 1052
}

1053
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1054
{
1055
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1056

V
Ville Syrjälä 已提交
1057 1058
	lockdep_assert_held(&dev_priv->pps_mutex);

1059
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1060 1061 1062
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1063
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1064 1065
}

1066 1067 1068
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1069
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1070

1071
	if (!intel_dp_is_edp(intel_dp))
1072
		return;
1073

1074
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1075 1076
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1077 1078
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1079 1080 1081
	}
}

1082
static u32
1083
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1084
{
1085
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1086
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1087
	u32 status;
1088 1089
	bool done;

1090 1091
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1092
				  msecs_to_jiffies_timeout(10));
1093 1094 1095 1096

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1097
	if (!done)
1098
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1099 1100 1101 1102 1103
#undef C

	return status;
}

1104
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1105
{
1106
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1107

1108 1109 1110
	if (index)
		return 0;

1111 1112
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1113
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1114
	 */
1115
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1116 1117
}

1118
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1119
{
1120
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1121
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1122 1123 1124 1125

	if (index)
		return 0;

1126 1127 1128 1129 1130
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1131
	if (dig_port->aux_ch == AUX_CH_A)
1132
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1133 1134
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1135 1136
}

1137
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1138
{
1139
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1140
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1141

1142
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1143
		/* Workaround for non-ULT HSW */
1144 1145 1146 1147 1148
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1149
	}
1150 1151

	return ilk_get_aux_clock_divider(intel_dp, index);
1152 1153
}

1154
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1164 1165 1166
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1167 1168
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1169 1170
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1171
	u32 precharge, timeout;
1172

1173
	if (IS_GEN(dev_priv, 6))
1174 1175 1176 1177
		precharge = 3;
	else
		precharge = 5;

1178
	if (IS_BROADWELL(dev_priv))
1179 1180 1181 1182 1183
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1184
	       DP_AUX_CH_CTL_DONE |
1185
	       DP_AUX_CH_CTL_INTERRUPT |
1186
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1187
	       timeout |
1188
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1189 1190
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1191
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1192 1193
}

1194 1195 1196
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1197
{
1198
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1199
	u32 ret;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1215 1216
}

1217
static int
1218
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1219 1220
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1221
		  u32 aux_send_ctl_flags)
1222 1223
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1224
	struct drm_i915_private *i915 =
1225
			to_i915(intel_dig_port->base.base.dev);
1226
	struct intel_uncore *uncore = &i915->uncore;
1227
	i915_reg_t ch_ctl, ch_data[5];
1228
	u32 aux_clock_divider;
1229 1230 1231 1232
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1233
	int i, ret, recv_bytes;
1234
	int try, clock = 0;
1235
	u32 status;
1236 1237
	bool vdd;

1238 1239 1240 1241
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1242
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1243
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1244

1245 1246 1247 1248 1249 1250
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1251
	vdd = edp_panel_vdd_on(intel_dp);
1252 1253 1254 1255 1256

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1257
	pm_qos_update_request(&i915->pm_qos, 0);
1258 1259

	intel_dp_check_edp(intel_dp);
1260

1261 1262
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1263
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1264 1265 1266 1267
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1268 1269
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1270 1271

	if (try == 3) {
1272
		static u32 last_status = -1;
1273
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1274 1275 1276 1277 1278 1279 1280

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1281 1282
		ret = -EBUSY;
		goto out;
1283 1284
	}

1285 1286 1287 1288 1289 1290
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1291
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1292 1293 1294 1295 1296
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1297

1298 1299 1300 1301
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1302 1303 1304 1305
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1306 1307

			/* Send the command and wait for it to complete */
1308
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1309

1310
			status = intel_dp_aux_wait_done(intel_dp);
1311 1312

			/* Clear done status and any errors */
1313 1314 1315 1316 1317 1318
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1319

1320 1321 1322 1323 1324
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1325 1326 1327
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1328 1329
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1330
				continue;
1331
			}
1332
			if (status & DP_AUX_CH_CTL_DONE)
1333
				goto done;
1334
		}
1335 1336 1337
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1338
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1339 1340
		ret = -EBUSY;
		goto out;
1341 1342
	}

1343
done:
1344 1345 1346
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1347
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1348
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1349 1350
		ret = -EIO;
		goto out;
1351
	}
1352 1353 1354

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1355
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1356
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1357 1358
		ret = -ETIMEDOUT;
		goto out;
1359 1360 1361 1362 1363
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1377 1378
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1379

1380
	for (i = 0; i < recv_bytes; i += 4)
1381
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1382
				    recv + i, recv_bytes - i);
1383

1384 1385
	ret = recv_bytes;
out:
1386
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1387

1388 1389 1390
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1391
	pps_unlock(intel_dp, pps_wakeref);
1392
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1393

1394
	return ret;
1395 1396
}

1397 1398
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1410 1411
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1412
{
1413
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1414
	u8 txbuf[20], rxbuf[20];
1415
	size_t txsize, rxsize;
1416 1417
	int ret;

1418
	intel_dp_aux_header(txbuf, msg);
1419

1420 1421 1422
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1423
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1424
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1425
		rxsize = 2; /* 0 or 1 data bytes */
1426

1427 1428
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1429

1430 1431
		WARN_ON(!msg->buffer != !msg->size);

1432 1433
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1434

1435
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1436
					rxbuf, rxsize, 0);
1437 1438
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1439

1440 1441 1442 1443 1444 1445 1446
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1447 1448
		}
		break;
1449

1450 1451
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1452
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1453
		rxsize = msg->size + 1;
1454

1455 1456
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1457

1458
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1459
					rxbuf, rxsize, 0);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1470
		}
1471 1472 1473 1474 1475
		break;

	default:
		ret = -EINVAL;
		break;
1476
	}
1477

1478
	return ret;
1479 1480
}

1481

1482
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1483
{
1484
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1485 1486
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1487

1488 1489 1490 1491 1492
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1493
	default:
1494 1495
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1496 1497 1498
	}
}

1499
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1500
{
1501
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1502 1503
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1504

1505 1506 1507 1508 1509
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1510
	default:
1511 1512
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1513 1514 1515
	}
}

1516
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1517
{
1518
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1519 1520
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1521

1522 1523 1524 1525 1526 1527 1528
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1529
	default:
1530 1531
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1532 1533 1534
	}
}

1535
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1536
{
1537
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1538 1539
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1540

1541 1542 1543 1544 1545 1546 1547
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1548
	default:
1549 1550
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1551 1552 1553
	}
}

1554
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1555
{
1556
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1557 1558
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1559

1560 1561 1562 1563 1564
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1565
	case AUX_CH_E:
1566 1567
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1568
	default:
1569 1570
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1571 1572 1573
	}
}

1574
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1575
{
1576
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1577 1578
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1579

1580 1581 1582 1583 1584
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1585
	case AUX_CH_E:
1586 1587
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1588
	default:
1589 1590
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1591 1592 1593
	}
}

1594 1595 1596 1597 1598 1599 1600 1601
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1602
{
1603
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1604 1605
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1617

1618 1619 1620 1621 1622 1623 1624 1625
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1626

1627 1628 1629 1630
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1631

1632
	drm_dp_aux_init(&intel_dp->aux);
1633

1634
	/* Failure to allocate our preferred name is not critical */
1635 1636
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1637
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1638 1639
}

1640
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1641
{
1642
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1643

1644
	return max_rate >= 540000;
1645 1646
}

1647 1648 1649 1650 1651 1652 1653
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1654 1655
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1656
		   struct intel_crtc_state *pipe_config)
1657
{
1658
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1659 1660
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1661

1662
	if (IS_G4X(dev_priv)) {
1663 1664
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1665
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1666 1667
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1668
	} else if (IS_CHERRYVIEW(dev_priv)) {
1669 1670
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1671
	} else if (IS_VALLEYVIEW(dev_priv)) {
1672 1673
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1674
	}
1675 1676 1677

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1678
			if (pipe_config->port_clock == divisor[i].clock) {
1679 1680 1681 1682 1683
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1684 1685 1686
	}
}

1687 1688 1689 1690 1691 1692 1693 1694
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1695
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1710 1711
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1712 1713
	DRM_DEBUG_KMS("source rates: %s\n", str);

1714 1715
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1716 1717
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1718 1719
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1720
	DRM_DEBUG_KMS("common rates: %s\n", str);
1721 1722
}

1723 1724 1725 1726 1727
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1728
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1729 1730 1731
	if (WARN_ON(len <= 0))
		return 162000;

1732
	return intel_dp->common_rates[len - 1];
1733 1734
}

1735 1736
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1737 1738
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1739 1740 1741 1742 1743

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1744 1745
}

1746
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1747
			   u8 *link_bw, u8 *rate_select)
1748
{
1749 1750
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1751 1752 1753 1754 1755 1756 1757 1758 1759
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1760
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1761 1762 1763 1764
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1780 1781 1782 1783 1784 1785 1786 1787

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1788 1789 1790
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1791 1792 1793 1794
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1795 1796
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1797
{
1798
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1799
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1800 1801 1802 1803 1804 1805 1806 1807
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1818 1819 1820
	return bpp;
}

1821
/* Adjust link config limits based on compliance test requests. */
1822
void
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

1870
/* Optimize link config in order: max bpp, min clock, min lanes */
1871
static int
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1897
					return 0;
1898 1899 1900 1901 1902
				}
			}
		}
	}

1903
	return -EINVAL;
1904 1905
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1921 1922 1923 1924
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1925 1926 1927 1928 1929 1930
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1931
	int ret;
1932

1933 1934 1935
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

1936
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1937
		return -EINVAL;
1938 1939 1940 1941 1942 1943 1944

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1945
		return -EINVAL;
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1979
			return -EINVAL;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1996
			return -EINVAL;
1997 1998
		}
	}
1999 2000 2001

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
2002 2003 2004 2005
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
2006
		return ret;
2007
	}
2008

2009 2010 2011 2012 2013 2014 2015
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

2016
	return 0;
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2027
static int
2028
intel_dp_compute_link_config(struct intel_encoder *encoder,
2029 2030
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2031
{
2032
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2033
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2034
	struct link_config_limits limits;
2035
	int common_len;
2036
	int ret;
2037

2038
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2039
						    intel_dp->max_link_rate);
2040 2041

	/* No common link rates between source and sink */
2042
	WARN_ON(common_len <= 0);
2043

2044 2045 2046 2047 2048 2049
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2050
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2051
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2052

2053
	if (intel_dp_is_edp(intel_dp)) {
2054 2055
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2056 2057 2058 2059
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2060
		 */
2061 2062
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2063
	}
2064

2065 2066
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2067 2068 2069 2070 2071 2072
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2073 2074 2075 2076 2077
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2078 2079

	/* enable compression if the mode doesn't fit available BW */
2080
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2081 2082 2083 2084 2085
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2086
	}
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2110
	return 0;
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2166
int
2167 2168 2169 2170 2171 2172 2173
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2174
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2175 2176 2177 2178 2179
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2180 2181
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2182
	int ret = 0, output_bpp;
2183 2184 2185 2186

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2187
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2188 2189
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2190 2191 2192 2193 2194 2195
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2206 2207
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2208 2209 2210 2211 2212 2213 2214

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2215
		if (HAS_GMCH(dev_priv))
2216 2217 2218 2219 2220 2221 2222
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2223
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2224
		return -EINVAL;
2225

R
Rodrigo Vivi 已提交
2226
	if (HAS_GMCH(dev_priv) &&
2227
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2228
		return -EINVAL;
2229 2230

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2231
		return -EINVAL;
2232

2233 2234 2235
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2236

2237 2238
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2239

2240 2241
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2242
	else
2243
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2244 2245 2246 2247 2248 2249 2250

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
			       constant_n);
2251

2252
	if (intel_connector->panel.downclock_mode != NULL &&
2253
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2254
			pipe_config->has_drrs = true;
2255
			intel_link_compute_m_n(output_bpp,
2256 2257 2258 2259
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2260
					       constant_n);
2261 2262
	}

2263
	if (!HAS_DDI(dev_priv))
2264
		intel_dp_set_clock(encoder, pipe_config);
2265

2266 2267
	intel_psr_compute_config(intel_dp, pipe_config);

2268
	return 0;
2269 2270
}

2271
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2272
			      int link_rate, u8 lane_count,
2273
			      bool link_mst)
2274
{
2275
	intel_dp->link_trained = false;
2276 2277 2278
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2279 2280
}

2281
static void intel_dp_prepare(struct intel_encoder *encoder,
2282
			     const struct intel_crtc_state *pipe_config)
2283
{
2284
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2285
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2286
	enum port port = encoder->port;
2287
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2288
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2289

2290 2291 2292 2293
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2294

2295
	/*
K
Keith Packard 已提交
2296
	 * There are four kinds of DP registers:
2297 2298
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2299 2300
	 * 	SNB CPU
	 *	IVB CPU
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2311

2312 2313 2314 2315
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2316

2317 2318
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2319
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2320

2321
	/* Split out the IBX/CPU vs CPT settings */
2322

2323
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2324 2325 2326 2327 2328 2329
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2330
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2331 2332
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2333
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2334
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2335 2336
		u32 trans_dp;

2337
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2338 2339 2340 2341 2342 2343 2344

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2345
	} else {
2346
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2347
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2348 2349 2350 2351 2352 2353 2354

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2355
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2356 2357
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2358
		if (IS_CHERRYVIEW(dev_priv))
2359 2360 2361
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2362
	}
2363 2364
}

2365 2366
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2367

2368 2369
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2370

2371 2372
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2373

2374
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2375

2376
static void wait_panel_status(struct intel_dp *intel_dp,
2377 2378
				       u32 mask,
				       u32 value)
2379
{
2380
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2381
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2382

V
Ville Syrjälä 已提交
2383 2384
	lockdep_assert_held(&dev_priv->pps_mutex);

2385
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2386

2387 2388
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2389

2390
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2391 2392 2393
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2394

2395
	if (intel_wait_for_register(&dev_priv->uncore,
2396 2397
				    pp_stat_reg, mask, value,
				    5000))
2398
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2399 2400
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2401 2402

	DRM_DEBUG_KMS("Wait complete\n");
2403
}
2404

2405
static void wait_panel_on(struct intel_dp *intel_dp)
2406 2407
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2408
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2409 2410
}

2411
static void wait_panel_off(struct intel_dp *intel_dp)
2412 2413
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2414
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2415 2416
}

2417
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2418
{
2419 2420 2421
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2422
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2423

2424 2425 2426 2427 2428
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2429 2430
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2431 2432 2433
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2434

2435
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2436 2437
}

2438
static void wait_backlight_on(struct intel_dp *intel_dp)
2439 2440 2441 2442 2443
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2444
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2445 2446 2447 2448
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2449

2450 2451 2452 2453
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2454
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2455
{
2456
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2457
	u32 control;
2458

V
Ville Syrjälä 已提交
2459 2460
	lockdep_assert_held(&dev_priv->pps_mutex);

2461
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2462 2463
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2464 2465 2466
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2467
	return control;
2468 2469
}

2470 2471 2472 2473 2474
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2475
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2476
{
2477
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2478
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2479
	u32 pp;
2480
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2481
	bool need_to_disable = !intel_dp->want_panel_vdd;
2482

V
Ville Syrjälä 已提交
2483 2484
	lockdep_assert_held(&dev_priv->pps_mutex);

2485
	if (!intel_dp_is_edp(intel_dp))
2486
		return false;
2487

2488
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2489
	intel_dp->want_panel_vdd = true;
2490

2491
	if (edp_have_panel_vdd(intel_dp))
2492
		return need_to_disable;
2493

2494 2495
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2496

V
Ville Syrjälä 已提交
2497
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2498
		      port_name(intel_dig_port->base.port));
2499

2500 2501
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2502

2503
	pp = ironlake_get_pp_control(intel_dp);
2504
	pp |= EDP_FORCE_VDD;
2505

2506 2507
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2508 2509 2510 2511 2512

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2513 2514 2515
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2516
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2517
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2518
			      port_name(intel_dig_port->base.port));
2519 2520
		msleep(intel_dp->panel_power_up_delay);
	}
2521 2522 2523 2524

	return need_to_disable;
}

2525 2526 2527 2528 2529 2530 2531
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2532
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2533
{
2534
	intel_wakeref_t wakeref;
2535
	bool vdd;
2536

2537
	if (!intel_dp_is_edp(intel_dp))
2538 2539
		return;

2540 2541 2542
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
R
Rob Clark 已提交
2543
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2544
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2545 2546
}

2547
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2548
{
2549
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2550 2551
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2552
	u32 pp;
2553
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2554

V
Ville Syrjälä 已提交
2555
	lockdep_assert_held(&dev_priv->pps_mutex);
2556

2557
	WARN_ON(intel_dp->want_panel_vdd);
2558

2559
	if (!edp_have_panel_vdd(intel_dp))
2560
		return;
2561

V
Ville Syrjälä 已提交
2562
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2563
		      port_name(intel_dig_port->base.port));
2564

2565 2566
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2567

2568 2569
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2570

2571 2572
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2573

2574 2575 2576
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2577

2578
	if ((pp & PANEL_POWER_ON) == 0)
2579
		intel_dp->panel_power_off_time = ktime_get_boottime();
2580

2581 2582
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2583
}
2584

2585
static void edp_panel_vdd_work(struct work_struct *__work)
2586
{
2587 2588 2589 2590
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2591

2592 2593 2594 2595
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2611 2612 2613 2614 2615
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2616
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2617
{
2618
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2619 2620 2621

	lockdep_assert_held(&dev_priv->pps_mutex);

2622
	if (!intel_dp_is_edp(intel_dp))
2623
		return;
2624

R
Rob Clark 已提交
2625
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2626
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2627

2628 2629
	intel_dp->want_panel_vdd = false;

2630
	if (sync)
2631
		edp_panel_vdd_off_sync(intel_dp);
2632 2633
	else
		edp_panel_vdd_schedule_off(intel_dp);
2634 2635
}

2636
static void edp_panel_on(struct intel_dp *intel_dp)
2637
{
2638
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2639
	u32 pp;
2640
	i915_reg_t pp_ctrl_reg;
2641

2642 2643
	lockdep_assert_held(&dev_priv->pps_mutex);

2644
	if (!intel_dp_is_edp(intel_dp))
2645
		return;
2646

V
Ville Syrjälä 已提交
2647
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2648
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2649

2650 2651
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2652
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2653
		return;
2654

2655
	wait_panel_power_cycle(intel_dp);
2656

2657
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2658
	pp = ironlake_get_pp_control(intel_dp);
2659
	if (IS_GEN(dev_priv, 5)) {
2660 2661
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2662 2663
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2664
	}
2665

2666
	pp |= PANEL_POWER_ON;
2667
	if (!IS_GEN(dev_priv, 5))
2668 2669
		pp |= PANEL_POWER_RESET;

2670 2671
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2672

2673
	wait_panel_on(intel_dp);
2674
	intel_dp->last_power_on = jiffies;
2675

2676
	if (IS_GEN(dev_priv, 5)) {
2677
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2678 2679
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2680
	}
2681
}
V
Ville Syrjälä 已提交
2682

2683 2684
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2685 2686
	intel_wakeref_t wakeref;

2687
	if (!intel_dp_is_edp(intel_dp))
2688 2689
		return;

2690 2691
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2692 2693
}

2694 2695

static void edp_panel_off(struct intel_dp *intel_dp)
2696
{
2697
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2698
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2699
	u32 pp;
2700
	i915_reg_t pp_ctrl_reg;
2701

2702 2703
	lockdep_assert_held(&dev_priv->pps_mutex);

2704
	if (!intel_dp_is_edp(intel_dp))
2705
		return;
2706

V
Ville Syrjälä 已提交
2707
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2708
		      port_name(dig_port->base.port));
2709

V
Ville Syrjälä 已提交
2710
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2711
	     port_name(dig_port->base.port));
2712

2713
	pp = ironlake_get_pp_control(intel_dp);
2714 2715
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2716
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2717
		EDP_BLC_ENABLE);
2718

2719
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2720

2721 2722
	intel_dp->want_panel_vdd = false;

2723 2724
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2725

2726
	wait_panel_off(intel_dp);
2727
	intel_dp->panel_power_off_time = ktime_get_boottime();
2728 2729

	/* We got a reference when we enabled the VDD. */
2730
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2731
}
V
Ville Syrjälä 已提交
2732

2733 2734
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2735 2736
	intel_wakeref_t wakeref;

2737
	if (!intel_dp_is_edp(intel_dp))
2738
		return;
V
Ville Syrjälä 已提交
2739

2740 2741
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2742 2743
}

2744 2745
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2746
{
2747
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2748
	intel_wakeref_t wakeref;
2749

2750 2751 2752 2753 2754 2755
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2756
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2757

2758 2759 2760
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2761

2762 2763
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2764

2765 2766 2767
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2768 2769
}

2770
/* Enable backlight PWM and backlight PP control. */
2771 2772
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2773
{
2774 2775
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2776
	if (!intel_dp_is_edp(intel_dp))
2777 2778 2779 2780
		return;

	DRM_DEBUG_KMS("\n");

2781
	intel_panel_enable_backlight(crtc_state, conn_state);
2782 2783 2784 2785 2786
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2787
{
2788
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2789
	intel_wakeref_t wakeref;
2790

2791
	if (!intel_dp_is_edp(intel_dp))
2792 2793
		return;

2794 2795 2796
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2797

2798 2799
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2800

2801 2802 2803
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2804 2805

	intel_dp->last_backlight_off = jiffies;
2806
	edp_wait_backlight_off(intel_dp);
2807
}
2808

2809
/* Disable backlight PP control and backlight PWM. */
2810
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2811
{
2812 2813
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2814
	if (!intel_dp_is_edp(intel_dp))
2815 2816 2817
		return;

	DRM_DEBUG_KMS("\n");
2818

2819
	_intel_edp_backlight_off(intel_dp);
2820
	intel_panel_disable_backlight(old_conn_state);
2821
}
2822

2823 2824 2825 2826 2827 2828 2829 2830
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2831
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2832 2833
	bool is_enabled;

2834 2835 2836
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2837 2838 2839
	if (is_enabled == enable)
		return;

2840 2841
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2842 2843 2844 2845 2846 2847 2848

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2849 2850 2851 2852 2853 2854 2855 2856
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2857
			port_name(dig_port->base.port),
2858
			onoff(state), onoff(cur_state));
2859 2860 2861 2862 2863 2864 2865 2866 2867
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2868
			onoff(state), onoff(cur_state));
2869 2870 2871 2872
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2873
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2874
				const struct intel_crtc_state *pipe_config)
2875
{
2876
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2877
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2878

2879 2880 2881
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2882

2883
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2884
		      pipe_config->port_clock);
2885 2886 2887

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2888
	if (pipe_config->port_clock == 162000)
2889 2890 2891 2892 2893 2894 2895 2896
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2897 2898 2899 2900 2901 2902
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2903
	if (IS_GEN(dev_priv, 5))
2904
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2905

2906
	intel_dp->DP |= DP_PLL_ENABLE;
2907

2908
	I915_WRITE(DP_A, intel_dp->DP);
2909 2910
	POSTING_READ(DP_A);
	udelay(200);
2911 2912
}

2913 2914
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2915
{
2916
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2917
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2918

2919 2920 2921
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2922

2923 2924
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2925
	intel_dp->DP &= ~DP_PLL_ENABLE;
2926

2927
	I915_WRITE(DP_A, intel_dp->DP);
2928
	POSTING_READ(DP_A);
2929 2930 2931
	udelay(200);
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2963
/* If the sink supports it, try to set the power state appropriately */
2964
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2965 2966 2967 2968 2969 2970 2971 2972
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2973 2974 2975
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2976 2977
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2978
	} else {
2979 2980
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2981 2982 2983 2984 2985
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2986 2987
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2988 2989 2990 2991
			if (ret == 1)
				break;
			msleep(1);
		}
2992 2993 2994

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2995
	}
2996 2997 2998 2999

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3000 3001
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3048 3049
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3050
{
3051
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3052
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3053
	intel_wakeref_t wakeref;
3054
	bool ret;
3055

3056 3057 3058
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3059 3060
		return false;

3061 3062
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3063

3064
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3065 3066

	return ret;
3067
}
3068

3069
static void intel_dp_get_config(struct intel_encoder *encoder,
3070
				struct intel_crtc_state *pipe_config)
3071
{
3072
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3073 3074
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3075
	enum port port = encoder->port;
3076
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3077

3078 3079 3080 3081
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3082

3083
	tmp = I915_READ(intel_dp->output_reg);
3084 3085

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3086

3087
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3088 3089 3090
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3091 3092 3093
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3094

3095
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3096 3097 3098 3099
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3100
		if (tmp & DP_SYNC_HS_HIGH)
3101 3102 3103
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3104

3105
		if (tmp & DP_SYNC_VS_HIGH)
3106 3107 3108 3109
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3110

3111
	pipe_config->base.adjusted_mode.flags |= flags;
3112

3113
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3114 3115
		pipe_config->limited_color_range = true;

3116 3117 3118
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3119 3120
	intel_dp_get_m_n(crtc, pipe_config);

3121
	if (port == PORT_A) {
3122
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3123 3124 3125 3126
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3127

3128 3129 3130
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3131

3132
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3133
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3148 3149
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3150
	}
3151 3152
}

3153
static void intel_disable_dp(struct intel_encoder *encoder,
3154 3155
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3156
{
3157
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3158

3159 3160
	intel_dp->link_trained = false;

3161
	if (old_crtc_state->has_audio)
3162 3163
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3164 3165 3166

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3167
	intel_edp_panel_vdd_on(intel_dp);
3168
	intel_edp_backlight_off(old_conn_state);
3169
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3170
	intel_edp_panel_off(intel_dp);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3185 3186
}

3187
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3188 3189
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3190
{
3191
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3192
	enum port port = encoder->port;
3193

3194 3195 3196 3197 3198 3199
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3200
	intel_dp_link_down(encoder, old_crtc_state);
3201 3202

	/* Only ilk+ has port A */
3203
	if (port == PORT_A)
3204
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3205 3206
}

3207
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3208 3209
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3210
{
3211
	intel_dp_link_down(encoder, old_crtc_state);
3212 3213
}

3214
static void chv_post_disable_dp(struct intel_encoder *encoder,
3215 3216
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3217
{
3218
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3219

3220
	intel_dp_link_down(encoder, old_crtc_state);
3221

3222
	vlv_dpio_get(dev_priv);
3223 3224

	/* Assert data lane reset */
3225
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3226

3227
	vlv_dpio_put(dev_priv);
3228 3229
}

3230 3231
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3232 3233
			 u32 *DP,
			 u8 dp_train_pat)
3234
{
3235
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3236
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3237
	enum port port = intel_dig_port->base.port;
3238
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3239

3240
	if (dp_train_pat & train_pat_mask)
3241
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3242
			      dp_train_pat & train_pat_mask);
3243

3244
	if (HAS_DDI(dev_priv)) {
3245
		u32 temp = I915_READ(DP_TP_CTL(port));
3246 3247 3248 3249 3250 3251 3252

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3253
		switch (dp_train_pat & train_pat_mask) {
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3267 3268 3269
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3270 3271 3272
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3273
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3274
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3288
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3289 3290 3291 3292 3293
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3294
		*DP &= ~DP_LINK_TRAIN_MASK;
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3307 3308
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3309 3310 3311 3312 3313
			break;
		}
	}
}

3314
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3315
				 const struct intel_crtc_state *old_crtc_state)
3316
{
3317
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3318 3319 3320

	/* enable with pattern 1 (as per spec) */

3321
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3322 3323 3324 3325 3326 3327 3328 3329

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3330
	if (old_crtc_state->has_audio)
3331
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3332 3333 3334

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3335 3336
}

3337
static void intel_enable_dp(struct intel_encoder *encoder,
3338 3339
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3340
{
3341
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3342
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3343
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3344
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3345
	enum pipe pipe = crtc->pipe;
3346
	intel_wakeref_t wakeref;
3347

3348 3349
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3350

3351 3352 3353
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3354

3355
		intel_dp_enable_port(intel_dp, pipe_config);
3356

3357 3358 3359 3360
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3361

3362
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3363 3364
		unsigned int lane_mask = 0x0;

3365
		if (IS_CHERRYVIEW(dev_priv))
3366
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3367

3368 3369
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3370
	}
3371

3372
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3373
	intel_dp_start_link_train(intel_dp);
3374
	intel_dp_stop_link_train(intel_dp);
3375

3376
	if (pipe_config->has_audio) {
3377
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3378
				 pipe_name(pipe));
3379
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3380
	}
3381
}
3382

3383
static void g4x_enable_dp(struct intel_encoder *encoder,
3384 3385
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3386
{
3387
	intel_enable_dp(encoder, pipe_config, conn_state);
3388
	intel_edp_backlight_on(pipe_config, conn_state);
3389
}
3390

3391
static void vlv_enable_dp(struct intel_encoder *encoder,
3392 3393
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3394
{
3395
	intel_edp_backlight_on(pipe_config, conn_state);
3396 3397
}

3398
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3399 3400
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3401 3402
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3403
	enum port port = encoder->port;
3404

3405
	intel_dp_prepare(encoder, pipe_config);
3406

3407
	/* Only ilk+ has port A */
3408
	if (port == PORT_A)
3409
		ironlake_edp_pll_on(intel_dp, pipe_config);
3410 3411
}

3412 3413 3414
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3415
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3416
	enum pipe pipe = intel_dp->pps_pipe;
3417
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3418

3419 3420
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3421 3422 3423
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3424 3425 3426
	edp_panel_vdd_off_sync(intel_dp);

	/*
3427
	 * VLV seems to get confused when multiple power sequencers
3428 3429 3430
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3431
	 * selected in multiple power sequencers, but let's clear the
3432 3433 3434 3435
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3436
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3437 3438 3439 3440 3441 3442
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3443
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3444 3445 3446 3447 3448 3449
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3450 3451 3452
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3453

3454 3455 3456 3457
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3458 3459 3460 3461
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3462
			      pipe_name(pipe), port_name(port));
3463 3464

		/* make sure vdd is off before we steal it */
3465
		vlv_detach_power_sequencer(intel_dp);
3466 3467 3468
	}
}

3469 3470
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3471
{
3472
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3473 3474
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3475 3476 3477

	lockdep_assert_held(&dev_priv->pps_mutex);

3478
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3479

3480 3481 3482 3483 3484 3485 3486
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3487
		vlv_detach_power_sequencer(intel_dp);
3488
	}
3489 3490 3491 3492 3493

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3494
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3495

3496 3497
	intel_dp->active_pipe = crtc->pipe;

3498
	if (!intel_dp_is_edp(intel_dp))
3499 3500
		return;

3501 3502 3503 3504
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3505
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3506 3507

	/* init power sequencer on this pipe and port */
3508 3509
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3510 3511
}

3512
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3513 3514
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3515
{
3516
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3517

3518
	intel_enable_dp(encoder, pipe_config, conn_state);
3519 3520
}

3521
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3522 3523
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3524
{
3525
	intel_dp_prepare(encoder, pipe_config);
3526

3527
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3528 3529
}

3530
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3531 3532
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3533
{
3534
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3535

3536
	intel_enable_dp(encoder, pipe_config, conn_state);
3537 3538

	/* Second common lane will stay alive on its own now */
3539
	chv_phy_release_cl2_override(encoder);
3540 3541
}

3542
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3543 3544
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3545
{
3546
	intel_dp_prepare(encoder, pipe_config);
3547

3548
	chv_phy_pre_pll_enable(encoder, pipe_config);
3549 3550
}

3551
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3552 3553
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3554
{
3555
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3556 3557
}

3558 3559 3560 3561
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3562
bool
3563
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3564
{
3565 3566
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3567 3568
}

3569
/* These are source-specific values. */
3570
u8
K
Keith Packard 已提交
3571
intel_dp_voltage_max(struct intel_dp *intel_dp)
3572
{
3573
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3574 3575
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3576

3577
	if (HAS_DDI(dev_priv))
3578
		return intel_ddi_dp_voltage_max(encoder);
3579
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3580
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3581
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3582
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3583
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3584
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3585
	else
3586
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3587 3588
}

3589 3590
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3591
{
3592
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3593 3594
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3595

3596 3597
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3598
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3599
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3600 3601 3602 3603 3604 3605 3606
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3607
		default:
3608
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3609
		}
3610
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3611
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3612 3613 3614 3615 3616
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3617
		default:
3618
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3619 3620 3621
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3622 3623 3624 3625 3626 3627 3628
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3629
		default:
3630
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3631
		}
3632 3633 3634
	}
}

3635
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3636
{
3637
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3638 3639
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3640
	u8 train_set = intel_dp->train_set[0];
3641 3642

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3643
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3644 3645
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3646
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3647 3648 3649
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3650
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3651 3652 3653
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3654
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3655 3656 3657
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3658
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3659 3660 3661 3662 3663 3664 3665
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3666
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3667 3668
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3669
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3670 3671 3672
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3673
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3674 3675 3676
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3677
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3678 3679 3680 3681 3682 3683 3684
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3685
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3686 3687
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3688
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3689 3690 3691
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3692
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3693 3694 3695 3696 3697 3698 3699
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3700
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3701 3702
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3703
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3715 3716
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3717 3718 3719 3720

	return 0;
}

3721
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3722
{
3723 3724 3725
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3726
	u8 train_set = intel_dp->train_set[0];
3727 3728

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3729
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3730
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3731
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3732 3733 3734
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3735
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3736 3737 3738
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3739
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3740 3741 3742
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3743
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3744 3745
			deemph_reg_value = 128;
			margin_reg_value = 154;
3746
			uniq_trans_scale = true;
3747 3748 3749 3750 3751
			break;
		default:
			return 0;
		}
		break;
3752
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3753
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3754
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3755 3756 3757
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3758
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3759 3760 3761
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3762
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3763 3764 3765 3766 3767 3768 3769
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3770
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3771
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3772
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3773 3774 3775
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3776
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3777 3778 3779 3780 3781 3782 3783
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3784
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3785
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3786
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3798 3799
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3800 3801 3802 3803

	return 0;
}

3804 3805
static u32
g4x_signal_levels(u8 train_set)
3806
{
3807
	u32 signal_levels = 0;
3808

3809
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3810
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3811 3812 3813
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3814
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3815 3816
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3817
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3818 3819
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3820
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3821 3822 3823
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3824
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3825
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3826 3827 3828
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3829
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3830 3831
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3832
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3833 3834
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3835
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3836 3837 3838 3839 3840 3841
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3842
/* SNB CPU eDP voltage swing and pre-emphasis control */
3843 3844
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3845
{
3846 3847 3848
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3849 3850
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3851
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3852
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3853
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3854 3855
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3856
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3857 3858
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3859
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3860 3861
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3862
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3863
	default:
3864 3865 3866
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3867 3868 3869
	}
}

3870
/* IVB CPU eDP voltage swing and pre-emphasis control */
3871 3872
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
3873 3874 3875 3876
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3877
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3878
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3879
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3880
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3881
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3882 3883
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3884
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3885
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3886
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3887 3888
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3889
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3890
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3891
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3892 3893 3894 3895 3896 3897 3898 3899 3900
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3901
void
3902
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3903
{
3904
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3905
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3906
	enum port port = intel_dig_port->base.port;
3907 3908
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
3909

R
Rodrigo Vivi 已提交
3910
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3911 3912
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3913
		signal_levels = ddi_signal_levels(intel_dp);
3914
		mask = DDI_BUF_EMP_MASK;
3915
	} else if (IS_CHERRYVIEW(dev_priv)) {
3916
		signal_levels = chv_signal_levels(intel_dp);
3917
	} else if (IS_VALLEYVIEW(dev_priv)) {
3918
		signal_levels = vlv_signal_levels(intel_dp);
3919
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3920
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3921
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3922
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3923
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3924 3925
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3926
		signal_levels = g4x_signal_levels(train_set);
3927 3928 3929
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3930 3931 3932 3933 3934 3935 3936 3937
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3938

3939
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3940 3941 3942

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3943 3944
}

3945
void
3946
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3947
				       u8 dp_train_pat)
3948
{
3949
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3950 3951
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3952

3953
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3954

3955
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3956
	POSTING_READ(intel_dp->output_reg);
3957 3958
}

3959
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3960
{
3961
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3962
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3963
	enum port port = intel_dig_port->base.port;
3964
	u32 val;
3965

3966
	if (!HAS_DDI(dev_priv))
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3984
	if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3985 3986 3987
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3988 3989 3990
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3991
static void
3992 3993
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3994
{
3995 3996 3997 3998
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
3999
	u32 DP = intel_dp->DP;
4000

4001
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4002 4003
		return;

4004
	DRM_DEBUG_KMS("\n");
4005

4006
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4007
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4008
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4009
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4010
	} else {
4011
		DP &= ~DP_LINK_TRAIN_MASK;
4012
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4013
	}
4014
	I915_WRITE(intel_dp->output_reg, DP);
4015
	POSTING_READ(intel_dp->output_reg);
4016

4017 4018 4019 4020 4021 4022 4023 4024 4025
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4026
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4027 4028 4029 4030 4031 4032 4033
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4034
		/* always enable with pattern 1 (as per spec) */
4035 4036 4037
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4038 4039 4040 4041
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
4042
		I915_WRITE(intel_dp->output_reg, DP);
4043
		POSTING_READ(intel_dp->output_reg);
4044

4045
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4046 4047
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4048 4049
	}

4050
	msleep(intel_dp->panel_power_down_delay);
4051 4052

	intel_dp->DP = DP;
4053 4054

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4055 4056 4057 4058
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4059
	}
4060 4061
}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4098
bool
4099
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4100
{
4101 4102
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4103
		return false; /* aux transfer failed */
4104

4105 4106
	intel_dp_extended_receiver_capabilities(intel_dp);

4107
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4108

4109 4110
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4111

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4122 4123 4124 4125 4126 4127 4128 4129
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4130 4131 4132
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4145

4146
		/* FEC is supported only on DP 1.4 */
4147 4148 4149 4150
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4151

4152
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4153 4154 4155
	}
}

4156 4157 4158 4159 4160
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4161

4162 4163
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4164

4165
	if (!intel_dp_read_dpcd(intel_dp))
4166 4167
		return false;

4168 4169
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4170

4171 4172 4173
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4174

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4185 4186
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4187
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4188
			      intel_dp->edp_dpcd);
4189

4190 4191 4192 4193 4194 4195
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4196 4197
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4198
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4199 4200
		int i;

4201 4202
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4203

4204 4205
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4206 4207 4208 4209

			if (val == 0)
				break;

4210 4211 4212 4213 4214 4215
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4216
			intel_dp->sink_rates[i] = (val * 200) / 10;
4217
		}
4218
		intel_dp->num_sink_rates = i;
4219
	}
4220

4221 4222 4223 4224
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4225 4226 4227 4228 4229
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4230 4231
	intel_dp_set_common_rates(intel_dp);

4232 4233 4234 4235
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4246
	/* Don't clobber cached eDP rates. */
4247
	if (!intel_dp_is_edp(intel_dp)) {
4248
		intel_dp_set_sink_rates(intel_dp);
4249 4250
		intel_dp_set_common_rates(intel_dp);
	}
4251

4252
	/*
4253 4254
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4255
	 */
4256 4257 4258
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4259

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4281

4282
	if (!drm_dp_is_branch(intel_dp->dpcd))
4283 4284 4285 4286 4287
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4288 4289 4290
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4291 4292 4293
		return false; /* downstream port status fetch failed */

	return true;
4294 4295
}

4296
static bool
4297
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4298
{
4299
	u8 mstm_cap;
4300 4301 4302 4303

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4304
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4305
		return false;
4306

4307
	return mstm_cap & DP_MST_CAP;
4308 4309
}

4310 4311 4312 4313 4314 4315 4316 4317
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4318 4319 4320
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4321 4322 4323 4324 4325 4326 4327
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4328 4329 4330 4331

	if (!intel_dp->can_mst)
		return;

4332 4333
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4334 4335 4336

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4337 4338 4339 4340 4341
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4342 4343 4344
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4345 4346
}

4347
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
4414
	min_slice_count = min_t(u8, min_slice_count,
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
static void
intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

	/*
	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
	 * DB16[3:0] DP 1.4a spec, Table 2-120
	 */
	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
	/* RGB->YCBCR color conversion uses the BT.709 color space. */
	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
		return;

	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
}

4522
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4523
{
4524
	int status = 0;
4525
	int test_link_rate;
4526
	u8 test_lane_count, test_link_bw;
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4547 4548 4549 4550

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4551 4552 4553 4554 4555 4556
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4557 4558
}

4559
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4560
{
4561 4562
	u8 test_pattern;
	u8 test_misc;
4563 4564 4565 4566
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4567 4568
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4590 4591
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4618 4619
}

4620
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4621
{
4622
	u8 test_result = DP_TEST_ACK;
4623 4624 4625 4626
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4627
	    connector->edid_corrupt ||
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4641
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4642
	} else {
4643 4644 4645 4646 4647 4648 4649
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4650 4651
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4652 4653 4654
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4655
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4656 4657 4658
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4659
	intel_dp->compliance.test_active = 1;
4660

4661 4662 4663
	return test_result;
}

4664
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4665
{
4666
	u8 test_result = DP_TEST_NAK;
4667 4668 4669 4670 4671
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4672 4673
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4674
	int status;
4675

4676
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4677 4678 4679 4680 4681
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4682
	switch (request) {
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4700
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4701 4702 4703
		break;
	}

4704 4705 4706
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4707
update_status:
4708
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4709 4710
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4711 4712
}

4713 4714 4715 4716 4717 4718
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4719
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4720 4721 4722
		int ret = 0;
		int retry;
		bool handled;
4723 4724

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4725 4726 4727 4728 4729
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4730
			if (intel_dp->active_mst_links > 0 &&
4731
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4732 4733 4734 4735 4736
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4737
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4753
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4754 4755 4756 4757 4758 4759 4760 4761 4762
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4763 4764
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4765 4766 4767 4768 4769
		}
	}
	return -EINVAL;
}

4770 4771 4772 4773 4774
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4775
	if (!intel_dp->link_trained)
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4787 4788 4789
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4806 4807
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4848 4849 4850

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4851
	if (crtc_state->has_pch_encoder)
4852 4853 4854 4855 4856 4857 4858
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4859
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4860 4861

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4862
	if (crtc_state->has_pch_encoder)
4863 4864
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4865 4866

	return 0;
4867 4868
}

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4883
{
4884 4885 4886
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4887

4888
	changed = intel_encoder_hotplug(encoder, connector);
4889

4890
	drm_modeset_acquire_init(&ctx, 0);
4891

4892 4893
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4894

4895 4896 4897 4898
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4899

4900 4901
		break;
	}
4902

4903 4904 4905
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4906

4907
	return changed;
4908 4909
}

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4926
	if (val & DP_CP_IRQ)
4927
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4928 4929 4930

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4931 4932
}

4933 4934 4935 4936 4937 4938 4939
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4940 4941 4942 4943 4944
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4945
 */
4946
static bool
4947
intel_dp_short_pulse(struct intel_dp *intel_dp)
4948
{
4949
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4950 4951
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4952

4953 4954 4955 4956
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4957
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4958

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4970 4971
	}

4972
	intel_dp_check_service_irq(intel_dp);
4973

4974 4975 4976
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4977 4978 4979
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4980

4981 4982
	intel_psr_short_pulse(intel_dp);

4983 4984 4985
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4986
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4987
	}
4988 4989

	return true;
4990 4991
}

4992
/* XXX this is probably wrong for multiple downstream ports */
4993
static enum drm_connector_status
4994
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4995
{
4996
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4997 4998
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
4999

5000 5001 5002
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5003 5004 5005
	if (lspcon->active)
		lspcon_resume(lspcon);

5006 5007 5008 5009
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5010
	if (!drm_dp_is_branch(dpcd))
5011
		return connector_status_connected;
5012 5013

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5014 5015
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5016

5017 5018
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5019 5020
	}

5021 5022 5023
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5024
	/* If no HPD, poke DDC gently */
5025
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5026
		return connector_status_connected;
5027 5028

	/* Well we tried, say unknown for unreliable port types */
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5041 5042 5043

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5044
	return connector_status_disconnected;
5045 5046
}

5047 5048 5049
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5050
	return connector_status_connected;
5051 5052
}

5053
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5054
{
5055
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5056
	u32 bit;
5057

5058 5059
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5060 5061
		bit = SDE_PORTB_HOTPLUG;
		break;
5062
	case HPD_PORT_C:
5063 5064
		bit = SDE_PORTC_HOTPLUG;
		break;
5065
	case HPD_PORT_D:
5066 5067 5068
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5069
		MISSING_CASE(encoder->hpd_pin);
5070 5071 5072 5073 5074 5075
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5076
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5077
{
5078
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5079 5080
	u32 bit;

5081 5082
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5083 5084
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5085
	case HPD_PORT_C:
5086 5087
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5088
	case HPD_PORT_D:
5089 5090
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5091
	default:
5092
		MISSING_CASE(encoder->hpd_pin);
5093 5094 5095 5096 5097 5098
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5099
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5100
{
5101
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5102 5103
	u32 bit;

5104 5105
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5106 5107
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5108
	case HPD_PORT_E:
5109 5110
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5111
	default:
5112
		return cpt_digital_port_connected(encoder);
5113
	}
5114

5115
	return I915_READ(SDEISR) & bit;
5116 5117
}

5118
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5119
{
5120
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5121
	u32 bit;
5122

5123 5124
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5125 5126
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5127
	case HPD_PORT_C:
5128 5129
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5130
	case HPD_PORT_D:
5131 5132 5133
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5134
		MISSING_CASE(encoder->hpd_pin);
5135 5136 5137 5138 5139 5140
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

5141
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5142
{
5143
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5144 5145
	u32 bit;

5146 5147
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5148
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5149
		break;
5150
	case HPD_PORT_C:
5151
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5152
		break;
5153
	case HPD_PORT_D:
5154
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5155 5156
		break;
	default:
5157
		MISSING_CASE(encoder->hpd_pin);
5158
		return false;
5159 5160
	}

5161
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5162 5163
}

5164
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5165
{
5166 5167 5168
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5169 5170
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5171
		return ibx_digital_port_connected(encoder);
5172 5173
}

5174
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5175
{
5176 5177 5178
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5179 5180
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5181
		return cpt_digital_port_connected(encoder);
5182 5183
}

5184
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5185
{
5186 5187 5188
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5189 5190
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5191
		return cpt_digital_port_connected(encoder);
5192 5193
}

5194
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5195
{
5196 5197 5198
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5199 5200
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5201
		return cpt_digital_port_connected(encoder);
5202 5203
}

5204
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5205
{
5206
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5207 5208
	u32 bit;

5209 5210
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5211 5212
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5213
	case HPD_PORT_B:
5214 5215
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5216
	case HPD_PORT_C:
5217 5218 5219
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5220
		MISSING_CASE(encoder->hpd_pin);
5221 5222 5223 5224 5225 5226
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5227 5228 5229 5230 5231 5232 5233 5234
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5250 5251 5252 5253 5254 5255 5256 5257 5258
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5259
	if (is_legacy)
5260
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5261
	else if (is_typec)
5262
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5263
	else if (is_tbt)
5264
		intel_dig_port->tc_type = TC_PORT_TBT;
5265
	else
5266 5267 5268 5269 5270 5271 5272 5273
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5274
			      tc_type_name(intel_dig_port->tc_type));
5275 5276
}

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5311
		WARN_ON(dig_port->tc_legacy_port);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5332
		icl_tc_phy_disconnect(dev_priv, dig_port);
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5343 5344
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5345 5346 5347
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5348
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5349 5350 5351
		return;

	/*
5352 5353
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5354
	 */
5355 5356 5357 5358 5359
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5360 5361 5362
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5363

5364 5365 5366 5367
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5368
	dig_port->tc_type = TC_PORT_UNKNOWN;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5381 5382 5383 5384 5385 5386 5387 5388
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5389
	/*
5390
	 * Complain if we got a legacy port HPD, but VBT didn't mark the port as
5391 5392
	 * legacy. Treat the port as legacy from now on.
	 */
5393 5394 5395 5396
	if (!intel_dig_port->tc_legacy_port &&
	    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)) {
		DRM_ERROR("VBT incorrectly claims port %c is not TypeC legacy\n",
			  port_name(port));
5397
		intel_dig_port->tc_legacy_port = true;
5398
	}
5399
	is_legacy = intel_dig_port->tc_legacy_port;
5400 5401 5402 5403 5404 5405 5406 5407 5408

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5409 5410
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5411

5412
		return false;
5413
	}
5414 5415 5416

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5417

5418 5419 5420
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5421
	return true;
5422 5423 5424 5425 5426 5427 5428
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5429
	if (intel_port_is_combophy(dev_priv, encoder->port))
5430
		return icl_combo_port_connected(dev_priv, dig_port);
5431
	else if (intel_port_is_tc(dev_priv, encoder->port))
5432
		return icl_tc_port_connected(dev_priv, dig_port);
5433
	else
5434
		MISSING_CASE(encoder->hpd_pin);
5435 5436

	return false;
5437 5438
}

5439 5440
/*
 * intel_digital_port_connected - is the specified port connected?
5441
 * @encoder: intel_encoder
5442
 *
5443 5444 5445 5446 5447
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5448
 * Return %true if port is connected, %false otherwise.
5449
 */
5450
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5451
{
5452 5453
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5454
	if (HAS_GMCH(dev_priv)) {
5455
		if (IS_GM45(dev_priv))
5456
			return gm45_digital_port_connected(encoder);
5457
		else
5458
			return g4x_digital_port_connected(encoder);
5459 5460
	}

5461 5462
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5463
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5464
		return spt_digital_port_connected(encoder);
5465
	else if (IS_GEN9_LP(dev_priv))
5466
		return bxt_digital_port_connected(encoder);
5467
	else if (IS_GEN(dev_priv, 8))
5468
		return bdw_digital_port_connected(encoder);
5469
	else if (IS_GEN(dev_priv, 7))
5470
		return ivb_digital_port_connected(encoder);
5471
	else if (IS_GEN(dev_priv, 6))
5472
		return snb_digital_port_connected(encoder);
5473
	else if (IS_GEN(dev_priv, 5))
5474 5475 5476 5477
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5478 5479
}

5480 5481 5482
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5483
	bool is_connected = false;
5484 5485 5486 5487 5488 5489 5490 5491
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5492
static struct edid *
5493
intel_dp_get_edid(struct intel_dp *intel_dp)
5494
{
5495
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5496

5497 5498 5499 5500
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5501 5502
			return NULL;

J
Jani Nikula 已提交
5503
		return drm_edid_duplicate(intel_connector->edid);
5504 5505 5506 5507
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5508

5509 5510 5511 5512 5513
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5514

5515
	intel_dp_unset_edid(intel_dp);
5516 5517 5518
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5519
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5520
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5521 5522
}

5523 5524
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5525
{
5526
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5527

5528
	drm_dp_cec_unset_edid(&intel_dp->aux);
5529 5530
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5531

5532 5533
	intel_dp->has_audio = false;
}
5534

5535
static int
5536 5537 5538
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5539
{
5540 5541
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5542 5543
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5544 5545
	enum drm_connector_status status;

5546 5547
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5548
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5549

5550
	/* Can't disconnect eDP */
5551
	if (intel_dp_is_edp(intel_dp))
5552
		status = edp_detect(intel_dp);
5553
	else if (intel_digital_port_connected(encoder))
5554
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5555
	else
5556 5557
		status = connector_status_disconnected;

5558
	if (status == connector_status_disconnected) {
5559
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5560
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5561

5562 5563 5564 5565 5566 5567 5568 5569 5570
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5571
		goto out;
5572
	}
Z
Zhenyu Wang 已提交
5573

5574
	if (intel_dp->reset_link_params) {
5575 5576
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5577

5578 5579
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5580 5581 5582

		intel_dp->reset_link_params = false;
	}
5583

5584 5585
	intel_dp_print_rates(intel_dp);

5586 5587 5588 5589
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5590 5591
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5592

5593 5594 5595
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5596 5597 5598 5599 5600
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5601 5602
		status = connector_status_disconnected;
		goto out;
5603 5604 5605 5606 5607 5608
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5609 5610 5611 5612
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5613
		if (ret)
5614 5615
			return ret;
	}
5616

5617 5618 5619 5620 5621 5622 5623 5624
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5625
	intel_dp_set_edid(intel_dp);
5626 5627
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5628
		status = connector_status_connected;
5629

5630
	intel_dp_check_service_irq(intel_dp);
5631

5632
out:
5633
	if (status != connector_status_connected && !intel_dp->is_mst)
5634
		intel_dp_unset_edid(intel_dp);
5635

5636
	return status;
5637 5638
}

5639 5640
static void
intel_dp_force(struct drm_connector *connector)
5641
{
5642
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5643 5644
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5645
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5646 5647
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5648
	intel_wakeref_t wakeref;
5649

5650 5651 5652
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5653

5654 5655
	if (connector->status != connector_status_connected)
		return;
5656

5657
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5658 5659 5660

	intel_dp_set_edid(intel_dp);

5661
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5675

5676
	/* if eDP has no EDID, fall back to fixed mode */
5677
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5678
	    intel_connector->panel.fixed_mode) {
5679
		struct drm_display_mode *mode;
5680 5681

		mode = drm_mode_duplicate(connector->dev,
5682
					  intel_connector->panel.fixed_mode);
5683
		if (mode) {
5684 5685 5686 5687
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5688

5689
	return 0;
5690 5691
}

5692 5693 5694 5695
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5696
	struct drm_device *dev = connector->dev;
5697 5698 5699 5700 5701
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5702 5703 5704 5705 5706 5707 5708

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5709 5710 5711 5712 5713
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5714 5715
}

5716 5717 5718
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5719 5720 5721 5722
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5723 5724 5725
	intel_connector_unregister(connector);
}

5726
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5727
{
5728 5729
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5730

5731
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5732
	if (intel_dp_is_edp(intel_dp)) {
5733 5734
		intel_wakeref_t wakeref;

5735
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5736 5737 5738 5739
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5740 5741
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5742

5743 5744 5745 5746
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5747
	}
5748 5749

	intel_dp_aux_fini(intel_dp);
5750 5751 5752 5753 5754
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5755

5756
	drm_encoder_cleanup(encoder);
5757
	kfree(enc_to_dig_port(encoder));
5758 5759
}

5760
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5761 5762
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5763
	intel_wakeref_t wakeref;
5764

5765
	if (!intel_dp_is_edp(intel_dp))
5766 5767
		return;

5768 5769 5770 5771
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5772
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5773 5774
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5775 5776
}

5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5789 5790 5791 5792 5793
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5794 5795 5796 5797 5798
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5799
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5800 5801 5802 5803 5804 5805 5806
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5807 5808
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5809 5810 5811 5812 5813 5814 5815 5816 5817
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5818
	intel_dp_aux_header(txbuf, &msg);
5819

5820
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5821 5822
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5823
	if (ret < 0) {
5824
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5825 5826
		return ret;
	} else if (ret == 0) {
5827
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5828 5829 5830 5831
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5832 5833 5834 5835 5836 5837
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5838 5839 5840 5841 5842 5843 5844 5845 5846
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5847
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5865
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5866 5867 5868 5869 5870 5871
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5872 5873
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5874 5875
{
	ssize_t ret;
5876

5877
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5878
			       bcaps, 1);
5879
	if (ret != 1) {
5880
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5881 5882
		return ret >= 0 ? -EIO : ret;
	}
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5910
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5925
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5947 5948
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5968
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5987

5988 5989 5990
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5991
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5992
		return false;
5993
	}
5994

5995 5996 5997
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

static struct hdcp2_dp_msg_data {
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
	} hdcp2_msg_data[] = {
		{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
				false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
		{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
				true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
				HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
		{HDCP_2_2_AKE_SEND_PAIRING_INFO,
				DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
				HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
		{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
				false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
		{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_SEND_RECVID_LIST,
				DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
				HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
		{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_MANAGE,
				DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
				false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
		{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
				DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
				0, 0},
		};

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
			    struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6133 6134 6135 6136 6137 6138 6139
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
		if (hdcp2_msg_data[i].msg_id == msg_id)
			return &hdcp2_msg_data[i];

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6166 6167
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6183 6184
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6354
	.hdcp_capable = intel_dp_hdcp_capable,
6355 6356 6357 6358 6359 6360
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6361 6362
};

6363 6364
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6365
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6366
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6380
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6381 6382 6383 6384

	edp_panel_vdd_schedule_off(intel_dp);
}

6385 6386
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6387
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6388 6389
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6390

6391 6392 6393
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6394

6395
	return INVALID_PIPE;
6396 6397
}

6398
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6399
{
6400
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6401 6402
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6403
	intel_wakeref_t wakeref;
6404 6405 6406

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6407

6408
	if (lspcon->active)
6409 6410
		lspcon_resume(lspcon);

6411 6412
	intel_dp->reset_link_params = true;

6413 6414 6415 6416
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6417 6418 6419
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6420

6421 6422 6423 6424 6425 6426 6427 6428
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6429
	}
6430 6431
}

6432
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6433
	.force = intel_dp_force,
6434
	.fill_modes = drm_helper_probe_single_connector_modes,
6435 6436
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6437
	.late_register = intel_dp_connector_register,
6438
	.early_unregister = intel_dp_connector_unregister,
6439
	.destroy = intel_connector_destroy,
6440
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6441
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6442 6443 6444
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6445
	.detect_ctx = intel_dp_detect,
6446 6447
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6448
	.atomic_check = intel_digital_connector_atomic_check,
6449 6450 6451
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6452
	.reset = intel_dp_encoder_reset,
6453
	.destroy = intel_dp_encoder_destroy,
6454 6455
};

6456
enum irqreturn
6457 6458 6459
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6460

6461 6462 6463 6464 6465 6466 6467 6468
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6469
			      port_name(intel_dig_port->base.port));
6470
		return IRQ_HANDLED;
6471 6472
	}

6473
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6474
		      port_name(intel_dig_port->base.port),
6475
		      long_hpd ? "long" : "short");
6476

6477
	if (long_hpd) {
6478
		intel_dp->reset_link_params = true;
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6493 6494

			return IRQ_NONE;
6495
		}
6496
	}
6497

6498
	if (!intel_dp->is_mst) {
6499
		bool handled;
6500 6501 6502

		handled = intel_dp_short_pulse(intel_dp);

6503
		if (!handled)
6504
			return IRQ_NONE;
6505
	}
6506

6507
	return IRQ_HANDLED;
6508 6509
}

6510
/* check the VBT to see whether the eDP is on another port */
6511
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6512
{
6513 6514 6515 6516
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6517
	if (INTEL_GEN(dev_priv) < 5)
6518 6519
		return false;

6520
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6521 6522
		return true;

6523
	return intel_bios_is_port_edp(dev_priv, port);
6524 6525
}

6526
static void
6527 6528
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6529
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6530 6531 6532 6533
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6534

6535
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6536
	if (HAS_GMCH(dev_priv))
6537 6538 6539
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6540

6541
	if (intel_dp_is_edp(intel_dp)) {
6542 6543 6544
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6545
		if (!HAS_GMCH(dev_priv))
6546 6547 6548 6549
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6550
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6551

6552
	}
6553 6554
}

6555 6556
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6557
	intel_dp->panel_power_off_time = ktime_get_boottime();
6558 6559 6560 6561
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6562
static void
6563
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6564
{
6565
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6566
	u32 pp_on, pp_off, pp_ctl;
6567
	struct pps_registers regs;
6568

6569
	intel_pps_get_registers(intel_dp, &regs);
6570

6571
	pp_ctl = ironlake_get_pp_control(intel_dp);
6572

6573 6574 6575 6576
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6577 6578
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6579 6580

	/* Pull timing values out of registers */
6581 6582 6583 6584
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6585

6586 6587 6588 6589 6590
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6591
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6592
	} else {
6593
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6594
	}
6595 6596
}

I
Imre Deak 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6606
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6607 6608 6609 6610
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6611
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6621
static void
6622
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6623
{
6624
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6625 6626 6627 6628 6629 6630 6631 6632 6633
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6634
	intel_pps_readout_hw_state(intel_dp, &cur);
6635

I
Imre Deak 已提交
6636
	intel_pps_dump_state("cur", &cur);
6637

6638
	vbt = dev_priv->vbt.edp.pps;
6639 6640 6641 6642 6643 6644
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6645
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6646 6647 6648
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6649 6650 6651 6652 6653
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6667
	intel_pps_dump_state("vbt", &vbt);
6668 6669 6670

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6671
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6672 6673 6674 6675 6676 6677 6678 6679 6680
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6681
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6682 6683 6684 6685 6686 6687 6688
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6689 6690 6691 6692 6693 6694
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6705 6706 6707 6708 6709 6710

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6711 6712 6713
}

static void
6714
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6715
					      bool force_disable_vdd)
6716
{
6717
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6718
	u32 pp_on, pp_off, port_sel = 0;
6719
	int div = dev_priv->rawclk_freq / 1000;
6720
	struct pps_registers regs;
6721
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6722
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6723

V
Ville Syrjälä 已提交
6724
	lockdep_assert_held(&dev_priv->pps_mutex);
6725

6726
	intel_pps_get_registers(intel_dp, &regs);
6727

6728 6729
	/*
	 * On some VLV machines the BIOS can leave the VDD
6730
	 * enabled even on power sequencers which aren't
6731 6732 6733 6734 6735 6736 6737
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6738
	 * soon as the new power sequencer gets initialized.
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6753 6754 6755 6756
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6757 6758 6759

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6760
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6761
		port_sel = PANEL_PORT_SELECT_VLV(port);
6762
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6763 6764
		switch (port) {
		case PORT_A:
6765
			port_sel = PANEL_PORT_SELECT_DPA;
6766 6767 6768 6769 6770
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6771
			port_sel = PANEL_PORT_SELECT_DPD;
6772 6773 6774 6775 6776
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6777 6778
	}

6779 6780
	pp_on |= port_sel;

6781 6782
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6783 6784 6785 6786 6787

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6788 6789 6790
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6791 6792 6793 6794 6795
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6796
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6797 6798
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6799 6800

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6801 6802
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6803 6804 6805
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6806 6807
}

6808
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6809
{
6810
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6811 6812

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6813 6814
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6815 6816
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6817 6818 6819
	}
}

6820 6821
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6822
 * @dev_priv: i915 device
6823
 * @crtc_state: a pointer to the active intel_crtc_state
6824 6825 6826 6827 6828 6829 6830 6831 6832
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6833
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6834
				    const struct intel_crtc_state *crtc_state,
6835
				    int refresh_rate)
6836 6837
{
	struct intel_encoder *encoder;
6838 6839
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6840
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6841
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6842 6843 6844 6845 6846 6847

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6848 6849
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6850 6851 6852
		return;
	}

6853 6854
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6855 6856 6857 6858 6859 6860

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6861
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6862 6863 6864 6865
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6866 6867
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6868 6869
		index = DRRS_LOW_RR;

6870
	if (index == dev_priv->drrs.refresh_rate_type) {
6871 6872 6873 6874 6875
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6876
	if (!crtc_state->base.active) {
6877 6878 6879 6880
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6881
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6882 6883
		switch (index) {
		case DRRS_HIGH_RR:
6884
			intel_dp_set_m_n(crtc_state, M1_N1);
6885 6886
			break;
		case DRRS_LOW_RR:
6887
			intel_dp_set_m_n(crtc_state, M2_N2);
6888 6889 6890 6891 6892
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6893 6894
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6895
		u32 val;
6896

6897
		val = I915_READ(reg);
6898
		if (index > DRRS_HIGH_RR) {
6899
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6900 6901 6902
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6903
		} else {
6904
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6905 6906 6907
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6908 6909 6910 6911
		}
		I915_WRITE(reg, val);
	}

6912 6913 6914 6915 6916
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6917 6918 6919
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6920
 * @crtc_state: A pointer to the active crtc state.
6921 6922 6923
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6924
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6925
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6926
{
6927
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6928

6929
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6930 6931 6932 6933
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6934 6935 6936 6937 6938
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6939
	mutex_lock(&dev_priv->drrs.mutex);
6940 6941
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6953 6954 6955
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6956
 * @old_crtc_state: Pointer to old crtc_state.
6957 6958
 *
 */
6959
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6960
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6961
{
6962
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6963

6964
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6965 6966 6967 6968 6969 6970 6971 6972 6973
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6974 6975
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6976 6977 6978 6979 6980 6981 6982

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6996
	/*
6997 6998
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6999 7000
	 */

7001 7002
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7003

7004 7005 7006 7007 7008 7009
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7010

7011 7012
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7013 7014
}

7015
/**
7016
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7017
 * @dev_priv: i915 device
7018 7019
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7020 7021
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7022 7023 7024
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7025 7026
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7027 7028 7029 7030
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7031
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7032 7033
		return;

7034
	cancel_delayed_work(&dev_priv->drrs.work);
7035

7036
	mutex_lock(&dev_priv->drrs.mutex);
7037 7038 7039 7040 7041
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7042 7043 7044
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7045 7046 7047
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7048
	/* invalidate means busy screen hence upclock */
7049
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7050 7051
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7052 7053 7054 7055

	mutex_unlock(&dev_priv->drrs.mutex);
}

7056
/**
7057
 * intel_edp_drrs_flush - Restart Idleness DRRS
7058
 * @dev_priv: i915 device
7059 7060
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7061 7062 7063 7064
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7065 7066 7067
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7068 7069
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7070 7071 7072 7073
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7074
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7075 7076
		return;

7077
	cancel_delayed_work(&dev_priv->drrs.work);
7078

7079
	mutex_lock(&dev_priv->drrs.mutex);
7080 7081 7082 7083 7084
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7085 7086
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7087 7088

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7089 7090
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7091
	/* flush means busy screen hence upclock */
7092
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7093 7094
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7095 7096 7097 7098 7099 7100

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7101 7102 7103 7104 7105
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7129 7130 7131 7132 7133 7134 7135 7136
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7137 7138 7139 7140 7141 7142 7143 7144
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7145
 * @connector: eDP connector
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7156
static struct drm_display_mode *
7157 7158
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7159
{
7160
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7161 7162
	struct drm_display_mode *downclock_mode = NULL;

7163 7164 7165
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7166
	if (INTEL_GEN(dev_priv) <= 6) {
7167 7168 7169 7170 7171
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7172
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7173 7174 7175
		return NULL;
	}

7176
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7177
	if (!downclock_mode) {
7178
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7179 7180 7181
		return NULL;
	}

7182
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7183

7184
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7185
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7186 7187 7188
	return downclock_mode;
}

7189
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7190
				     struct intel_connector *intel_connector)
7191
{
7192 7193
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7194
	struct drm_connector *connector = &intel_connector->base;
7195
	struct drm_display_mode *fixed_mode = NULL;
7196
	struct drm_display_mode *downclock_mode = NULL;
7197
	bool has_dpcd;
7198
	enum pipe pipe = INVALID_PIPE;
7199 7200
	intel_wakeref_t wakeref;
	struct edid *edid;
7201

7202
	if (!intel_dp_is_edp(intel_dp))
7203 7204
		return true;

7205 7206
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7207 7208 7209 7210 7211 7212
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7213
	if (intel_get_lvds_encoder(dev_priv)) {
7214 7215 7216 7217 7218 7219
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7220 7221 7222 7223 7224
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7225

7226
	/* Cache DPCD and EDID for edp. */
7227
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7228

7229
	if (!has_dpcd) {
7230 7231
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7232
		goto out_vdd_off;
7233 7234
	}

7235
	mutex_lock(&dev->mode_config.mutex);
7236
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7237 7238
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7239
			drm_connector_update_edid_property(connector,
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7250 7251 7252
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7253 7254

	/* fallback to VBT if available for eDP */
7255 7256
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7257
	mutex_unlock(&dev->mode_config.mutex);
7258

7259
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7260 7261
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7262 7263 7264 7265 7266 7267

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7268
		pipe = vlv_active_pipe(intel_dp);
7269 7270 7271 7272 7273 7274 7275 7276 7277

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7278 7279
	}

7280
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7281
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7282
	intel_panel_setup_backlight(connector, pipe);
7283

7284 7285 7286 7287
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7288
	return true;
7289 7290 7291 7292 7293 7294 7295

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7296 7297
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7298 7299

	return false;
7300 7301
}

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7318 7319
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7320 7321 7322 7323 7324
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7325
bool
7326 7327
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7328
{
7329 7330 7331 7332
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7333
	struct drm_i915_private *dev_priv = to_i915(dev);
7334
	enum port port = intel_encoder->port;
7335
	int type;
7336

7337 7338 7339 7340
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7341 7342 7343 7344 7345
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

7346 7347
	intel_dp_set_source_rates(intel_dp);

7348
	intel_dp->reset_link_params = true;
7349
	intel_dp->pps_pipe = INVALID_PIPE;
7350
	intel_dp->active_pipe = INVALID_PIPE;
7351

7352 7353
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7354
	intel_dp->attached_connector = intel_connector;
7355

7356 7357 7358 7359 7360 7361
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
		WARN_ON(intel_port_is_tc(dev_priv, port));
7362
		type = DRM_MODE_CONNECTOR_eDP;
7363
	} else {
7364
		type = DRM_MODE_CONNECTOR_DisplayPort;
7365
	}
7366

7367 7368 7369
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7370 7371 7372 7373 7374 7375 7376 7377
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7378
	/* eDP only on port B and/or C on vlv/chv */
7379
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7380 7381
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7382 7383
		return false;

7384 7385 7386 7387
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

7388
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7389 7390
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7391
	if (!HAS_GMCH(dev_priv))
7392
		connector->interlace_allowed = true;
7393 7394
	connector->doublescan_allowed = 0;

7395 7396 7397
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

7398
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7399

7400
	intel_dp_aux_init(intel_dp);
7401

7402
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7403

7404
	if (HAS_DDI(dev_priv))
7405 7406 7407 7408
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7409
	/* init MST on ports that can support it */
7410
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7411 7412
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7413 7414
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7415

7416
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7417 7418 7419
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7420
	}
7421

7422
	intel_dp_add_properties(intel_dp, connector);
7423

7424
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7425 7426 7427 7428
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7429

7430 7431 7432 7433
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7434
	if (IS_G45(dev_priv)) {
7435 7436 7437
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7438 7439

	return true;
7440 7441 7442 7443 7444

fail:
	drm_connector_cleanup(connector);

	return false;
7445
}
7446

7447
bool intel_dp_init(struct drm_i915_private *dev_priv,
7448 7449
		   i915_reg_t output_reg,
		   enum port port)
7450 7451 7452 7453 7454 7455
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7456
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7457
	if (!intel_dig_port)
7458
		return false;
7459

7460
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7461 7462
	if (!intel_connector)
		goto err_connector_alloc;
7463 7464 7465 7466

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7467 7468 7469
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7470
		goto err_encoder_init;
7471

7472
	intel_encoder->hotplug = intel_dp_hotplug;
7473
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7474
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7475
	intel_encoder->get_config = intel_dp_get_config;
7476
	intel_encoder->update_pipe = intel_panel_update_backlight;
7477
	intel_encoder->suspend = intel_dp_encoder_suspend;
7478
	if (IS_CHERRYVIEW(dev_priv)) {
7479
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7480 7481
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7482
		intel_encoder->disable = vlv_disable_dp;
7483
		intel_encoder->post_disable = chv_post_disable_dp;
7484
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7485
	} else if (IS_VALLEYVIEW(dev_priv)) {
7486
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7487 7488
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7489
		intel_encoder->disable = vlv_disable_dp;
7490
		intel_encoder->post_disable = vlv_post_disable_dp;
7491
	} else {
7492 7493
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7494
		intel_encoder->disable = g4x_disable_dp;
7495
		intel_encoder->post_disable = g4x_post_disable_dp;
7496
	}
7497 7498

	intel_dig_port->dp.output_reg = output_reg;
7499
	intel_dig_port->max_lanes = 4;
7500

7501
	intel_encoder->type = INTEL_OUTPUT_DP;
7502
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7503
	if (IS_CHERRYVIEW(dev_priv)) {
7504 7505 7506 7507 7508 7509 7510
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7511
	intel_encoder->cloneable = 0;
7512
	intel_encoder->port = port;
7513

7514 7515
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7516 7517 7518
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7519
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7520 7521 7522
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7523
	return true;
S
Sudip Mukherjee 已提交
7524 7525 7526

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7527
err_encoder_init:
S
Sudip Mukherjee 已提交
7528 7529 7530
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7531
	return false;
7532
}
7533

7534
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7535
{
7536 7537 7538 7539
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7540

7541 7542
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7543

7544
		intel_dp = enc_to_intel_dp(&encoder->base);
7545

7546
		if (!intel_dp->can_mst)
7547 7548
			continue;

7549 7550
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7551 7552 7553
	}
}

7554
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7555
{
7556
	struct intel_encoder *encoder;
7557

7558 7559
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7560
		int ret;
7561

7562 7563 7564 7565 7566 7567
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7568
			continue;
7569

7570
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7571 7572 7573 7574 7575
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7576 7577
	}
}