intel_dp.c 204.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_debugfs.h"
46
#include "i915_drv.h"
47
#include "i915_trace.h"
48
#include "intel_atomic.h"
49
#include "intel_audio.h"
50
#include "intel_connector.h"
51
#include "intel_ddi.h"
52
#include "intel_display_types.h"
53
#include "intel_dp.h"
54
#include "intel_dp_link_training.h"
55
#include "intel_dp_mst.h"
56
#include "intel_dpio_phy.h"
57
#include "intel_fifo_underrun.h"
58
#include "intel_hdcp.h"
59
#include "intel_hdmi.h"
60
#include "intel_hotplug.h"
61
#include "intel_lspcon.h"
62
#include "intel_lvds.h"
63
#include "intel_panel.h"
64
#include "intel_psr.h"
65
#include "intel_sideband.h"
66
#include "intel_tc.h"
67
#include "intel_vdsc.h"
68

69
#define DP_DPRX_ESI_LEN 14
70

71 72 73 74 75 76 77 78 79 80 81
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

82 83 84 85 86 87
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

88
struct dp_link_dpll {
89
	int clock;
90 91 92
	struct dpll dpll;
};

93
static const struct dp_link_dpll g4x_dpll[] = {
94
	{ 162000,
95
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
96
	{ 270000,
97 98 99 100
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
101
	{ 162000,
102
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
103
	{ 270000,
104 105 106
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

107
static const struct dp_link_dpll vlv_dpll[] = {
108
	{ 162000,
C
Chon Ming Lee 已提交
109
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
110
	{ 270000,
111 112 113
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

114 115 116 117 118 119 120 121 122 123
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
124
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
125
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
126
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
127 128
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
129

130 131 132 133 134 135 136 137
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

138
/**
139
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
140 141 142 143 144
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
145
bool intel_dp_is_edp(struct intel_dp *intel_dp)
146
{
147 148 149
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
150 151
}

152 153
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
154
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
155 156
}

157 158
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
159
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
160
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
161 162
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
163
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
164
				      enum pipe pipe);
165
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
166

167 168 169
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
170
	static const int dp_rates[] = {
171
		162000, 270000, 540000, 810000
172
	};
173
	int i, max_rate;
174

175
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
176

177 178
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
179
			break;
180
		intel_dp->sink_rates[i] = dp_rates[i];
181
	}
182

183
	intel_dp->num_sink_rates = i;
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

208 209
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
210
{
211
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
212 213
}

214 215
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
216 217
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
218 219
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
220
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
221

222
	return min3(source_max, sink_max, fia_max);
223 224
}

225
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
226 227 228 229
{
	return intel_dp->max_link_lane_count;
}

230
int
231
intel_dp_link_required(int pixel_clock, int bpp)
232
{
233 234
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
235 236
}

237
int
238 239
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
240 241 242 243 244 245 246
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

272
static int cnl_max_source_rate(struct intel_dp *intel_dp)
273 274 275 276 277 278 279 280 281
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
282
		return 540000;
283 284 285

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
286
		return 810000;
287

288
	/* For other SKUs, max rate on ports A and D is 5.4G */
289
	if (port == PORT_A || port == PORT_D)
290
		return 540000;
291

292
	return 810000;
293 294
}

295 296 297
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
298
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
299
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
300

301
	if (intel_phy_is_combo(dev_priv, phy) &&
302
	    !IS_ELKHARTLAKE(dev_priv) &&
303
	    !intel_dp_is_edp(intel_dp))
304 305 306 307 308
		return 540000;

	return 810000;
}

309 310
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
311
{
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
328 329
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
330 331
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
332
	const int *source_rates;
333
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
334

335 336 337
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

338
	if (INTEL_GEN(dev_priv) >= 10) {
339
		source_rates = cnl_rates;
340
		size = ARRAY_SIZE(cnl_rates);
341
		if (IS_GEN(dev_priv, 10))
342 343 344
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
345 346 347
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
348
	} else if (IS_GEN9_BC(dev_priv)) {
349
		source_rates = skl_rates;
350
		size = ARRAY_SIZE(skl_rates);
351 352
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
353 354
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
355
	} else {
356 357
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
358 359
	}

360 361 362 363 364
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

365 366 367
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

368 369
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

395 396 397 398 399 400 401 402 403 404 405 406
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

407
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
408
{
409
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
410

411 412 413 414 415 416 417 418
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
419
		intel_dp->common_rates[0] = 162000;
420 421 422 423
		intel_dp->num_common_rates = 1;
	}
}

424
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
425
				       u8 lane_count)
426 427 428 429 430 431
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
432 433
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
434 435
		return false;

436 437
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
438 439 440 441 442
		return false;

	return true;
}

443 444
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
445
						     u8 lane_count)
446 447 448 449 450 451 452 453 454 455 456 457 458
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

459
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
460
					    int link_rate, u8 lane_count)
461
{
462
	int index;
463

464 465 466 467
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
468 469 470 471 472 473 474
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
475 476
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
477
	} else if (lane_count > 1) {
478 479 480 481 482 483 484
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
485
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
486
		intel_dp->max_link_lane_count = lane_count >> 1;
487 488 489 490 491 492 493 494
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

495
static enum drm_mode_status
496 497 498
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
499
	struct intel_dp *intel_dp = intel_attached_dp(connector);
500 501
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
502
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
503 504
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
505
	int max_dotclk;
506 507
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
508

509 510 511
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

512
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
513

514
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
515
		if (mode->hdisplay > fixed_mode->hdisplay)
516 517
			return MODE_PANEL;

518
		if (mode->vdisplay > fixed_mode->vdisplay)
519
			return MODE_PANEL;
520 521

		target_clock = fixed_mode->clock;
522 523
	}

524
	max_link_clock = intel_dp_max_link_rate(intel_dp);
525
	max_lanes = intel_dp_max_lane_count(intel_dp);
526 527 528 529

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

530 531 532 533 534 535 536 537 538 539 540 541
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
542
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
543 544 545 546 547 548 549 550 551 552 553 554 555 556
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
557
		return MODE_CLOCK_HIGH;
558 559 560 561

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

562 563 564
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

565 566 567
	return MODE_OK;
}

568
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
569
{
570 571
	int i;
	u32 v = 0;
572 573 574 575

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
576
		v |= ((u32)src[i]) << ((3 - i) * 8);
577 578 579
	return v;
}

580
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
581 582 583 584 585 586 587 588
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

589
static void
590
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
591
static void
592
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
593
					      bool force_disable_vdd);
594
static void
595
intel_dp_pps_init(struct intel_dp *intel_dp);
596

597 598
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
599
{
600
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
601
	intel_wakeref_t wakeref;
602 603

	/*
604
	 * See intel_power_sequencer_reset() why we need
605 606
	 * a power domain reference here.
	 */
607 608
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
609 610

	mutex_lock(&dev_priv->pps_mutex);
611 612

	return wakeref;
613 614
}

615 616
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
617
{
618
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
619 620

	mutex_unlock(&dev_priv->pps_mutex);
621 622 623 624
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
625 626
}

627 628 629
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

630 631 632
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
633
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
634 635
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
636 637 638
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
639
	u32 DP;
640 641

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
642
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
643
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
644 645 646
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
647
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
648 649 650 651 652 653 654 655 656

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

657
	if (IS_CHERRYVIEW(dev_priv))
658 659 660
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
661

662 663 664 665 666 667
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
668
	if (!pll_enabled) {
669
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
670 671
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

672
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
673 674 675 676 677
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
678
	}
679

680 681 682
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
683
	 * to make this power sequencer lock onto the port.
684 685 686 687 688 689 690 691 692 693
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
694

695
	if (!pll_enabled) {
696
		vlv_force_pll_off(dev_priv, pipe);
697 698 699 700

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
701 702
}

703 704 705 706 707 708 709 710 711
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
712 713
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

735 736 737
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
738
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
739
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
740
	enum pipe pipe;
741

V
Ville Syrjälä 已提交
742
	lockdep_assert_held(&dev_priv->pps_mutex);
743

744
	/* We should never land here with regular DP ports */
745
	WARN_ON(!intel_dp_is_edp(intel_dp));
746

747 748 749
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

750 751 752
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

753
	pipe = vlv_find_free_pps(dev_priv);
754 755 756 757 758

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
759
	if (WARN_ON(pipe == INVALID_PIPE))
760
		pipe = PIPE_A;
761

762
	vlv_steal_power_sequencer(dev_priv, pipe);
763
	intel_dp->pps_pipe = pipe;
764 765 766

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
767
		      port_name(intel_dig_port->base.port));
768 769

	/* init power sequencer on this pipe and port */
770 771
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
772

773 774 775 776 777
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
778 779 780 781

	return intel_dp->pps_pipe;
}

782 783 784
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
785
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
786
	int backlight_controller = dev_priv->vbt.backlight.controller;
787 788 789 790

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
791
	WARN_ON(!intel_dp_is_edp(intel_dp));
792 793

	if (!intel_dp->pps_reset)
794
		return backlight_controller;
795 796 797 798 799 800 801

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
802
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
803

804
	return backlight_controller;
805 806
}

807 808 809 810 811 812
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
813
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
814 815 816 817 818
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
819
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
820 821 822 823 824 825 826
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
827

828
static enum pipe
829 830 831
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
832 833
{
	enum pipe pipe;
834 835

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
836
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
837
			PANEL_PORT_SELECT_MASK;
838 839 840 841

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

842 843 844
		if (!pipe_check(dev_priv, pipe))
			continue;

845
		return pipe;
846 847
	}

848 849 850 851 852 853
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
854
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
855
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
856
	enum port port = intel_dig_port->base.port;
857 858 859 860

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
861 862 863 864 865 866 867 868 869 870 871
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
872 873 874 875 876 877

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
878 879
	}

880 881 882
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

883 884
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
885 886
}

887
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
888 889 890
{
	struct intel_encoder *encoder;

891
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
892
		    !IS_GEN9_LP(dev_priv)))
893 894 895 896 897 898 899 900 901 902 903 904
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

905 906
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
907

908 909 910 911 912
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

913
		if (IS_GEN9_LP(dev_priv))
914 915 916
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
917
	}
918 919
}

920 921 922 923 924 925 926 927
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

928
static void intel_pps_get_registers(struct intel_dp *intel_dp,
929 930
				    struct pps_registers *regs)
{
931
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
932 933
	int pps_idx = 0;

934 935
	memset(regs, 0, sizeof(*regs));

936
	if (IS_GEN9_LP(dev_priv))
937 938 939
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
940

941 942 943 944
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
945 946

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
947
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
948 949
		regs->pp_div = INVALID_MMIO_REG;
	else
950
		regs->pp_div = PP_DIVISOR(pps_idx);
951 952
}

953 954
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
955
{
956
	struct pps_registers regs;
957

958
	intel_pps_get_registers(intel_dp, &regs);
959 960

	return regs.pp_ctrl;
961 962
}

963 964
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
965
{
966
	struct pps_registers regs;
967

968
	intel_pps_get_registers(intel_dp, &regs);
969 970

	return regs.pp_stat;
971 972
}

973 974 975 976 977 978 979
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
980
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
981
	intel_wakeref_t wakeref;
982

983
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
984 985
		return 0;

986 987 988 989 990 991 992 993 994 995 996 997 998
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
999
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1000 1001
			msleep(intel_dp->panel_power_cycle_delay);
		}
1002 1003 1004 1005 1006
	}

	return 0;
}

1007
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1008
{
1009
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1010

V
Ville Syrjälä 已提交
1011 1012
	lockdep_assert_held(&dev_priv->pps_mutex);

1013
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1014 1015 1016
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1017
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1018 1019
}

1020
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1021
{
1022
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1023

V
Ville Syrjälä 已提交
1024 1025
	lockdep_assert_held(&dev_priv->pps_mutex);

1026
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1027 1028 1029
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1030
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1031 1032
}

1033 1034 1035
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1036
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1037

1038
	if (!intel_dp_is_edp(intel_dp))
1039
		return;
1040

1041
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1042 1043
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1044 1045
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1046 1047 1048
	}
}

1049
static u32
1050
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1051
{
1052
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1053
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1054
	u32 status;
1055 1056
	bool done;

1057 1058
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1059
				  msecs_to_jiffies_timeout(10));
1060 1061 1062 1063

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1064
	if (!done)
1065
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1066 1067 1068 1069 1070
#undef C

	return status;
}

1071
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1072
{
1073
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1074

1075 1076 1077
	if (index)
		return 0;

1078 1079
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1080
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1081
	 */
1082
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1083 1084
}

1085
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1086
{
1087
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1088
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1089 1090 1091 1092

	if (index)
		return 0;

1093 1094 1095 1096 1097
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1098
	if (dig_port->aux_ch == AUX_CH_A)
1099
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1100 1101
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1102 1103
}

1104
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1105
{
1106
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1107
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1108

1109
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1110
		/* Workaround for non-ULT HSW */
1111 1112 1113 1114 1115
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1116
	}
1117 1118

	return ilk_get_aux_clock_divider(intel_dp, index);
1119 1120
}

1121
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1131 1132 1133
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1134 1135
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1136 1137
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1138
	u32 precharge, timeout;
1139

1140
	if (IS_GEN(dev_priv, 6))
1141 1142 1143 1144
		precharge = 3;
	else
		precharge = 5;

1145
	if (IS_BROADWELL(dev_priv))
1146 1147 1148 1149 1150
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1151
	       DP_AUX_CH_CTL_DONE |
1152
	       DP_AUX_CH_CTL_INTERRUPT |
1153
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1154
	       timeout |
1155
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1156 1157
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1158
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1159 1160
}

1161 1162 1163
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1164
{
1165
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1166
	u32 ret;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1178
	if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1179 1180 1181
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1182 1183
}

1184
static int
1185
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1186 1187
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1188
		  u32 aux_send_ctl_flags)
1189 1190
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1191
	struct drm_i915_private *i915 =
1192
			to_i915(intel_dig_port->base.base.dev);
1193
	struct intel_uncore *uncore = &i915->uncore;
1194 1195
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1196
	i915_reg_t ch_ctl, ch_data[5];
1197
	u32 aux_clock_divider;
1198 1199 1200 1201
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1202
	int i, ret, recv_bytes;
1203
	int try, clock = 0;
1204
	u32 status;
1205 1206
	bool vdd;

1207 1208 1209 1210
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1211 1212 1213
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1214
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1215
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1216

1217 1218 1219 1220 1221 1222
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1223
	vdd = edp_panel_vdd_on(intel_dp);
1224 1225 1226 1227 1228

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1229
	pm_qos_update_request(&i915->pm_qos, 0);
1230 1231

	intel_dp_check_edp(intel_dp);
1232

1233 1234
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1235
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1236 1237 1238 1239
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1240 1241
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1242 1243

	if (try == 3) {
1244
		static u32 last_status = -1;
1245
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1246 1247 1248 1249 1250 1251 1252

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1253 1254
		ret = -EBUSY;
		goto out;
1255 1256
	}

1257 1258 1259 1260 1261 1262
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1263
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1264 1265 1266 1267 1268
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1269

1270 1271 1272 1273
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1274 1275 1276 1277
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1278 1279

			/* Send the command and wait for it to complete */
1280
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1281

1282
			status = intel_dp_aux_wait_done(intel_dp);
1283 1284

			/* Clear done status and any errors */
1285 1286 1287 1288 1289 1290
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1291

1292 1293 1294 1295 1296
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1297 1298 1299
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1300 1301
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1302
				continue;
1303
			}
1304
			if (status & DP_AUX_CH_CTL_DONE)
1305
				goto done;
1306
		}
1307 1308 1309
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1310
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1311 1312
		ret = -EBUSY;
		goto out;
1313 1314
	}

1315
done:
1316 1317 1318
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1319
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1320
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1321 1322
		ret = -EIO;
		goto out;
1323
	}
1324 1325 1326

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1327
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1328
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1329 1330
		ret = -ETIMEDOUT;
		goto out;
1331 1332 1333 1334 1335
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1349 1350
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1351

1352
	for (i = 0; i < recv_bytes; i += 4)
1353
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1354
				    recv + i, recv_bytes - i);
1355

1356 1357
	ret = recv_bytes;
out:
1358
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1359

1360 1361 1362
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1363
	pps_unlock(intel_dp, pps_wakeref);
1364
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1365

1366 1367 1368
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1369
	return ret;
1370 1371
}

1372 1373
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1385 1386
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1387
{
1388
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1389
	u8 txbuf[20], rxbuf[20];
1390
	size_t txsize, rxsize;
1391 1392
	int ret;

1393
	intel_dp_aux_header(txbuf, msg);
1394

1395 1396 1397
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1398
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1399
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1400
		rxsize = 2; /* 0 or 1 data bytes */
1401

1402 1403
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1404

1405 1406
		WARN_ON(!msg->buffer != !msg->size);

1407 1408
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1409

1410
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1411
					rxbuf, rxsize, 0);
1412 1413
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1414

1415 1416 1417 1418 1419 1420 1421
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1422 1423
		}
		break;
1424

1425 1426
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1427
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1428
		rxsize = msg->size + 1;
1429

1430 1431
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1432

1433
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1434
					rxbuf, rxsize, 0);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1445
		}
1446 1447 1448 1449 1450
		break;

	default:
		ret = -EINVAL;
		break;
1451
	}
1452

1453
	return ret;
1454 1455
}

1456

1457
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1458
{
1459
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1460 1461
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1462

1463 1464 1465 1466 1467
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1468
	default:
1469 1470
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1471 1472 1473
	}
}

1474
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1475
{
1476
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1477 1478
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1479

1480 1481 1482 1483 1484
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1485
	default:
1486 1487
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1488 1489 1490
	}
}

1491
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1492
{
1493
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1494 1495
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1496

1497 1498 1499 1500 1501 1502 1503
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1504
	default:
1505 1506
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1507 1508 1509
	}
}

1510
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1511
{
1512
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1513 1514
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1515

1516 1517 1518 1519 1520 1521 1522
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1523
	default:
1524 1525
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1526 1527 1528
	}
}

1529
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1530
{
1531
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1532 1533
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1534

1535 1536 1537 1538 1539
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1540
	case AUX_CH_E:
1541 1542
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1543
	default:
1544 1545
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1546 1547 1548
	}
}

1549
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1550
{
1551
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1552 1553
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1554

1555 1556 1557 1558 1559
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1560
	case AUX_CH_E:
1561 1562
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1563
	default:
1564 1565
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1566 1567 1568
	}
}

1569 1570 1571 1572 1573 1574 1575 1576
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1577
{
1578
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1579 1580
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1592

1593 1594 1595 1596 1597 1598 1599 1600
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1601

1602 1603 1604 1605
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1606

1607
	drm_dp_aux_init(&intel_dp->aux);
1608

1609
	/* Failure to allocate our preferred name is not critical */
1610 1611
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1612
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1613 1614
}

1615
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1616
{
1617
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1618

1619
	return max_rate >= 540000;
1620 1621
}

1622 1623 1624 1625 1626 1627 1628
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1629 1630
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1631
		   struct intel_crtc_state *pipe_config)
1632
{
1633
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1634 1635
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1636

1637
	if (IS_G4X(dev_priv)) {
1638 1639
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1640
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1641 1642
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1643
	} else if (IS_CHERRYVIEW(dev_priv)) {
1644 1645
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1646
	} else if (IS_VALLEYVIEW(dev_priv)) {
1647 1648
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1649
	}
1650 1651 1652

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1653
			if (pipe_config->port_clock == divisor[i].clock) {
1654 1655 1656 1657 1658
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1659 1660 1661
	}
}

1662 1663 1664 1665 1666 1667 1668 1669
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1670
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1685 1686
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1687 1688
	DRM_DEBUG_KMS("source rates: %s\n", str);

1689 1690
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1691 1692
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1693 1694
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1695
	DRM_DEBUG_KMS("common rates: %s\n", str);
1696 1697
}

1698 1699 1700 1701 1702
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1703
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1704 1705 1706
	if (WARN_ON(len <= 0))
		return 162000;

1707
	return intel_dp->common_rates[len - 1];
1708 1709
}

1710 1711
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1712 1713
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1714 1715 1716 1717 1718

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1719 1720
}

1721
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1722
			   u8 *link_bw, u8 *rate_select)
1723
{
1724 1725
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1726 1727 1728 1729 1730 1731 1732 1733 1734
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1735
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1736 1737 1738 1739
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1755 1756 1757 1758 1759 1760 1761 1762

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1763 1764 1765
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1766 1767 1768 1769
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1770 1771
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1772
{
1773
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1774
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1775 1776 1777 1778 1779 1780 1781 1782
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1793 1794 1795
	return bpp;
}

1796
/* Adjust link config limits based on compliance test requests. */
1797
void
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

1845
/* Optimize link config in order: max bpp, min clock, min lanes */
1846
static int
1847 1848 1849 1850 1851 1852 1853 1854 1855
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1856 1857
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

1858
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1859
						   output_bpp);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1874
					return 0;
1875 1876 1877 1878 1879
				}
			}
		}
	}

1880
	return -EINVAL;
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1898 1899 1900 1901
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1902 1903 1904 1905 1906 1907
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1908
	int ret;
1909

1910 1911 1912
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

1913
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1914
		return -EINVAL;
1915

1916 1917 1918 1919 1920 1921
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
1922 1923

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
1924 1925 1926

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
1927
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1928
		return -EINVAL;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1962
			return -EINVAL;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1979
			return -EINVAL;
1980 1981
		}
	}
1982 1983 1984

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
1985 1986 1987 1988
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
1989
		return ret;
1990
	}
1991

1992 1993 1994 1995 1996 1997 1998
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

1999
	return 0;
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2010
static int
2011
intel_dp_compute_link_config(struct intel_encoder *encoder,
2012 2013
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2014
{
2015
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2016
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2017
	struct link_config_limits limits;
2018
	int common_len;
2019
	int ret;
2020

2021
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2022
						    intel_dp->max_link_rate);
2023 2024

	/* No common link rates between source and sink */
2025
	WARN_ON(common_len <= 0);
2026

2027 2028 2029 2030 2031 2032
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2033
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2034
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2035

2036
	if (intel_dp_is_edp(intel_dp)) {
2037 2038
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2039 2040 2041 2042
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2043
		 */
2044 2045
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2046
	}
2047

2048 2049
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2050 2051 2052 2053 2054 2055
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2056 2057 2058 2059 2060
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2061 2062

	/* enable compression if the mode doesn't fit available BW */
2063
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2064 2065 2066 2067 2068
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2069
	}
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2093
	return 0;
2094 2095
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2149
int
2150 2151 2152 2153 2154 2155 2156
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2157
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2158 2159 2160 2161 2162
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2163 2164
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2165
	int ret = 0, output_bpp;
2166 2167 2168 2169

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2170
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2171 2172
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2173 2174 2175 2176 2177 2178
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2189 2190
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2191 2192 2193 2194 2195 2196 2197

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2198
		if (HAS_GMCH(dev_priv))
2199 2200 2201 2202 2203 2204 2205
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2206
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2207
		return -EINVAL;
2208

R
Rodrigo Vivi 已提交
2209
	if (HAS_GMCH(dev_priv) &&
2210
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2211
		return -EINVAL;
2212 2213

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2214
		return -EINVAL;
2215

2216 2217 2218
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2219

2220 2221
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2222

2223 2224
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2225
	else
2226
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2227 2228 2229 2230 2231 2232 2233

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
			       constant_n);
2234

2235
	if (intel_connector->panel.downclock_mode != NULL &&
2236
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2237
			pipe_config->has_drrs = true;
2238
			intel_link_compute_m_n(output_bpp,
2239 2240 2241 2242
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2243
					       constant_n);
2244 2245
	}

2246
	if (!HAS_DDI(dev_priv))
2247
		intel_dp_set_clock(encoder, pipe_config);
2248

2249 2250
	intel_psr_compute_config(intel_dp, pipe_config);

2251
	return 0;
2252 2253
}

2254
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2255
			      int link_rate, u8 lane_count,
2256
			      bool link_mst)
2257
{
2258
	intel_dp->link_trained = false;
2259 2260 2261
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2262 2263
}

2264
static void intel_dp_prepare(struct intel_encoder *encoder,
2265
			     const struct intel_crtc_state *pipe_config)
2266
{
2267
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2268
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2269
	enum port port = encoder->port;
2270
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2271
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2272

2273 2274 2275 2276
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2277

2278
	/*
K
Keith Packard 已提交
2279
	 * There are four kinds of DP registers:
2280 2281
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2282 2283
	 * 	SNB CPU
	 *	IVB CPU
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2294

2295 2296 2297 2298
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2299

2300 2301
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2302
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2303

2304
	/* Split out the IBX/CPU vs CPT settings */
2305

2306
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2307 2308 2309 2310 2311 2312
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2313
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2314 2315
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2316
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2317
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2318 2319
		u32 trans_dp;

2320
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2321 2322 2323 2324 2325 2326 2327

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2328
	} else {
2329
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2330
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2331 2332 2333 2334 2335 2336 2337

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2338
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2339 2340
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2341
		if (IS_CHERRYVIEW(dev_priv))
2342 2343 2344
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2345
	}
2346 2347
}

2348 2349
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2350

2351 2352
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2353

2354 2355
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2356

2357
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2358

2359
static void wait_panel_status(struct intel_dp *intel_dp,
2360 2361
				       u32 mask,
				       u32 value)
2362
{
2363
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2364
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2365

V
Ville Syrjälä 已提交
2366 2367
	lockdep_assert_held(&dev_priv->pps_mutex);

2368
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2369

2370 2371
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2372

2373
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2374 2375 2376
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2377

2378 2379
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2380
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2381 2382
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2383 2384

	DRM_DEBUG_KMS("Wait complete\n");
2385
}
2386

2387
static void wait_panel_on(struct intel_dp *intel_dp)
2388 2389
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2390
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2391 2392
}

2393
static void wait_panel_off(struct intel_dp *intel_dp)
2394 2395
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2396
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2397 2398
}

2399
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2400
{
2401 2402 2403
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2404
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2405

2406 2407 2408 2409 2410
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2411 2412
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2413 2414 2415
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2416

2417
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2418 2419
}

2420
static void wait_backlight_on(struct intel_dp *intel_dp)
2421 2422 2423 2424 2425
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2426
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2427 2428 2429 2430
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2431

2432 2433 2434 2435
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2436
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2437
{
2438
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2439
	u32 control;
2440

V
Ville Syrjälä 已提交
2441 2442
	lockdep_assert_held(&dev_priv->pps_mutex);

2443
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2444 2445
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2446 2447 2448
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2449
	return control;
2450 2451
}

2452 2453 2454 2455 2456
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2457
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2458
{
2459
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2460
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2461
	u32 pp;
2462
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2463
	bool need_to_disable = !intel_dp->want_panel_vdd;
2464

V
Ville Syrjälä 已提交
2465 2466
	lockdep_assert_held(&dev_priv->pps_mutex);

2467
	if (!intel_dp_is_edp(intel_dp))
2468
		return false;
2469

2470
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2471
	intel_dp->want_panel_vdd = true;
2472

2473
	if (edp_have_panel_vdd(intel_dp))
2474
		return need_to_disable;
2475

2476 2477
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2478

V
Ville Syrjälä 已提交
2479
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2480
		      port_name(intel_dig_port->base.port));
2481

2482 2483
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2484

2485
	pp = ironlake_get_pp_control(intel_dp);
2486
	pp |= EDP_FORCE_VDD;
2487

2488 2489
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2490 2491 2492 2493 2494

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2495 2496 2497
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2498
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2499
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2500
			      port_name(intel_dig_port->base.port));
2501 2502
		msleep(intel_dp->panel_power_up_delay);
	}
2503 2504 2505 2506

	return need_to_disable;
}

2507 2508 2509 2510 2511 2512 2513
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2514
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2515
{
2516
	intel_wakeref_t wakeref;
2517
	bool vdd;
2518

2519
	if (!intel_dp_is_edp(intel_dp))
2520 2521
		return;

2522 2523 2524
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
R
Rob Clark 已提交
2525
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2526
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2527 2528
}

2529
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2530
{
2531
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2532 2533
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2534
	u32 pp;
2535
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2536

V
Ville Syrjälä 已提交
2537
	lockdep_assert_held(&dev_priv->pps_mutex);
2538

2539
	WARN_ON(intel_dp->want_panel_vdd);
2540

2541
	if (!edp_have_panel_vdd(intel_dp))
2542
		return;
2543

V
Ville Syrjälä 已提交
2544
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2545
		      port_name(intel_dig_port->base.port));
2546

2547 2548
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2549

2550 2551
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2552

2553 2554
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2555

2556 2557 2558
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2559

2560
	if ((pp & PANEL_POWER_ON) == 0)
2561
		intel_dp->panel_power_off_time = ktime_get_boottime();
2562

2563 2564
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2565
}
2566

2567
static void edp_panel_vdd_work(struct work_struct *__work)
2568
{
2569 2570 2571 2572
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2573

2574 2575 2576 2577
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2578 2579
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2593 2594 2595 2596 2597
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2598
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2599
{
2600
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2601 2602 2603

	lockdep_assert_held(&dev_priv->pps_mutex);

2604
	if (!intel_dp_is_edp(intel_dp))
2605
		return;
2606

R
Rob Clark 已提交
2607
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2608
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2609

2610 2611
	intel_dp->want_panel_vdd = false;

2612
	if (sync)
2613
		edp_panel_vdd_off_sync(intel_dp);
2614 2615
	else
		edp_panel_vdd_schedule_off(intel_dp);
2616 2617
}

2618
static void edp_panel_on(struct intel_dp *intel_dp)
2619
{
2620
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2621
	u32 pp;
2622
	i915_reg_t pp_ctrl_reg;
2623

2624 2625
	lockdep_assert_held(&dev_priv->pps_mutex);

2626
	if (!intel_dp_is_edp(intel_dp))
2627
		return;
2628

V
Ville Syrjälä 已提交
2629
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2630
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2631

2632 2633
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2634
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2635
		return;
2636

2637
	wait_panel_power_cycle(intel_dp);
2638

2639
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2640
	pp = ironlake_get_pp_control(intel_dp);
2641
	if (IS_GEN(dev_priv, 5)) {
2642 2643
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2644 2645
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2646
	}
2647

2648
	pp |= PANEL_POWER_ON;
2649
	if (!IS_GEN(dev_priv, 5))
2650 2651
		pp |= PANEL_POWER_RESET;

2652 2653
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2654

2655
	wait_panel_on(intel_dp);
2656
	intel_dp->last_power_on = jiffies;
2657

2658
	if (IS_GEN(dev_priv, 5)) {
2659
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2660 2661
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2662
	}
2663
}
V
Ville Syrjälä 已提交
2664

2665 2666
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2667 2668
	intel_wakeref_t wakeref;

2669
	if (!intel_dp_is_edp(intel_dp))
2670 2671
		return;

2672 2673
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2674 2675
}

2676 2677

static void edp_panel_off(struct intel_dp *intel_dp)
2678
{
2679
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2680
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2681
	u32 pp;
2682
	i915_reg_t pp_ctrl_reg;
2683

2684 2685
	lockdep_assert_held(&dev_priv->pps_mutex);

2686
	if (!intel_dp_is_edp(intel_dp))
2687
		return;
2688

V
Ville Syrjälä 已提交
2689
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2690
		      port_name(dig_port->base.port));
2691

V
Ville Syrjälä 已提交
2692
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2693
	     port_name(dig_port->base.port));
2694

2695
	pp = ironlake_get_pp_control(intel_dp);
2696 2697
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2698
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2699
		EDP_BLC_ENABLE);
2700

2701
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2702

2703 2704
	intel_dp->want_panel_vdd = false;

2705 2706
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2707

2708
	wait_panel_off(intel_dp);
2709
	intel_dp->panel_power_off_time = ktime_get_boottime();
2710 2711

	/* We got a reference when we enabled the VDD. */
2712
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2713
}
V
Ville Syrjälä 已提交
2714

2715 2716
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2717 2718
	intel_wakeref_t wakeref;

2719
	if (!intel_dp_is_edp(intel_dp))
2720
		return;
V
Ville Syrjälä 已提交
2721

2722 2723
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2724 2725
}

2726 2727
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2728
{
2729
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2730
	intel_wakeref_t wakeref;
2731

2732 2733 2734 2735 2736 2737
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2738
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2739

2740 2741 2742
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2743

2744 2745
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2746

2747 2748 2749
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2750 2751
}

2752
/* Enable backlight PWM and backlight PP control. */
2753 2754
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2755
{
2756 2757
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2758
	if (!intel_dp_is_edp(intel_dp))
2759 2760 2761 2762
		return;

	DRM_DEBUG_KMS("\n");

2763
	intel_panel_enable_backlight(crtc_state, conn_state);
2764 2765 2766 2767 2768
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2769
{
2770
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2771
	intel_wakeref_t wakeref;
2772

2773
	if (!intel_dp_is_edp(intel_dp))
2774 2775
		return;

2776 2777 2778
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2779

2780 2781
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2782

2783 2784 2785
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2786 2787

	intel_dp->last_backlight_off = jiffies;
2788
	edp_wait_backlight_off(intel_dp);
2789
}
2790

2791
/* Disable backlight PP control and backlight PWM. */
2792
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2793
{
2794 2795
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2796
	if (!intel_dp_is_edp(intel_dp))
2797 2798 2799
		return;

	DRM_DEBUG_KMS("\n");
2800

2801
	_intel_edp_backlight_off(intel_dp);
2802
	intel_panel_disable_backlight(old_conn_state);
2803
}
2804

2805 2806 2807 2808 2809 2810 2811 2812
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2813
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2814 2815
	bool is_enabled;

2816 2817 2818
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2819 2820 2821
	if (is_enabled == enable)
		return;

2822 2823
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2824 2825 2826 2827 2828 2829 2830

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2831 2832 2833 2834 2835 2836 2837 2838
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2839
			port_name(dig_port->base.port),
2840
			onoff(state), onoff(cur_state));
2841 2842 2843 2844 2845 2846 2847 2848 2849
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2850
			onoff(state), onoff(cur_state));
2851 2852 2853 2854
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2855
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2856
				const struct intel_crtc_state *pipe_config)
2857
{
2858
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2859
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2860

2861 2862 2863
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2864

2865
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2866
		      pipe_config->port_clock);
2867 2868 2869

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2870
	if (pipe_config->port_clock == 162000)
2871 2872 2873 2874 2875 2876 2877 2878
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2879 2880 2881 2882 2883 2884
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2885
	if (IS_GEN(dev_priv, 5))
2886
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2887

2888
	intel_dp->DP |= DP_PLL_ENABLE;
2889

2890
	I915_WRITE(DP_A, intel_dp->DP);
2891 2892
	POSTING_READ(DP_A);
	udelay(200);
2893 2894
}

2895 2896
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2897
{
2898
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2899
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2900

2901 2902 2903
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2904

2905 2906
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2907
	intel_dp->DP &= ~DP_PLL_ENABLE;
2908

2909
	I915_WRITE(DP_A, intel_dp->DP);
2910
	POSTING_READ(DP_A);
2911 2912 2913
	udelay(200);
}

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2945
/* If the sink supports it, try to set the power state appropriately */
2946
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2947 2948 2949 2950 2951 2952 2953 2954
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2955 2956 2957
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2958 2959
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2960
	} else {
2961 2962
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2963 2964 2965 2966 2967
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2968 2969
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2970 2971 2972 2973
			if (ret == 1)
				break;
			msleep(1);
		}
2974 2975 2976

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2977
	}
2978 2979 2980 2981

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2982 2983
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3030 3031
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3032
{
3033
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3034
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3035
	intel_wakeref_t wakeref;
3036
	bool ret;
3037

3038 3039 3040
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3041 3042
		return false;

3043 3044
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3045

3046
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3047 3048

	return ret;
3049
}
3050

3051
static void intel_dp_get_config(struct intel_encoder *encoder,
3052
				struct intel_crtc_state *pipe_config)
3053
{
3054
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3055 3056
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3057
	enum port port = encoder->port;
3058
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3059

3060 3061 3062 3063
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3064

3065
	tmp = I915_READ(intel_dp->output_reg);
3066 3067

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3068

3069
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3070 3071 3072
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3073 3074 3075
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3076

3077
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3078 3079 3080 3081
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3082
		if (tmp & DP_SYNC_HS_HIGH)
3083 3084 3085
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3086

3087
		if (tmp & DP_SYNC_VS_HIGH)
3088 3089 3090 3091
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3092

3093
	pipe_config->base.adjusted_mode.flags |= flags;
3094

3095
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3096 3097
		pipe_config->limited_color_range = true;

3098 3099 3100
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3101 3102
	intel_dp_get_m_n(crtc, pipe_config);

3103
	if (port == PORT_A) {
3104
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3105 3106 3107 3108
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3109

3110 3111 3112
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3113

3114
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3115
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3130 3131
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3132
	}
3133 3134
}

3135
static void intel_disable_dp(struct intel_encoder *encoder,
3136 3137
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3138
{
3139
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3140

3141 3142
	intel_dp->link_trained = false;

3143
	if (old_crtc_state->has_audio)
3144 3145
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3146 3147 3148

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3149
	intel_edp_panel_vdd_on(intel_dp);
3150
	intel_edp_backlight_off(old_conn_state);
3151
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3152
	intel_edp_panel_off(intel_dp);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3167 3168
}

3169
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3170 3171
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3172
{
3173
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3174
	enum port port = encoder->port;
3175

3176 3177 3178 3179 3180 3181
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3182
	intel_dp_link_down(encoder, old_crtc_state);
3183 3184

	/* Only ilk+ has port A */
3185
	if (port == PORT_A)
3186
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3187 3188
}

3189
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3190 3191
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3192
{
3193
	intel_dp_link_down(encoder, old_crtc_state);
3194 3195
}

3196
static void chv_post_disable_dp(struct intel_encoder *encoder,
3197 3198
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3199
{
3200
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3201

3202
	intel_dp_link_down(encoder, old_crtc_state);
3203

3204
	vlv_dpio_get(dev_priv);
3205 3206

	/* Assert data lane reset */
3207
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3208

3209
	vlv_dpio_put(dev_priv);
3210 3211
}

3212 3213
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3214 3215
			 u32 *DP,
			 u8 dp_train_pat)
3216
{
3217
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3218
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3219
	enum port port = intel_dig_port->base.port;
3220
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3221

3222
	if (dp_train_pat & train_pat_mask)
3223
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3224
			      dp_train_pat & train_pat_mask);
3225

3226
	if (HAS_DDI(dev_priv)) {
3227
		u32 temp = I915_READ(DP_TP_CTL(port));
3228 3229 3230 3231 3232 3233 3234

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3235
		switch (dp_train_pat & train_pat_mask) {
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3249 3250 3251
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3252 3253 3254
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3255
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3256
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3270
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3271 3272 3273 3274 3275
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3276
		*DP &= ~DP_LINK_TRAIN_MASK;
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3289 3290
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3291 3292 3293 3294 3295
			break;
		}
	}
}

3296
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3297
				 const struct intel_crtc_state *old_crtc_state)
3298
{
3299
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3300 3301 3302

	/* enable with pattern 1 (as per spec) */

3303
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3304 3305 3306 3307 3308 3309 3310 3311

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3312
	if (old_crtc_state->has_audio)
3313
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3314 3315 3316

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3317 3318
}

3319
static void intel_enable_dp(struct intel_encoder *encoder,
3320 3321
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3322
{
3323
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3324
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3325
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3326
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3327
	enum pipe pipe = crtc->pipe;
3328
	intel_wakeref_t wakeref;
3329

3330 3331
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3332

3333 3334 3335
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3336

3337
		intel_dp_enable_port(intel_dp, pipe_config);
3338

3339 3340 3341 3342
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3343

3344
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3345 3346
		unsigned int lane_mask = 0x0;

3347
		if (IS_CHERRYVIEW(dev_priv))
3348
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3349

3350 3351
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3352
	}
3353

3354
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3355
	intel_dp_start_link_train(intel_dp);
3356
	intel_dp_stop_link_train(intel_dp);
3357

3358
	if (pipe_config->has_audio) {
3359
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3360
				 pipe_name(pipe));
3361
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3362
	}
3363
}
3364

3365
static void g4x_enable_dp(struct intel_encoder *encoder,
3366 3367
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3368
{
3369
	intel_enable_dp(encoder, pipe_config, conn_state);
3370
	intel_edp_backlight_on(pipe_config, conn_state);
3371
}
3372

3373
static void vlv_enable_dp(struct intel_encoder *encoder,
3374 3375
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3376
{
3377
	intel_edp_backlight_on(pipe_config, conn_state);
3378 3379
}

3380
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3381 3382
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3383 3384
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3385
	enum port port = encoder->port;
3386

3387
	intel_dp_prepare(encoder, pipe_config);
3388

3389
	/* Only ilk+ has port A */
3390
	if (port == PORT_A)
3391
		ironlake_edp_pll_on(intel_dp, pipe_config);
3392 3393
}

3394 3395 3396
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3397
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3398
	enum pipe pipe = intel_dp->pps_pipe;
3399
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3400

3401 3402
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3403 3404 3405
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3406 3407 3408
	edp_panel_vdd_off_sync(intel_dp);

	/*
3409
	 * VLV seems to get confused when multiple power sequencers
3410 3411 3412
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3413
	 * selected in multiple power sequencers, but let's clear the
3414 3415 3416 3417
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3418
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3419 3420 3421 3422 3423 3424
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3425
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3426 3427 3428 3429 3430 3431
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3432 3433 3434
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3435

3436 3437 3438 3439
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3440 3441 3442 3443
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3444
			      pipe_name(pipe), port_name(port));
3445 3446

		/* make sure vdd is off before we steal it */
3447
		vlv_detach_power_sequencer(intel_dp);
3448 3449 3450
	}
}

3451 3452
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3453
{
3454
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3455 3456
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3457 3458 3459

	lockdep_assert_held(&dev_priv->pps_mutex);

3460
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3461

3462 3463 3464 3465 3466 3467 3468
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3469
		vlv_detach_power_sequencer(intel_dp);
3470
	}
3471 3472 3473 3474 3475

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3476
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3477

3478 3479
	intel_dp->active_pipe = crtc->pipe;

3480
	if (!intel_dp_is_edp(intel_dp))
3481 3482
		return;

3483 3484 3485 3486
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3487
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3488 3489

	/* init power sequencer on this pipe and port */
3490 3491
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3492 3493
}

3494
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3495 3496
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3497
{
3498
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3499

3500
	intel_enable_dp(encoder, pipe_config, conn_state);
3501 3502
}

3503
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3504 3505
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3506
{
3507
	intel_dp_prepare(encoder, pipe_config);
3508

3509
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3510 3511
}

3512
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3513 3514
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3515
{
3516
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3517

3518
	intel_enable_dp(encoder, pipe_config, conn_state);
3519 3520

	/* Second common lane will stay alive on its own now */
3521
	chv_phy_release_cl2_override(encoder);
3522 3523
}

3524
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3525 3526
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3527
{
3528
	intel_dp_prepare(encoder, pipe_config);
3529

3530
	chv_phy_pre_pll_enable(encoder, pipe_config);
3531 3532
}

3533
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3534 3535
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3536
{
3537
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3538 3539
}

3540 3541 3542 3543
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3544
bool
3545
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3546
{
3547 3548
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3549 3550
}

3551
/* These are source-specific values. */
3552
u8
K
Keith Packard 已提交
3553
intel_dp_voltage_max(struct intel_dp *intel_dp)
3554
{
3555
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3556 3557
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3558

3559
	if (HAS_DDI(dev_priv))
3560
		return intel_ddi_dp_voltage_max(encoder);
3561
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3562
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3563
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3564
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3565
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3566
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3567
	else
3568
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3569 3570
}

3571 3572
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3573
{
3574
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3575 3576
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3577

3578 3579
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3580
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3581
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3582 3583 3584 3585 3586 3587 3588
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3589
		default:
3590
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3591
		}
3592
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3593
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3594 3595 3596 3597 3598
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3599
		default:
3600
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3601 3602 3603
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3604 3605 3606 3607 3608 3609 3610
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3611
		default:
3612
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3613
		}
3614 3615 3616
	}
}

3617
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3618
{
3619
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3620 3621
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3622
	u8 train_set = intel_dp->train_set[0];
3623 3624

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3625
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3626 3627
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3628
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3629 3630 3631
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3632
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3633 3634 3635
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3636
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3637 3638 3639
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3640
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3641 3642 3643 3644 3645 3646 3647
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3648
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3649 3650
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3651
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3652 3653 3654
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3655
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3656 3657 3658
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3659
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3660 3661 3662 3663 3664 3665 3666
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3667
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3668 3669
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3670
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3671 3672 3673
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3674
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3675 3676 3677 3678 3679 3680 3681
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3682
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3683 3684
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3685
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3697 3698
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3699 3700 3701 3702

	return 0;
}

3703
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3704
{
3705 3706 3707
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3708
	u8 train_set = intel_dp->train_set[0];
3709 3710

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3711
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3712
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3713
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3714 3715 3716
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3717
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3718 3719 3720
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3721
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3722 3723 3724
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3725
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3726 3727
			deemph_reg_value = 128;
			margin_reg_value = 154;
3728
			uniq_trans_scale = true;
3729 3730 3731 3732 3733
			break;
		default:
			return 0;
		}
		break;
3734
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3735
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3736
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3737 3738 3739
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3740
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3741 3742 3743
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3744
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3745 3746 3747 3748 3749 3750 3751
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3752
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3753
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3754
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3755 3756 3757
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3758
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3759 3760 3761 3762 3763 3764 3765
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3766
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3767
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3768
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3780 3781
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3782 3783 3784 3785

	return 0;
}

3786 3787
static u32
g4x_signal_levels(u8 train_set)
3788
{
3789
	u32 signal_levels = 0;
3790

3791
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3792
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3793 3794 3795
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3796
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3797 3798
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3799
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3800 3801
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3802
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3803 3804 3805
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3806
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3807
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3808 3809 3810
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3811
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3812 3813
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3814
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3815 3816
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3817
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3818 3819 3820 3821 3822 3823
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3824
/* SNB CPU eDP voltage swing and pre-emphasis control */
3825 3826
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3827
{
3828 3829 3830
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3831 3832
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3833
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3834
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3835
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3836 3837
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3838
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3839 3840
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3841
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3842 3843
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3844
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3845
	default:
3846 3847 3848
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3849 3850 3851
	}
}

3852
/* IVB CPU eDP voltage swing and pre-emphasis control */
3853 3854
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
3855 3856 3857 3858
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3859
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3860
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3861
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3862
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3863
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3864 3865
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3866
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3867
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3868
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3869 3870
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3871
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3872
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3873
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3883
void
3884
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3885
{
3886
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3887
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3888
	enum port port = intel_dig_port->base.port;
3889 3890
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
3891

R
Rodrigo Vivi 已提交
3892
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3893 3894
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3895
		signal_levels = ddi_signal_levels(intel_dp);
3896
		mask = DDI_BUF_EMP_MASK;
3897
	} else if (IS_CHERRYVIEW(dev_priv)) {
3898
		signal_levels = chv_signal_levels(intel_dp);
3899
	} else if (IS_VALLEYVIEW(dev_priv)) {
3900
		signal_levels = vlv_signal_levels(intel_dp);
3901
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3902
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3903
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3904
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3905
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3906 3907
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3908
		signal_levels = g4x_signal_levels(train_set);
3909 3910 3911
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3912 3913 3914 3915 3916 3917 3918 3919
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3920

3921
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3922 3923 3924

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3925 3926
}

3927
void
3928
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3929
				       u8 dp_train_pat)
3930
{
3931
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3932 3933
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3934

3935
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3936

3937
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3938
	POSTING_READ(intel_dp->output_reg);
3939 3940
}

3941
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3942
{
3943
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3944
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3945
	enum port port = intel_dig_port->base.port;
3946
	u32 val;
3947

3948
	if (!HAS_DDI(dev_priv))
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3966 3967
	if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port),
				  DP_TP_STATUS_IDLE_DONE, 1))
3968 3969 3970
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3971
static void
3972 3973
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3974
{
3975 3976 3977 3978
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
3979
	u32 DP = intel_dp->DP;
3980

3981
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3982 3983
		return;

3984
	DRM_DEBUG_KMS("\n");
3985

3986
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3987
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3988
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3989
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3990
	} else {
3991
		DP &= ~DP_LINK_TRAIN_MASK;
3992
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3993
	}
3994
	I915_WRITE(intel_dp->output_reg, DP);
3995
	POSTING_READ(intel_dp->output_reg);
3996

3997 3998 3999 4000 4001 4002 4003 4004 4005
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4006
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4007 4008 4009 4010 4011 4012 4013
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4014
		/* always enable with pattern 1 (as per spec) */
4015 4016 4017
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4018 4019 4020 4021
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
4022
		I915_WRITE(intel_dp->output_reg, DP);
4023
		POSTING_READ(intel_dp->output_reg);
4024

4025
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4026 4027
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4028 4029
	}

4030
	msleep(intel_dp->panel_power_down_delay);
4031 4032

	intel_dp->DP = DP;
4033 4034

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4035 4036 4037 4038
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4039
	}
4040 4041
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4078
bool
4079
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4080
{
4081 4082
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4083
		return false; /* aux transfer failed */
4084

4085 4086
	intel_dp_extended_receiver_capabilities(intel_dp);

4087
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4088

4089 4090
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4091

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4102 4103 4104 4105 4106 4107 4108 4109
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4110 4111 4112
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4125

4126
		/* FEC is supported only on DP 1.4 */
4127 4128 4129 4130
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4131

4132
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4133 4134 4135
	}
}

4136 4137 4138 4139 4140
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4141

4142 4143
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4144

4145
	if (!intel_dp_read_dpcd(intel_dp))
4146 4147
		return false;

4148 4149
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4150

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4161 4162
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4163
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4164
			      intel_dp->edp_dpcd);
4165

4166 4167 4168 4169 4170 4171
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4172 4173
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4174
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4175 4176
		int i;

4177 4178
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4179

4180 4181
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4182 4183 4184 4185

			if (val == 0)
				break;

4186 4187 4188 4189 4190 4191
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4192
			intel_dp->sink_rates[i] = (val * 200) / 10;
4193
		}
4194
		intel_dp->num_sink_rates = i;
4195
	}
4196

4197 4198 4199 4200
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4201 4202 4203 4204 4205
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4206 4207
	intel_dp_set_common_rates(intel_dp);

4208 4209 4210 4211
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4222 4223 4224 4225
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4226
	if (!intel_dp_is_edp(intel_dp)) {
4227 4228 4229
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4230
		intel_dp_set_sink_rates(intel_dp);
4231 4232
		intel_dp_set_common_rates(intel_dp);
	}
4233

4234
	/*
4235 4236
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4237
	 */
4238 4239
	if (!intel_dp_is_edp(intel_dp) &&
	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4240 4241
		u8 count;
		ssize_t r;
4242

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4264

4265
	if (!drm_dp_is_branch(intel_dp->dpcd))
4266 4267 4268 4269 4270
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4271 4272 4273
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4274 4275 4276
		return false; /* downstream port status fetch failed */

	return true;
4277 4278
}

4279
static bool
4280
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4281
{
4282
	u8 mstm_cap;
4283 4284 4285 4286

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4287
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4288
		return false;
4289

4290
	return mstm_cap & DP_MST_CAP;
4291 4292
}

4293 4294 4295 4296 4297 4298 4299 4300
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4301 4302 4303
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4304 4305 4306 4307 4308 4309 4310
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4311 4312 4313 4314

	if (!intel_dp->can_mst)
		return;

4315 4316
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4317 4318 4319

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4320 4321 4322 4323 4324
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4325 4326 4327
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4328 4329
}

4330
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
4397
	min_slice_count = min_t(u8, min_slice_count,
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
static void
intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

	/*
	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
	 * DB16[3:0] DP 1.4a spec, Table 2-120
	 */
	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
	/* RGB->YCBCR color conversion uses the BT.709 color space. */
	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
		return;

	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
}

4505
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4506
{
4507
	int status = 0;
4508
	int test_link_rate;
4509
	u8 test_lane_count, test_link_bw;
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4530 4531 4532 4533

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4534 4535 4536 4537 4538 4539
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4540 4541
}

4542
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4543
{
4544 4545
	u8 test_pattern;
	u8 test_misc;
4546 4547 4548 4549
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4550 4551
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4573 4574
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4601 4602
}

4603
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4604
{
4605
	u8 test_result = DP_TEST_ACK;
4606 4607 4608 4609
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4610
	    connector->edid_corrupt ||
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4624
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4625
	} else {
4626 4627 4628 4629 4630 4631 4632
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4633 4634
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4635 4636 4637
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4638
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4639 4640 4641
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4642
	intel_dp->compliance.test_active = 1;
4643

4644 4645 4646
	return test_result;
}

4647
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4648
{
4649
	u8 test_result = DP_TEST_NAK;
4650 4651 4652 4653 4654
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4655 4656
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4657
	int status;
4658

4659
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4660 4661 4662 4663 4664
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4665
	switch (request) {
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4683
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4684 4685 4686
		break;
	}

4687 4688 4689
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4690
update_status:
4691
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4692 4693
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4694 4695
}

4696 4697 4698 4699 4700 4701
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4702
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4703 4704 4705
		int ret = 0;
		int retry;
		bool handled;
4706 4707

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4708 4709 4710 4711 4712
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4713
			if (intel_dp->active_mst_links > 0 &&
4714
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4715 4716 4717 4718 4719
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4720
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4736
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4737 4738 4739 4740 4741 4742 4743 4744 4745
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4746 4747
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4748 4749 4750 4751 4752
		}
	}
	return -EINVAL;
}

4753 4754 4755 4756 4757
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4758
	if (!intel_dp->link_trained)
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4770 4771 4772
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4789 4790
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4831 4832 4833

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4834
	if (crtc_state->has_pch_encoder)
4835 4836 4837 4838 4839 4840 4841
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4842
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4843 4844

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4845
	if (crtc_state->has_pch_encoder)
4846 4847
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4848 4849

	return 0;
4850 4851
}

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
4864 4865 4866 4867
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
4868
{
4869
	struct drm_modeset_acquire_ctx ctx;
4870
	enum intel_hotplug_state state;
4871
	int ret;
4872

4873
	state = intel_encoder_hotplug(encoder, connector, irq_received);
4874

4875
	drm_modeset_acquire_init(&ctx, 0);
4876

4877 4878
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4879

4880 4881 4882 4883
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4884

4885 4886
		break;
	}
4887

4888 4889 4890
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4891

4892 4893 4894 4895 4896 4897 4898
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

4899
	return state;
4900 4901
}

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4918
	if (val & DP_CP_IRQ)
4919
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4920 4921 4922

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4923 4924
}

4925 4926 4927 4928 4929 4930 4931
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4932 4933 4934 4935 4936
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4937
 */
4938
static bool
4939
intel_dp_short_pulse(struct intel_dp *intel_dp)
4940
{
4941
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4942 4943
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4944

4945 4946 4947 4948
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4949
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4950

4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4962 4963
	}

4964
	intel_dp_check_service_irq(intel_dp);
4965

4966 4967 4968
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4969 4970 4971
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4972

4973 4974
	intel_psr_short_pulse(intel_dp);

4975 4976 4977
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4978
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4979
	}
4980 4981

	return true;
4982 4983
}

4984
/* XXX this is probably wrong for multiple downstream ports */
4985
static enum drm_connector_status
4986
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4987
{
4988
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4989 4990
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
4991

4992 4993 4994
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

4995 4996 4997
	if (lspcon->active)
		lspcon_resume(lspcon);

4998 4999 5000 5001
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5002
	if (!drm_dp_is_branch(dpcd))
5003
		return connector_status_connected;
5004 5005

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5006 5007
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5008

5009 5010
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5011 5012
	}

5013 5014 5015
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5016
	/* If no HPD, poke DDC gently */
5017
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5018
		return connector_status_connected;
5019 5020

	/* Well we tried, say unknown for unreliable port types */
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5033 5034 5035

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5036
	return connector_status_disconnected;
5037 5038
}

5039 5040 5041
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5042
	return connector_status_connected;
5043 5044
}

5045
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5046
{
5047
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5048
	u32 bit;
5049

5050 5051
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5052 5053
		bit = SDE_PORTB_HOTPLUG;
		break;
5054
	case HPD_PORT_C:
5055 5056
		bit = SDE_PORTC_HOTPLUG;
		break;
5057
	case HPD_PORT_D:
5058 5059 5060
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5061
		MISSING_CASE(encoder->hpd_pin);
5062 5063 5064 5065 5066 5067
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5068
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5069
{
5070
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5071 5072
	u32 bit;

5073 5074
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5075 5076
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5077
	case HPD_PORT_C:
5078 5079
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5080
	case HPD_PORT_D:
5081 5082
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5083
	default:
5084
		MISSING_CASE(encoder->hpd_pin);
5085 5086 5087 5088 5089 5090
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5091
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5092
{
5093
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5094 5095
	u32 bit;

5096 5097
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5098 5099
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5100
	case HPD_PORT_E:
5101 5102
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5103
	default:
5104
		return cpt_digital_port_connected(encoder);
5105
	}
5106

5107
	return I915_READ(SDEISR) & bit;
5108 5109
}

5110
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5111
{
5112
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5113
	u32 bit;
5114

5115 5116
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5117 5118
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5119
	case HPD_PORT_C:
5120 5121
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5122
	case HPD_PORT_D:
5123 5124 5125
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5126
		MISSING_CASE(encoder->hpd_pin);
5127 5128 5129 5130 5131 5132
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

5133
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5134
{
5135
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5136 5137
	u32 bit;

5138 5139
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5140
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5141
		break;
5142
	case HPD_PORT_C:
5143
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5144
		break;
5145
	case HPD_PORT_D:
5146
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5147 5148
		break;
	default:
5149
		MISSING_CASE(encoder->hpd_pin);
5150
		return false;
5151 5152
	}

5153
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5154 5155
}

5156
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5157
{
5158 5159 5160
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5161 5162
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5163
		return ibx_digital_port_connected(encoder);
5164 5165
}

5166
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5167
{
5168 5169 5170
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5171 5172
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5173
		return cpt_digital_port_connected(encoder);
5174 5175
}

5176
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5177
{
5178 5179 5180
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5181 5182
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5183
		return cpt_digital_port_connected(encoder);
5184 5185
}

5186
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5187
{
5188 5189 5190
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5191 5192
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5193
		return cpt_digital_port_connected(encoder);
5194 5195
}

5196
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5197
{
5198
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5199 5200
	u32 bit;

5201 5202
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5203 5204
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5205
	case HPD_PORT_B:
5206 5207
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5208
	case HPD_PORT_C:
5209 5210 5211
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5212
		MISSING_CASE(encoder->hpd_pin);
5213 5214 5215 5216 5217 5218
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5231
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5232

5233
	if (intel_phy_is_combo(dev_priv, phy))
5234
		return icl_combo_port_connected(dev_priv, dig_port);
5235
	else if (intel_phy_is_tc(dev_priv, phy))
5236
		return intel_tc_port_connected(dig_port);
5237
	else
5238
		MISSING_CASE(encoder->hpd_pin);
5239 5240

	return false;
5241 5242
}

5243 5244
/*
 * intel_digital_port_connected - is the specified port connected?
5245
 * @encoder: intel_encoder
5246
 *
5247 5248 5249 5250 5251
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5252
 * Return %true if port is connected, %false otherwise.
5253
 */
5254
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5255
{
5256 5257
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5258
	if (HAS_GMCH(dev_priv)) {
5259
		if (IS_GM45(dev_priv))
5260
			return gm45_digital_port_connected(encoder);
5261
		else
5262
			return g4x_digital_port_connected(encoder);
5263 5264
	}

5265 5266
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5267
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5268
		return spt_digital_port_connected(encoder);
5269
	else if (IS_GEN9_LP(dev_priv))
5270
		return bxt_digital_port_connected(encoder);
5271
	else if (IS_GEN(dev_priv, 8))
5272
		return bdw_digital_port_connected(encoder);
5273
	else if (IS_GEN(dev_priv, 7))
5274
		return ivb_digital_port_connected(encoder);
5275
	else if (IS_GEN(dev_priv, 6))
5276
		return snb_digital_port_connected(encoder);
5277
	else if (IS_GEN(dev_priv, 5))
5278 5279 5280 5281
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5282 5283
}

5284 5285 5286
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5287
	bool is_connected = false;
5288 5289 5290 5291 5292 5293 5294 5295
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5296
static struct edid *
5297
intel_dp_get_edid(struct intel_dp *intel_dp)
5298
{
5299
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5300

5301 5302 5303 5304
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5305 5306
			return NULL;

J
Jani Nikula 已提交
5307
		return drm_edid_duplicate(intel_connector->edid);
5308 5309 5310 5311
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5312

5313 5314 5315 5316 5317
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5318

5319
	intel_dp_unset_edid(intel_dp);
5320 5321 5322
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5323
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5324
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5325 5326
}

5327 5328
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5329
{
5330
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5331

5332
	drm_dp_cec_unset_edid(&intel_dp->aux);
5333 5334
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5335

5336 5337
	intel_dp->has_audio = false;
}
5338

5339
static int
5340 5341 5342
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5343
{
5344 5345
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5346 5347
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5348 5349
	enum drm_connector_status status;

5350 5351
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5352
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5353

5354
	/* Can't disconnect eDP */
5355
	if (intel_dp_is_edp(intel_dp))
5356
		status = edp_detect(intel_dp);
5357
	else if (intel_digital_port_connected(encoder))
5358
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5359
	else
5360 5361
		status = connector_status_disconnected;

5362
	if (status == connector_status_disconnected) {
5363
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5364
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5365

5366 5367 5368 5369 5370 5371 5372 5373 5374
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5375
		goto out;
5376
	}
Z
Zhenyu Wang 已提交
5377

5378
	if (intel_dp->reset_link_params) {
5379 5380
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5381

5382 5383
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5384 5385 5386

		intel_dp->reset_link_params = false;
	}
5387

5388 5389
	intel_dp_print_rates(intel_dp);

5390 5391 5392 5393
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5394 5395 5396
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5397 5398 5399 5400 5401
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5402 5403
		status = connector_status_disconnected;
		goto out;
5404 5405 5406 5407 5408 5409
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5410 5411 5412 5413
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5414
		if (ret)
5415 5416
			return ret;
	}
5417

5418 5419 5420 5421 5422 5423 5424 5425
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5426
	intel_dp_set_edid(intel_dp);
5427 5428
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5429
		status = connector_status_connected;
5430

5431
	intel_dp_check_service_irq(intel_dp);
5432

5433
out:
5434
	if (status != connector_status_connected && !intel_dp->is_mst)
5435
		intel_dp_unset_edid(intel_dp);
5436

5437
	return status;
5438 5439
}

5440 5441
static void
intel_dp_force(struct drm_connector *connector)
5442
{
5443
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5444 5445
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5446
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5447 5448
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5449
	intel_wakeref_t wakeref;
5450

5451 5452 5453
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5454

5455 5456
	if (connector->status != connector_status_connected)
		return;
5457

5458
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5459 5460 5461

	intel_dp_set_edid(intel_dp);

5462
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5476

5477
	/* if eDP has no EDID, fall back to fixed mode */
5478
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5479
	    intel_connector->panel.fixed_mode) {
5480
		struct drm_display_mode *mode;
5481 5482

		mode = drm_mode_duplicate(connector->dev,
5483
					  intel_connector->panel.fixed_mode);
5484
		if (mode) {
5485 5486 5487 5488
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5489

5490
	return 0;
5491 5492
}

5493 5494 5495 5496
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5497
	struct drm_device *dev = connector->dev;
5498 5499 5500 5501 5502
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5503 5504 5505 5506 5507 5508 5509

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5510 5511 5512 5513 5514
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5515 5516
}

5517 5518 5519
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5520 5521 5522 5523
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5524 5525 5526
	intel_connector_unregister(connector);
}

5527
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5528
{
5529 5530
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5531

5532
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5533
	if (intel_dp_is_edp(intel_dp)) {
5534 5535
		intel_wakeref_t wakeref;

5536
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5537 5538 5539 5540
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5541 5542
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5543

5544 5545 5546 5547
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5548
	}
5549 5550

	intel_dp_aux_fini(intel_dp);
5551 5552 5553 5554 5555
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5556

5557
	drm_encoder_cleanup(encoder);
5558
	kfree(enc_to_dig_port(encoder));
5559 5560
}

5561
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5562 5563
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5564
	intel_wakeref_t wakeref;
5565

5566
	if (!intel_dp_is_edp(intel_dp))
5567 5568
		return;

5569 5570 5571 5572
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5573
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5574 5575
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5576 5577
}

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5590 5591 5592 5593 5594
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5595 5596 5597 5598 5599
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5600
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5601 5602 5603 5604 5605 5606 5607
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5608 5609
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5610 5611 5612 5613 5614 5615 5616 5617 5618
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5619
	intel_dp_aux_header(txbuf, &msg);
5620

5621
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5622 5623
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5624
	if (ret < 0) {
5625
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5626 5627
		return ret;
	} else if (ret == 0) {
5628
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5629 5630 5631 5632
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5633 5634 5635 5636 5637 5638
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5639 5640 5641 5642 5643 5644 5645 5646 5647
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5648
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5666
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5667 5668 5669 5670 5671 5672
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5673 5674
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5675 5676
{
	ssize_t ret;
5677

5678
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5679
			       bcaps, 1);
5680
	if (ret != 1) {
5681
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5682 5683
		return ret >= 0 ? -EIO : ret;
	}
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5711
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5726
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5748 5749
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5769
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5788

5789 5790 5791
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5792
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5793
		return false;
5794
	}
5795

5796 5797 5798
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5814 5815 5816 5817 5818
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

5819
struct hdcp2_dp_msg_data {
5820 5821 5822 5823 5824
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
5825 5826
};

5827
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
5856 5857
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
5858 5859 5860 5861
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5915
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
5936 5937 5938 5939 5940 5941 5942
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

5954
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
5955 5956 5957
{
	int i;

5958 5959 5960
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
5961 5962 5963 5964 5965 5966 5967 5968

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
5969 5970
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5971 5972 5973
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
5974
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

5986 5987
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6038
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6157
	.hdcp_capable = intel_dp_hdcp_capable,
6158 6159 6160 6161 6162 6163
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6164 6165
};

6166 6167
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6168
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6169
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6183
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6184 6185 6186 6187

	edp_panel_vdd_schedule_off(intel_dp);
}

6188 6189
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6190
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6191 6192
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6193

6194 6195 6196
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6197

6198
	return INVALID_PIPE;
6199 6200
}

6201
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6202
{
6203
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6204 6205
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6206
	intel_wakeref_t wakeref;
6207 6208 6209

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6210

6211
	if (lspcon->active)
6212 6213
		lspcon_resume(lspcon);

6214 6215
	intel_dp->reset_link_params = true;

6216 6217 6218 6219
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6220 6221 6222
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6223

6224 6225 6226 6227 6228 6229 6230 6231
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6232
	}
6233 6234
}

6235
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6236
	.force = intel_dp_force,
6237
	.fill_modes = drm_helper_probe_single_connector_modes,
6238 6239
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6240
	.late_register = intel_dp_connector_register,
6241
	.early_unregister = intel_dp_connector_unregister,
6242
	.destroy = intel_connector_destroy,
6243
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6244
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6245 6246 6247
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6248
	.detect_ctx = intel_dp_detect,
6249 6250
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6251
	.atomic_check = intel_digital_connector_atomic_check,
6252 6253 6254
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6255
	.reset = intel_dp_encoder_reset,
6256
	.destroy = intel_dp_encoder_destroy,
6257 6258
};

6259
enum irqreturn
6260 6261 6262
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6263

6264 6265 6266 6267 6268 6269 6270 6271
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6272
			      port_name(intel_dig_port->base.port));
6273
		return IRQ_HANDLED;
6274 6275
	}

6276
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6277
		      port_name(intel_dig_port->base.port),
6278
		      long_hpd ? "long" : "short");
6279

6280
	if (long_hpd) {
6281
		intel_dp->reset_link_params = true;
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6296 6297

			return IRQ_NONE;
6298
		}
6299
	}
6300

6301
	if (!intel_dp->is_mst) {
6302
		bool handled;
6303 6304 6305

		handled = intel_dp_short_pulse(intel_dp);

6306
		if (!handled)
6307
			return IRQ_NONE;
6308
	}
6309

6310
	return IRQ_HANDLED;
6311 6312
}

6313
/* check the VBT to see whether the eDP is on another port */
6314
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6315
{
6316 6317 6318 6319
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6320
	if (INTEL_GEN(dev_priv) < 5)
6321 6322
		return false;

6323
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6324 6325
		return true;

6326
	return intel_bios_is_port_edp(dev_priv, port);
6327 6328
}

6329
static void
6330 6331
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6332
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6333 6334 6335 6336
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6337

6338
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6339
	if (HAS_GMCH(dev_priv))
6340 6341 6342
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6343

6344
	if (intel_dp_is_edp(intel_dp)) {
6345 6346 6347
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6348
		if (!HAS_GMCH(dev_priv))
6349 6350 6351 6352
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6353
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6354

6355
	}
6356 6357
}

6358 6359
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6360
	intel_dp->panel_power_off_time = ktime_get_boottime();
6361 6362 6363 6364
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6365
static void
6366
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6367
{
6368
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6369
	u32 pp_on, pp_off, pp_ctl;
6370
	struct pps_registers regs;
6371

6372
	intel_pps_get_registers(intel_dp, &regs);
6373

6374
	pp_ctl = ironlake_get_pp_control(intel_dp);
6375

6376 6377 6378 6379
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6380 6381
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6382 6383

	/* Pull timing values out of registers */
6384 6385 6386 6387
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6388

6389 6390 6391 6392 6393
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6394
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6395
	} else {
6396
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6397
	}
6398 6399
}

I
Imre Deak 已提交
6400 6401 6402 6403 6404 6405 6406 6407 6408
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6409
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6410 6411 6412 6413
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6414
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6424
static void
6425
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6426
{
6427
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6428 6429 6430 6431 6432 6433 6434 6435 6436
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6437
	intel_pps_readout_hw_state(intel_dp, &cur);
6438

I
Imre Deak 已提交
6439
	intel_pps_dump_state("cur", &cur);
6440

6441
	vbt = dev_priv->vbt.edp.pps;
6442 6443 6444 6445 6446 6447
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6448
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6449 6450 6451
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6452 6453 6454 6455 6456
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6470
	intel_pps_dump_state("vbt", &vbt);
6471 6472 6473

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6474
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6475 6476 6477 6478 6479 6480 6481 6482 6483
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6484
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6485 6486 6487 6488 6489 6490 6491
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6492 6493 6494 6495 6496 6497
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6508 6509 6510 6511 6512 6513

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6514 6515 6516
}

static void
6517
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6518
					      bool force_disable_vdd)
6519
{
6520
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6521
	u32 pp_on, pp_off, port_sel = 0;
6522
	int div = dev_priv->rawclk_freq / 1000;
6523
	struct pps_registers regs;
6524
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6525
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6526

V
Ville Syrjälä 已提交
6527
	lockdep_assert_held(&dev_priv->pps_mutex);
6528

6529
	intel_pps_get_registers(intel_dp, &regs);
6530

6531 6532
	/*
	 * On some VLV machines the BIOS can leave the VDD
6533
	 * enabled even on power sequencers which aren't
6534 6535 6536 6537 6538 6539 6540
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6541
	 * soon as the new power sequencer gets initialized.
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6556 6557 6558 6559
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6560 6561 6562

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6563
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6564
		port_sel = PANEL_PORT_SELECT_VLV(port);
6565
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6566 6567
		switch (port) {
		case PORT_A:
6568
			port_sel = PANEL_PORT_SELECT_DPA;
6569 6570 6571 6572 6573
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6574
			port_sel = PANEL_PORT_SELECT_DPD;
6575 6576 6577 6578 6579
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6580 6581
	}

6582 6583
	pp_on |= port_sel;

6584 6585
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6586 6587 6588 6589 6590

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6591 6592 6593
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6594 6595 6596 6597 6598
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6599
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6600 6601
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6602 6603

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6604 6605
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6606 6607 6608
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6609 6610
}

6611
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6612
{
6613
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6614 6615

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6616 6617
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6618 6619
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6620 6621 6622
	}
}

6623 6624
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6625
 * @dev_priv: i915 device
6626
 * @crtc_state: a pointer to the active intel_crtc_state
6627 6628 6629 6630 6631 6632 6633 6634 6635
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6636
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6637
				    const struct intel_crtc_state *crtc_state,
6638
				    int refresh_rate)
6639
{
6640
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6641
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6642
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6643 6644 6645 6646 6647 6648

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6649 6650
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6651 6652 6653 6654 6655 6656 6657 6658
		return;
	}

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6659
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6660 6661 6662 6663
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6664 6665
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6666 6667
		index = DRRS_LOW_RR;

6668
	if (index == dev_priv->drrs.refresh_rate_type) {
6669 6670 6671 6672 6673
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6674
	if (!crtc_state->base.active) {
6675 6676 6677 6678
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6679
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6680 6681
		switch (index) {
		case DRRS_HIGH_RR:
6682
			intel_dp_set_m_n(crtc_state, M1_N1);
6683 6684
			break;
		case DRRS_LOW_RR:
6685
			intel_dp_set_m_n(crtc_state, M2_N2);
6686 6687 6688 6689 6690
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6691 6692
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6693
		u32 val;
6694

6695
		val = I915_READ(reg);
6696
		if (index > DRRS_HIGH_RR) {
6697
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6698 6699 6700
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6701
		} else {
6702
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6703 6704 6705
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6706 6707 6708 6709
		}
		I915_WRITE(reg, val);
	}

6710 6711 6712 6713 6714
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6715 6716 6717
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6718
 * @crtc_state: A pointer to the active crtc state.
6719 6720 6721
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6722
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6723
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6724
{
6725
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6726

6727
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6728 6729 6730 6731
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6732 6733 6734 6735 6736
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6737
	mutex_lock(&dev_priv->drrs.mutex);
6738 6739
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6751 6752 6753
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6754
 * @old_crtc_state: Pointer to old crtc_state.
6755 6756
 *
 */
6757
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6758
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6759
{
6760
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6761

6762
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6772 6773
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6774 6775 6776 6777 6778 6779 6780

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6794
	/*
6795 6796
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6797 6798
	 */

6799 6800
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6801

6802 6803 6804 6805 6806 6807
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6808

6809 6810
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6811 6812
}

6813
/**
6814
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6815
 * @dev_priv: i915 device
6816 6817
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6818 6819
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6820 6821 6822
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6823 6824
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6825 6826 6827 6828
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6829
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6830 6831
		return;

6832
	cancel_delayed_work(&dev_priv->drrs.work);
6833

6834
	mutex_lock(&dev_priv->drrs.mutex);
6835 6836 6837 6838 6839
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6840 6841 6842
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6843 6844 6845
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6846
	/* invalidate means busy screen hence upclock */
6847
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6848 6849
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6850 6851 6852 6853

	mutex_unlock(&dev_priv->drrs.mutex);
}

6854
/**
6855
 * intel_edp_drrs_flush - Restart Idleness DRRS
6856
 * @dev_priv: i915 device
6857 6858
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6859 6860 6861 6862
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6863 6864 6865
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6866 6867
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6868 6869 6870 6871
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6872
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6873 6874
		return;

6875
	cancel_delayed_work(&dev_priv->drrs.work);
6876

6877
	mutex_lock(&dev_priv->drrs.mutex);
6878 6879 6880 6881 6882
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6883 6884
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6885 6886

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6887 6888
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6889
	/* flush means busy screen hence upclock */
6890
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6891 6892
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6893 6894 6895 6896 6897 6898

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6899 6900 6901 6902 6903
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6927 6928 6929 6930 6931 6932 6933 6934
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6935 6936 6937 6938 6939 6940 6941 6942
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6943
 * @connector: eDP connector
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6954
static struct drm_display_mode *
6955 6956
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6957
{
6958
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6959 6960
	struct drm_display_mode *downclock_mode = NULL;

6961 6962 6963
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6964
	if (INTEL_GEN(dev_priv) <= 6) {
6965 6966 6967 6968 6969
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6970
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6971 6972 6973
		return NULL;
	}

6974
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
6975
	if (!downclock_mode) {
6976
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6977 6978 6979
		return NULL;
	}

6980
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6981

6982
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6983
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6984 6985 6986
	return downclock_mode;
}

6987
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6988
				     struct intel_connector *intel_connector)
6989
{
6990 6991
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
6992
	struct drm_connector *connector = &intel_connector->base;
6993
	struct drm_display_mode *fixed_mode = NULL;
6994
	struct drm_display_mode *downclock_mode = NULL;
6995
	bool has_dpcd;
6996
	enum pipe pipe = INVALID_PIPE;
6997 6998
	intel_wakeref_t wakeref;
	struct edid *edid;
6999

7000
	if (!intel_dp_is_edp(intel_dp))
7001 7002
		return true;

7003 7004
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7005 7006 7007 7008 7009 7010
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7011
	if (intel_get_lvds_encoder(dev_priv)) {
7012 7013 7014 7015 7016 7017
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7018 7019 7020 7021 7022
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7023

7024
	/* Cache DPCD and EDID for edp. */
7025
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7026

7027
	if (!has_dpcd) {
7028 7029
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7030
		goto out_vdd_off;
7031 7032
	}

7033
	mutex_lock(&dev->mode_config.mutex);
7034
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7035 7036
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7037
			drm_connector_update_edid_property(connector,
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7048 7049 7050
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7051 7052

	/* fallback to VBT if available for eDP */
7053 7054
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7055
	mutex_unlock(&dev->mode_config.mutex);
7056

7057
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7058 7059
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7060 7061 7062 7063 7064 7065

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7066
		pipe = vlv_active_pipe(intel_dp);
7067 7068 7069 7070 7071 7072 7073 7074 7075

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7076 7077
	}

7078
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7079
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7080
	intel_panel_setup_backlight(connector, pipe);
7081

7082 7083 7084 7085
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7086
	return true;
7087 7088 7089 7090 7091 7092 7093

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7094 7095
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7096 7097

	return false;
7098 7099
}

7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7116 7117
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7118 7119 7120 7121 7122
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7123
bool
7124 7125
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7126
{
7127 7128 7129 7130
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7131
	struct drm_i915_private *dev_priv = to_i915(dev);
7132
	enum port port = intel_encoder->port;
7133
	enum phy phy = intel_port_to_phy(dev_priv, port);
7134
	int type;
7135

7136 7137 7138 7139
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7140 7141 7142 7143 7144
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

7145 7146
	intel_dp_set_source_rates(intel_dp);

7147
	intel_dp->reset_link_params = true;
7148
	intel_dp->pps_pipe = INVALID_PIPE;
7149
	intel_dp->active_pipe = INVALID_PIPE;
7150

7151 7152
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7153
	intel_dp->attached_connector = intel_connector;
7154

7155 7156 7157 7158 7159
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
7160
		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7161
		type = DRM_MODE_CONNECTOR_eDP;
7162
	} else {
7163
		type = DRM_MODE_CONNECTOR_DisplayPort;
7164
	}
7165

7166 7167 7168
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7169 7170 7171 7172 7173 7174 7175 7176
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7177
	/* eDP only on port B and/or C on vlv/chv */
7178
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7179 7180
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7181 7182
		return false;

7183 7184 7185 7186
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

7187
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7188 7189
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7190
	if (!HAS_GMCH(dev_priv))
7191
		connector->interlace_allowed = true;
7192 7193
	connector->doublescan_allowed = 0;

7194 7195 7196
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

7197
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7198

7199
	intel_dp_aux_init(intel_dp);
7200

7201
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7202

7203
	if (HAS_DDI(dev_priv))
7204 7205 7206 7207
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7208
	/* init MST on ports that can support it */
7209
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7210 7211
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7212 7213
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7214

7215
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7216 7217 7218
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7219
	}
7220

7221
	intel_dp_add_properties(intel_dp, connector);
7222

7223
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7224 7225 7226 7227
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7228

7229 7230 7231 7232
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7233
	if (IS_G45(dev_priv)) {
7234 7235 7236
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7237 7238

	return true;
7239 7240 7241 7242 7243

fail:
	drm_connector_cleanup(connector);

	return false;
7244
}
7245

7246
bool intel_dp_init(struct drm_i915_private *dev_priv,
7247 7248
		   i915_reg_t output_reg,
		   enum port port)
7249 7250 7251 7252 7253 7254
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7255
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7256
	if (!intel_dig_port)
7257
		return false;
7258

7259
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7260 7261
	if (!intel_connector)
		goto err_connector_alloc;
7262 7263 7264 7265

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7266 7267 7268
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7269
		goto err_encoder_init;
7270

7271
	intel_encoder->hotplug = intel_dp_hotplug;
7272
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7273
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7274
	intel_encoder->get_config = intel_dp_get_config;
7275
	intel_encoder->update_pipe = intel_panel_update_backlight;
7276
	intel_encoder->suspend = intel_dp_encoder_suspend;
7277
	if (IS_CHERRYVIEW(dev_priv)) {
7278
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7279 7280
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7281
		intel_encoder->disable = vlv_disable_dp;
7282
		intel_encoder->post_disable = chv_post_disable_dp;
7283
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7284
	} else if (IS_VALLEYVIEW(dev_priv)) {
7285
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7286 7287
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7288
		intel_encoder->disable = vlv_disable_dp;
7289
		intel_encoder->post_disable = vlv_post_disable_dp;
7290
	} else {
7291 7292
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7293
		intel_encoder->disable = g4x_disable_dp;
7294
		intel_encoder->post_disable = g4x_post_disable_dp;
7295
	}
7296 7297

	intel_dig_port->dp.output_reg = output_reg;
7298
	intel_dig_port->max_lanes = 4;
7299

7300
	intel_encoder->type = INTEL_OUTPUT_DP;
7301
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7302
	if (IS_CHERRYVIEW(dev_priv)) {
7303 7304 7305 7306 7307 7308 7309
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7310
	intel_encoder->cloneable = 0;
7311
	intel_encoder->port = port;
7312

7313 7314
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7315 7316 7317
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7318
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7319 7320 7321
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7322
	return true;
S
Sudip Mukherjee 已提交
7323 7324 7325

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7326
err_encoder_init:
S
Sudip Mukherjee 已提交
7327 7328 7329
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7330
	return false;
7331
}
7332

7333
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7334
{
7335 7336 7337 7338
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7339

7340 7341
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7342

7343
		intel_dp = enc_to_intel_dp(&encoder->base);
7344

7345
		if (!intel_dp->can_mst)
7346 7347
			continue;

7348 7349
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7350 7351 7352
	}
}

7353
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7354
{
7355
	struct intel_encoder *encoder;
7356

7357 7358
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7359
		int ret;
7360

7361 7362 7363 7364 7365 7366
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7367
			continue;
7368

7369
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7370 7371 7372 7373 7374
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7375 7376
	}
}