intel_dp.c 220.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_debugfs.h"
46
#include "i915_drv.h"
47
#include "i915_trace.h"
48
#include "intel_atomic.h"
49
#include "intel_audio.h"
50
#include "intel_connector.h"
51
#include "intel_ddi.h"
52
#include "intel_display_debugfs.h"
53
#include "intel_display_types.h"
54
#include "intel_dp.h"
55
#include "intel_dp_link_training.h"
56
#include "intel_dp_mst.h"
57
#include "intel_dpio_phy.h"
58
#include "intel_fifo_underrun.h"
59
#include "intel_hdcp.h"
60
#include "intel_hdmi.h"
61
#include "intel_hotplug.h"
62
#include "intel_lspcon.h"
63
#include "intel_lvds.h"
64
#include "intel_panel.h"
65
#include "intel_psr.h"
66
#include "intel_sideband.h"
67
#include "intel_tc.h"
68
#include "intel_vdsc.h"
69

70
#define DP_DPRX_ESI_LEN 14
71

72 73 74 75 76
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

77 78
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
79

80 81 82 83 84 85
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

86
struct dp_link_dpll {
87
	int clock;
88 89 90
	struct dpll dpll;
};

91
static const struct dp_link_dpll g4x_dpll[] = {
92
	{ 162000,
93
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
94
	{ 270000,
95 96 97 98
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
99
	{ 162000,
100
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
101
	{ 270000,
102 103 104
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

105
static const struct dp_link_dpll vlv_dpll[] = {
106
	{ 162000,
C
Chon Ming Lee 已提交
107
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
108
	{ 270000,
109 110 111
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

112 113 114 115 116 117 118 119 120 121
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
122
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
123
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
124
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
125 126
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
127

128 129 130 131 132 133 134 135
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

136
/**
137
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
138 139 140 141 142
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
143
bool intel_dp_is_edp(struct intel_dp *intel_dp)
144
{
145 146 147
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
148 149
}

150 151
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
152
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
153
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
154 155
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
156
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
157
				      enum pipe pipe);
158
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
159

160 161 162
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
163
	static const int dp_rates[] = {
164
		162000, 270000, 540000, 810000
165
	};
166
	int i, max_rate;
167

168
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
169

170 171
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
172
			break;
173
		intel_dp->sink_rates[i] = dp_rates[i];
174
	}
175

176
	intel_dp->num_sink_rates = i;
177 178
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

201 202
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
203
{
204
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
205 206
}

207 208
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
209 210
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
211 212
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
213
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
214

215
	return min3(source_max, sink_max, fia_max);
216 217
}

218
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
219 220 221 222
{
	return intel_dp->max_link_lane_count;
}

223
int
224
intel_dp_link_required(int pixel_clock, int bpp)
225
{
226 227
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
228 229
}

230
int
231 232
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
233 234 235 236 237 238 239
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
240 241
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

265
static int cnl_max_source_rate(struct intel_dp *intel_dp)
266 267 268 269 270
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

271
	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
272 273 274

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
275
		return 540000;
276 277 278

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
279
		return 810000;
280

281
	/* For other SKUs, max rate on ports A and D is 5.4G */
282
	if (port == PORT_A || port == PORT_D)
283
		return 540000;
284

285
	return 810000;
286 287
}

288 289 290
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
291
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
292
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
293

294
	if (intel_phy_is_combo(dev_priv, phy) &&
295
	    !IS_ELKHARTLAKE(dev_priv) &&
296
	    !intel_dp_is_edp(intel_dp))
297 298 299 300 301
		return 540000;

	return 810000;
}

302 303
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
304
{
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
321
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
322
	struct intel_encoder *encoder = &dig_port->base;
323
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
324
	const int *source_rates;
325
	int size, max_rate = 0, vbt_max_rate;
326

327 328 329
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

330
	if (INTEL_GEN(dev_priv) >= 10) {
331
		source_rates = cnl_rates;
332
		size = ARRAY_SIZE(cnl_rates);
333
		if (IS_GEN(dev_priv, 10))
334 335 336
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
337 338 339
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
340
	} else if (IS_GEN9_BC(dev_priv)) {
341
		source_rates = skl_rates;
342
		size = ARRAY_SIZE(skl_rates);
343 344
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
345 346
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
347
	} else {
348 349
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
350 351
	}

352
	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
353 354 355 356 357
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

358 359 360
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

361 362
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

388 389 390 391 392 393 394 395 396 397 398 399
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

400
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
401
{
402
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
403

404 405 406 407 408 409 410 411
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
412
		intel_dp->common_rates[0] = 162000;
413 414 415 416
		intel_dp->num_common_rates = 1;
	}
}

417
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
418
				       u8 lane_count)
419 420 421 422 423 424
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
425 426
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
427 428
		return false;

429 430
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
431 432 433 434 435
		return false;

	return true;
}

436 437
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
438
						     u8 lane_count)
439 440 441 442 443 444 445 446 447 448 449 450 451
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

452
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
453
					    int link_rate, u8 lane_count)
454
{
455
	int index;
456

457 458 459 460
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
461 462 463 464 465 466 467
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
468 469
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
470
	} else if (lane_count > 1) {
471 472 473 474 475 476 477
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
478
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
479
		intel_dp->max_link_lane_count = lane_count >> 1;
480 481 482 483 484 485 486 487
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

488 489 490 491 492 493
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

494 495 496 497 498 499 500 501 502 503 504
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
505 506 507 508 509 510 511 512 513 514 515 516 517
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
518
	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
519 520

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
521 522
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
523 524
	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
		    max_bpp_small_joiner_ram);
525 526 527 528 529 530 531 532 533

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
534 535
		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
			    bits_per_pixel, valid_dsc_bpp[0]);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
				  int hdisplay)
{
	/*
	 * Older platforms don't like hdisplay==4096 with DP.
	 *
	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
	 * and frame counter increment), but we don't get vblank interrupts,
	 * and the pipe underruns immediately. The link also doesn't seem
	 * to get trained properly.
	 *
	 * On CHV the vblank interrupts don't seem to disappear but
	 * otherwise the symptoms are similar.
	 *
	 * TODO: confirm the behaviour on HSW+
	 */
	return hdisplay == 4096 && !HAS_DDI(dev_priv);
}

610
static enum drm_mode_status
611 612 613
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
614
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
615 616
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
617
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
618 619
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
620
	int max_dotclk;
621 622
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
623

624 625 626
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

627
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
628

629
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
630
		if (mode->hdisplay > fixed_mode->hdisplay)
631 632
			return MODE_PANEL;

633
		if (mode->vdisplay > fixed_mode->vdisplay)
634
			return MODE_PANEL;
635 636

		target_clock = fixed_mode->clock;
637 638
	}

639
	max_link_clock = intel_dp_max_link_rate(intel_dp);
640
	max_lanes = intel_dp_max_lane_count(intel_dp);
641 642 643 644

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

645 646 647
	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
		return MODE_H_ILLEGAL;

648 649 650 651 652 653 654 655 656 657 658 659
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
660
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
661
			dsc_max_output_bpp =
662 663
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
664 665 666 667 668 669 670 671 672 673 674 675
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
676
		return MODE_CLOCK_HIGH;
677 678 679 680

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

681 682 683
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

684
	return intel_mode_valid_max_plane_size(dev_priv, mode);
685 686
}

687
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
688
{
689 690
	int i;
	u32 v = 0;
691 692 693 694

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
695
		v |= ((u32)src[i]) << ((3 - i) * 8);
696 697 698
	return v;
}

699
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
700 701 702 703 704 705 706 707
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

708
static void
709
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
710
static void
711
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
712
					      bool force_disable_vdd);
713
static void
714
intel_dp_pps_init(struct intel_dp *intel_dp);
715

716 717
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
718
{
719
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
720
	intel_wakeref_t wakeref;
721 722

	/*
723
	 * See intel_power_sequencer_reset() why we need
724 725
	 * a power domain reference here.
	 */
726 727
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
728 729

	mutex_lock(&dev_priv->pps_mutex);
730 731

	return wakeref;
732 733
}

734 735
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
736
{
737
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
738 739

	mutex_unlock(&dev_priv->pps_mutex);
740 741 742 743
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
744 745
}

746 747 748
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

749 750 751
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
752
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
753 754
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
755 756 757
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
758
	u32 DP;
759

760
	if (WARN(intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
761 762 763
		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		 pipe_name(pipe), intel_dig_port->base.base.base.id,
		 intel_dig_port->base.base.name))
764 765
		return;

766 767 768 769
	drm_dbg_kms(&dev_priv->drm,
		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
770 771 772 773

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
774
	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
775 776 777 778
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

779
	if (IS_CHERRYVIEW(dev_priv))
780 781 782
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
783

784
	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
785 786 787 788 789

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
790
	if (!pll_enabled) {
791
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
792 793
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

794
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
795
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
796 797 798
			drm_err(&dev_priv->drm,
				"Failed to force on pll for pipe %c!\n",
				pipe_name(pipe));
799 800
			return;
		}
801
	}
802

803 804 805
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
806
	 * to make this power sequencer lock onto the port.
807 808
	 * Otherwise even VDD force bit won't work.
	 */
809 810
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
811

812 813
	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
814

815 816
	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
817

818
	if (!pll_enabled) {
819
		vlv_force_pll_off(dev_priv, pipe);
820 821 822 823

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
824 825
}

826 827 828 829 830 831 832 833 834
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
835
	for_each_intel_dp(&dev_priv->drm, encoder) {
836
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

858 859 860
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
861
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
862
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
863
	enum pipe pipe;
864

V
Ville Syrjälä 已提交
865
	lockdep_assert_held(&dev_priv->pps_mutex);
866

867
	/* We should never land here with regular DP ports */
868
	WARN_ON(!intel_dp_is_edp(intel_dp));
869

870 871 872
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

873 874 875
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

876
	pipe = vlv_find_free_pps(dev_priv);
877 878 879 880 881

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
882
	if (WARN_ON(pipe == INVALID_PIPE))
883
		pipe = PIPE_A;
884

885
	vlv_steal_power_sequencer(dev_priv, pipe);
886
	intel_dp->pps_pipe = pipe;
887

888 889 890 891 892
	drm_dbg_kms(&dev_priv->drm,
		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe),
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
893 894

	/* init power sequencer on this pipe and port */
895 896
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897

898 899 900 901 902
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
903 904 905 906

	return intel_dp->pps_pipe;
}

907 908 909
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
910
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911
	int backlight_controller = dev_priv->vbt.backlight.controller;
912 913 914 915

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
916
	WARN_ON(!intel_dp_is_edp(intel_dp));
917 918

	if (!intel_dp->pps_reset)
919
		return backlight_controller;
920 921 922 923 924 925 926

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
927
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928

929
	return backlight_controller;
930 931
}

932 933 934 935 936 937
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
938
	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
939 940 941 942 943
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
944
	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 946 947 948 949 950 951
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
952

953
static enum pipe
954 955 956
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
957 958
{
	enum pipe pipe;
959 960

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961
		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
962
			PANEL_PORT_SELECT_MASK;
963 964 965 966

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

967 968 969
		if (!pipe_check(dev_priv, pipe))
			continue;

970
		return pipe;
971 972
	}

973 974 975 976 977 978
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
979
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981
	enum port port = intel_dig_port->base.port;
982 983 984 985

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
986 987 988 989 990 991 992 993 994 995 996
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
997 998 999

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
1000 1001 1002 1003
		drm_dbg_kms(&dev_priv->drm,
			    "no initial power sequencer for [ENCODER:%d:%s]\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
1004
		return;
1005 1006
	}

1007 1008 1009 1010 1011
	drm_dbg_kms(&dev_priv->drm,
		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    pipe_name(intel_dp->pps_pipe));
1012

1013 1014
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1015 1016
}

1017
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1018 1019 1020
{
	struct intel_encoder *encoder;

1021
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1022
		    !IS_GEN9_LP(dev_priv)))
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1035
	for_each_intel_dp(&dev_priv->drm, encoder) {
1036
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1037

1038 1039 1040 1041 1042
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1043
		if (IS_GEN9_LP(dev_priv))
1044 1045 1046
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1047
	}
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1058
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1059 1060
				    struct pps_registers *regs)
{
1061
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1062 1063
	int pps_idx = 0;

1064 1065
	memset(regs, 0, sizeof(*regs));

1066
	if (IS_GEN9_LP(dev_priv))
1067 1068 1069
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1070

1071 1072 1073 1074
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1075 1076

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1077
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1078 1079
		regs->pp_div = INVALID_MMIO_REG;
	else
1080
		regs->pp_div = PP_DIVISOR(pps_idx);
1081 1082
}

1083 1084
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1085
{
1086
	struct pps_registers regs;
1087

1088
	intel_pps_get_registers(intel_dp, &regs);
1089 1090

	return regs.pp_ctrl;
1091 1092
}

1093 1094
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1095
{
1096
	struct pps_registers regs;
1097

1098
	intel_pps_get_registers(intel_dp, &regs);
1099 1100

	return regs.pp_stat;
1101 1102
}

1103 1104 1105 1106 1107 1108 1109
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1110
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1111
	intel_wakeref_t wakeref;
1112

1113
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1114 1115
		return 0;

1116 1117 1118 1119 1120 1121 1122 1123
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
1124
			pp_div = intel_de_read(dev_priv, pp_div_reg);
1125 1126 1127
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1128 1129 1130
			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
			intel_de_write(dev_priv, pp_ctrl_reg,
				       PANEL_UNLOCK_REGS);
1131 1132
			msleep(intel_dp->panel_power_cycle_delay);
		}
1133 1134 1135 1136 1137
	}

	return 0;
}

1138
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1139
{
1140
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1141

V
Ville Syrjälä 已提交
1142 1143
	lockdep_assert_held(&dev_priv->pps_mutex);

1144
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1145 1146 1147
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1148
	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1149 1150
}

1151
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1152
{
1153
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1154

V
Ville Syrjälä 已提交
1155 1156
	lockdep_assert_held(&dev_priv->pps_mutex);

1157
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1158 1159 1160
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1161
	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1162 1163
}

1164 1165 1166
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1167
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1168

1169
	if (!intel_dp_is_edp(intel_dp))
1170
		return;
1171

1172
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1173
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
1174
		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1175 1176
			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1177 1178 1179
	}
}

1180
static u32
1181
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1182
{
1183
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1184
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1185
	const unsigned int timeout_ms = 10;
1186
	u32 status;
1187 1188
	bool done;

1189 1190
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1191
				  msecs_to_jiffies_timeout(timeout_ms));
1192 1193 1194 1195

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1196
	if (!done)
1197
		drm_err(&i915->drm,
1198
			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1199
			intel_dp->aux.name, timeout_ms, status);
1200 1201 1202 1203 1204
#undef C

	return status;
}

1205
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1206
{
1207
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1208

1209 1210 1211
	if (index)
		return 0;

1212 1213
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1214
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1215
	 */
1216
	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1217 1218
}

1219
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1220
{
1221
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1222
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1223
	u32 freq;
1224 1225 1226 1227

	if (index)
		return 0;

1228 1229 1230 1231 1232
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1233
	if (dig_port->aux_ch == AUX_CH_A)
1234
		freq = dev_priv->cdclk.hw.cdclk;
1235
	else
1236 1237
		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
	return DIV_ROUND_CLOSEST(freq, 2000);
1238 1239
}

1240
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1241
{
1242
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1243
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1244

1245
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1246
		/* Workaround for non-ULT HSW */
1247 1248 1249 1250 1251
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1252
	}
1253 1254

	return ilk_get_aux_clock_divider(intel_dp, index);
1255 1256
}

1257
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1258 1259 1260 1261 1262 1263 1264 1265 1266
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1267 1268 1269
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1270 1271
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1272 1273
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1274
	u32 precharge, timeout;
1275

1276
	if (IS_GEN(dev_priv, 6))
1277 1278 1279 1280
		precharge = 3;
	else
		precharge = 5;

1281
	if (IS_BROADWELL(dev_priv))
1282 1283 1284 1285 1286
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1287
	       DP_AUX_CH_CTL_DONE |
1288
	       DP_AUX_CH_CTL_INTERRUPT |
1289
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1290
	       timeout |
1291
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1292 1293
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1294
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1295 1296
}

1297 1298 1299
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1300
{
1301
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1302 1303 1304
	struct drm_i915_private *i915 =
			to_i915(intel_dig_port->base.base.dev);
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1305
	u32 ret;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1317 1318
	if (intel_phy_is_tc(i915, phy) &&
	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1319 1320 1321
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1322 1323
}

1324
static int
1325
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1326 1327
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1328
		  u32 aux_send_ctl_flags)
1329 1330
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1331
	struct drm_i915_private *i915 =
1332
			to_i915(intel_dig_port->base.base.dev);
1333
	struct intel_uncore *uncore = &i915->uncore;
1334 1335
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1336
	i915_reg_t ch_ctl, ch_data[5];
1337
	u32 aux_clock_divider;
1338 1339 1340 1341
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1342
	int i, ret, recv_bytes;
1343
	int try, clock = 0;
1344
	u32 status;
1345 1346
	bool vdd;

1347 1348 1349 1350
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1351 1352 1353
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1354
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1355
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1356

1357 1358 1359 1360 1361 1362
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1363
	vdd = edp_panel_vdd_on(intel_dp);
1364 1365 1366 1367 1368

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1369
	pm_qos_update_request(&i915->pm_qos, 0);
1370 1371

	intel_dp_check_edp(intel_dp);
1372

1373 1374
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1375
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1376 1377 1378 1379
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1380 1381
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1382 1383

	if (try == 3) {
1384
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1385

1386
		if (status != intel_dp->aux_busy_last_status) {
1387 1388
			WARN(1, "%s: not started (status 0x%08x)\n",
			     intel_dp->aux.name, status);
1389
			intel_dp->aux_busy_last_status = status;
1390 1391
		}

1392 1393
		ret = -EBUSY;
		goto out;
1394 1395
	}

1396 1397 1398 1399 1400 1401
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1402
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1403 1404 1405 1406 1407
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1408

1409 1410 1411 1412
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1413 1414 1415 1416
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1417 1418

			/* Send the command and wait for it to complete */
1419
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1420

1421
			status = intel_dp_aux_wait_done(intel_dp);
1422 1423

			/* Clear done status and any errors */
1424 1425 1426 1427 1428 1429
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1430

1431 1432 1433 1434 1435
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1436 1437 1438
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1439 1440
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1441
				continue;
1442
			}
1443
			if (status & DP_AUX_CH_CTL_DONE)
1444
				goto done;
1445
		}
1446 1447 1448
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1449 1450
		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
			intel_dp->aux.name, status);
1451 1452
		ret = -EBUSY;
		goto out;
1453 1454
	}

1455
done:
1456 1457 1458
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1459
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1460 1461
		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
			intel_dp->aux.name, status);
1462 1463
		ret = -EIO;
		goto out;
1464
	}
1465 1466 1467

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1468
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1469 1470
		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
			    intel_dp->aux.name, status);
1471 1472
		ret = -ETIMEDOUT;
		goto out;
1473 1474 1475 1476 1477
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1478 1479 1480 1481 1482 1483 1484

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
1485
		drm_dbg_kms(&i915->drm,
1486 1487
			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
			    intel_dp->aux.name, recv_bytes);
1488 1489 1490 1491
		ret = -EBUSY;
		goto out;
	}

1492 1493
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1494

1495
	for (i = 0; i < recv_bytes; i += 4)
1496
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1497
				    recv + i, recv_bytes - i);
1498

1499 1500
	ret = recv_bytes;
out:
1501
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1502

1503 1504 1505
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1506
	pps_unlock(intel_dp, pps_wakeref);
1507
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1508

1509 1510 1511
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1512
	return ret;
1513 1514
}

1515 1516
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1528 1529
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1530
{
1531
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1532
	u8 txbuf[20], rxbuf[20];
1533
	size_t txsize, rxsize;
1534 1535
	int ret;

1536
	intel_dp_aux_header(txbuf, msg);
1537

1538 1539 1540
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1541
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1542
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1543
		rxsize = 2; /* 0 or 1 data bytes */
1544

1545 1546
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1547

1548 1549
		WARN_ON(!msg->buffer != !msg->size);

1550 1551
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1552

1553
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1554
					rxbuf, rxsize, 0);
1555 1556
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1557

1558 1559 1560 1561 1562 1563 1564
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1565 1566
		}
		break;
1567

1568 1569
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1570
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1571
		rxsize = msg->size + 1;
1572

1573 1574
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1575

1576
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1577
					rxbuf, rxsize, 0);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1588
		}
1589 1590 1591 1592 1593
		break;

	default:
		ret = -EINVAL;
		break;
1594
	}
1595

1596
	return ret;
1597 1598
}

1599

1600
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1601
{
1602
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1603 1604
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1605

1606 1607 1608 1609 1610
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1611
	default:
1612 1613
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1614 1615 1616
	}
}

1617
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1618
{
1619
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1620 1621
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1622

1623 1624 1625 1626 1627
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1628
	default:
1629 1630
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1631 1632 1633
	}
}

1634
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1635
{
1636
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1637 1638
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1639

1640 1641 1642 1643 1644 1645 1646
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1647
	default:
1648 1649
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1650 1651 1652
	}
}

1653
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1654
{
1655
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1656 1657
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1658

1659 1660 1661 1662 1663 1664 1665
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1666
	default:
1667 1668
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1669 1670 1671
	}
}

1672
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1673
{
1674
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1675 1676
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1677

1678 1679 1680 1681 1682
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1683
	case AUX_CH_E:
1684
	case AUX_CH_F:
1685
	case AUX_CH_G:
1686
		return DP_AUX_CH_CTL(aux_ch);
1687
	default:
1688 1689
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1690 1691 1692
	}
}

1693
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1694
{
1695
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1696 1697
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1698

1699 1700 1701 1702 1703
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1704
	case AUX_CH_E:
1705
	case AUX_CH_F:
1706
	case AUX_CH_G:
1707
		return DP_AUX_CH_DATA(aux_ch, index);
1708
	default:
1709 1710
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1711 1712 1713
	}
}

1714 1715 1716 1717 1718 1719 1720 1721
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1722
{
1723
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1724 1725
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1737

1738 1739 1740 1741 1742 1743 1744 1745
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1746

1747 1748 1749 1750
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1751

1752
	drm_dp_aux_init(&intel_dp->aux);
1753

1754
	/* Failure to allocate our preferred name is not critical */
1755 1756
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
				       aux_ch_name(dig_port->aux_ch),
1757
				       port_name(encoder->port));
1758
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1759 1760
}

1761
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1762
{
1763
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1764

1765
	return max_rate >= 540000;
1766 1767
}

1768 1769 1770 1771 1772 1773 1774
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1775 1776
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1777
		   struct intel_crtc_state *pipe_config)
1778
{
1779
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1780 1781
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1782

1783
	if (IS_G4X(dev_priv)) {
1784 1785
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1786
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1787 1788
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1789
	} else if (IS_CHERRYVIEW(dev_priv)) {
1790 1791
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1792
	} else if (IS_VALLEYVIEW(dev_priv)) {
1793 1794
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1795
	}
1796 1797 1798

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1799
			if (pipe_config->port_clock == divisor[i].clock) {
1800 1801 1802 1803 1804
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1805 1806 1807
	}
}

1808 1809 1810 1811 1812 1813 1814 1815
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1816
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

1828
	if (!drm_debug_enabled(DRM_UT_KMS))
1829 1830
		return;

1831 1832
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1833 1834
	DRM_DEBUG_KMS("source rates: %s\n", str);

1835 1836
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1837 1838
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1839 1840
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1841
	DRM_DEBUG_KMS("common rates: %s\n", str);
1842 1843
}

1844 1845 1846 1847 1848
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1849
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1850 1851 1852
	if (WARN_ON(len <= 0))
		return 162000;

1853
	return intel_dp->common_rates[len - 1];
1854 1855
}

1856 1857
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1858 1859
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1860 1861 1862 1863 1864

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1865 1866
}

1867
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1868
			   u8 *link_bw, u8 *rate_select)
1869
{
1870 1871
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1872 1873 1874 1875 1876 1877 1878 1879 1880
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1881
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1882 1883 1884 1885
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1886 1887 1888 1889 1890 1891 1892 1893
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1894 1895 1896 1897 1898 1899 1900 1901 1902
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

1903
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1904
				  const struct intel_crtc_state *crtc_state)
1905
{
1906 1907 1908
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1909 1910
		return false;

1911
	return intel_dsc_source_support(encoder, crtc_state) &&
1912 1913 1914
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1915 1916
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1917
{
1918
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1919
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1920 1921 1922 1923 1924 1925 1926 1927
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1928 1929 1930 1931
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1932 1933 1934
			drm_dbg_kms(&dev_priv->drm,
				    "clamping bpp for eDP panel to BIOS-provided %i\n",
				    dev_priv->vbt.edp.bpp);
1935 1936 1937 1938
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1939 1940 1941
	return bpp;
}

1942
/* Adjust link config limits based on compliance test requests. */
1943
void
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

1991
/* Optimize link config in order: max bpp, min clock, min lanes */
1992
static int
1993 1994 1995 1996
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
1997
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
1998 1999 2000 2001
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2002 2003
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

2004
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2005
						   output_bpp);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

2020
					return 0;
2021 2022 2023 2024 2025
				}
			}
		}
	}

2026
	return -EINVAL;
2027 2028
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2044 2045 2046 2047 2048
#define DSC_SUPPORTED_VERSION_MIN		1

static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
				       struct intel_crtc_state *crtc_state)
{
2049
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2050 2051 2052 2053 2054 2055 2056 2057
	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
	u8 line_buf_depth;
	int ret;

	ret = intel_dsc_compute_params(encoder, crtc_state);
	if (ret)
		return ret;

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	/*
	 * Slice Height of 8 works for all currently available panels. So start
	 * with that if pic_height is an integral multiple of 8. Eventually add
	 * logic to try multiple slice heights.
	 */
	if (vdsc_cfg->pic_height % 8 == 0)
		vdsc_cfg->slice_height = 8;
	else if (vdsc_cfg->pic_height % 4 == 0)
		vdsc_cfg->slice_height = 4;
	else
		vdsc_cfg->slice_height = 2;

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	vdsc_cfg->dsc_version_major =
		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
	vdsc_cfg->dsc_version_minor =
		min(DSC_SUPPORTED_VERSION_MIN,
		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);

	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
		DP_DSC_RGB;

	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
	if (!line_buf_depth) {
		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
		return -EINVAL;
	}

	if (vdsc_cfg->dsc_version_minor == 2)
		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
	else
		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;

	vdsc_cfg->block_pred_enable =
		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;

	return drm_dsc_compute_rc_parameters(vdsc_cfg);
}

2101 2102 2103 2104
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2105 2106 2107
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2108
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2109 2110
	u8 dsc_max_bpc;
	int pipe_bpp;
2111
	int ret;
2112

2113 2114 2115
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2116
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2117
		return -EINVAL;
2118

2119 2120 2121 2122 2123 2124
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2125 2126

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2127 2128 2129

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2130 2131
		drm_dbg_kms(&dev_priv->drm,
			    "No DSC support for less than 8bpc\n");
2132
		return -EINVAL;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
2145
		pipe_config->dsc.compressed_bpp =
2146 2147
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
2148
		pipe_config->dsc.slice_count =
2149 2150 2151 2152 2153 2154 2155
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2156 2157
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2158 2159 2160 2161 2162 2163 2164 2165
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2166 2167
			drm_dbg_kms(&dev_priv->drm,
				    "Compressed BPP/Slice Count not supported\n");
2168
			return -EINVAL;
2169
		}
2170
		pipe_config->dsc.compressed_bpp = min_t(u16,
2171 2172
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
2173
		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2174 2175 2176 2177 2178 2179 2180
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2181 2182
		if (pipe_config->dsc.slice_count > 1) {
			pipe_config->dsc.dsc_split = true;
2183
		} else {
2184 2185
			drm_dbg_kms(&dev_priv->drm,
				    "Cannot split stream to use 2 VDSC instances\n");
2186
			return -EINVAL;
2187 2188
		}
	}
2189

2190
	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2191
	if (ret < 0) {
2192 2193 2194 2195 2196
		drm_dbg_kms(&dev_priv->drm,
			    "Cannot compute valid DSC parameters for Input Bpp = %d "
			    "Compressed BPP = %d\n",
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);
2197
		return ret;
2198
	}
2199

2200
	pipe_config->dsc.compression_enable = true;
2201 2202 2203 2204 2205
	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
		    "Compressed Bpp = %d Slice Count = %d\n",
		    pipe_config->pipe_bpp,
		    pipe_config->dsc.compressed_bpp,
		    pipe_config->dsc.slice_count);
2206

2207
	return 0;
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2218
static int
2219
intel_dp_compute_link_config(struct intel_encoder *encoder,
2220 2221
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2222
{
2223
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2224
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2225
	struct link_config_limits limits;
2226
	int common_len;
2227
	int ret;
2228

2229
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2230
						    intel_dp->max_link_rate);
2231 2232

	/* No common link rates between source and sink */
2233
	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2234

2235 2236 2237 2238 2239 2240
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2241
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2242
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2243

2244
	if (intel_dp_is_edp(intel_dp)) {
2245 2246
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2247 2248 2249 2250
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2251
		 */
2252 2253
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2254
	}
2255

2256 2257
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2258 2259 2260 2261 2262 2263
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2264 2265 2266 2267 2268
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2269 2270

	/* enable compression if the mode doesn't fit available BW */
2271
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2272 2273 2274 2275 2276
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2277
	}
2278

2279
	if (pipe_config->dsc.compression_enable) {
2280 2281 2282
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
2283
			      pipe_config->dsc.compressed_bpp);
2284 2285 2286

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
2287
						     pipe_config->dsc.compressed_bpp),
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2301
	return 0;
2302 2303
}

2304 2305 2306 2307 2308 2309 2310
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
2311
		&crtc_state->hw.adjusted_mode;
2312
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2334 2335 2336 2337 2338 2339
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
2340
		&crtc_state->hw.adjusted_mode;
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
				    enum port port)
{
	if (IS_G4X(dev_priv))
		return false;
	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
		return false;

	return true;
}

2378
int
2379 2380 2381 2382 2383
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2384
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2385 2386
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2387
	enum port port = encoder->port;
2388
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2389 2390 2391
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2392 2393
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2394
	int ret = 0, output_bpp;
2395 2396 2397 2398

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2399
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2400

2401 2402
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2403 2404 2405 2406 2407 2408
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2409

2410
	pipe_config->has_drrs = false;
2411
	if (!intel_dp_port_has_audio(dev_priv, port))
2412 2413 2414 2415 2416 2417 2418
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2419 2420
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2421 2422 2423 2424 2425 2426 2427

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2428
		if (HAS_GMCH(dev_priv))
2429 2430 2431 2432 2433 2434 2435
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2436
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2437
		return -EINVAL;
2438

R
Rodrigo Vivi 已提交
2439
	if (HAS_GMCH(dev_priv) &&
2440
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2441
		return -EINVAL;
2442 2443

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2444
		return -EINVAL;
2445

2446 2447 2448
	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
		return -EINVAL;

2449 2450 2451
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2452

2453 2454
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2455

2456 2457
	if (pipe_config->dsc.compression_enable)
		output_bpp = pipe_config->dsc.compressed_bpp;
2458
	else
2459
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2460 2461 2462 2463 2464 2465

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2466
			       constant_n, pipe_config->fec_enable);
2467

2468
	if (intel_connector->panel.downclock_mode != NULL &&
2469
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2470
			pipe_config->has_drrs = true;
2471
			intel_link_compute_m_n(output_bpp,
2472 2473 2474 2475
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2476
					       constant_n, pipe_config->fec_enable);
2477 2478
	}

2479
	if (!HAS_DDI(dev_priv))
2480
		intel_dp_set_clock(encoder, pipe_config);
2481

2482 2483
	intel_psr_compute_config(intel_dp, pipe_config);

2484
	return 0;
2485 2486
}

2487
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2488
			      int link_rate, u8 lane_count,
2489
			      bool link_mst)
2490
{
2491
	intel_dp->link_trained = false;
2492 2493 2494
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2495 2496
}

2497
static void intel_dp_prepare(struct intel_encoder *encoder,
2498
			     const struct intel_crtc_state *pipe_config)
2499
{
2500
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2501
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2502
	enum port port = encoder->port;
2503
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2504
	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2505

2506 2507 2508 2509
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2510

2511 2512 2513
	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);

2514
	/*
K
Keith Packard 已提交
2515
	 * There are four kinds of DP registers:
2516 2517
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2518 2519
	 * 	SNB CPU
	 *	IVB CPU
2520 2521 2522 2523 2524 2525 2526 2527
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
2528
	 * configuration happens (oddly) in ilk_pch_enable
2529
	 */
2530

2531 2532 2533
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
2534
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2535

2536 2537
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2538
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2539

2540
	/* Split out the IBX/CPU vs CPT settings */
2541

2542
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2543 2544 2545 2546 2547 2548
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2549
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2550 2551
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2552
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2553
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2554 2555
		u32 trans_dp;

2556
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2557

2558
		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2559 2560 2561 2562
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2563
		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2564
	} else {
2565
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2566
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2567 2568 2569 2570 2571 2572 2573

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2574
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2575 2576
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2577
		if (IS_CHERRYVIEW(dev_priv))
2578 2579 2580
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2581
	}
2582 2583
}

2584 2585
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2586

2587 2588
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2589

2590 2591
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2592

2593
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2594

2595
static void wait_panel_status(struct intel_dp *intel_dp,
2596 2597
				       u32 mask,
				       u32 value)
2598
{
2599
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2600
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2601

V
Ville Syrjälä 已提交
2602 2603
	lockdep_assert_held(&dev_priv->pps_mutex);

2604
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2605

2606 2607
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2608

2609 2610 2611
	drm_dbg_kms(&dev_priv->drm,
		    "mask %08x value %08x status %08x control %08x\n",
		    mask, value,
2612 2613
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2614

2615 2616
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2617 2618
		drm_err(&dev_priv->drm,
			"Panel status timeout: status %08x control %08x\n",
2619 2620
			intel_de_read(dev_priv, pp_stat_reg),
			intel_de_read(dev_priv, pp_ctrl_reg));
2621

2622
	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2623
}
2624

2625
static void wait_panel_on(struct intel_dp *intel_dp)
2626 2627
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2628
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2629 2630
}

2631
static void wait_panel_off(struct intel_dp *intel_dp)
2632 2633
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2634
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2635 2636
}

2637
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2638
{
2639 2640 2641
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2642
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2643

2644 2645 2646 2647 2648
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2649 2650
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2651 2652 2653
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2654

2655
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2656 2657
}

2658
static void wait_backlight_on(struct intel_dp *intel_dp)
2659 2660 2661 2662 2663
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2664
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2665 2666 2667 2668
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2669

2670 2671 2672 2673
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2674
static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2675
{
2676
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2677
	u32 control;
2678

V
Ville Syrjälä 已提交
2679 2680
	lockdep_assert_held(&dev_priv->pps_mutex);

2681
	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2682 2683
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2684 2685 2686
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2687
	return control;
2688 2689
}

2690 2691 2692 2693 2694
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2695
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2696
{
2697
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2698
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2699
	u32 pp;
2700
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2701
	bool need_to_disable = !intel_dp->want_panel_vdd;
2702

V
Ville Syrjälä 已提交
2703 2704
	lockdep_assert_held(&dev_priv->pps_mutex);

2705
	if (!intel_dp_is_edp(intel_dp))
2706
		return false;
2707

2708
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2709
	intel_dp->want_panel_vdd = true;
2710

2711
	if (edp_have_panel_vdd(intel_dp))
2712
		return need_to_disable;
2713

2714 2715
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2716

2717 2718 2719
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2720

2721 2722
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2723

2724
	pp = ilk_get_pp_control(intel_dp);
2725
	pp |= EDP_FORCE_VDD;
2726

2727 2728
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2729

2730 2731
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2732
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2733 2734
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2735 2736 2737
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2738
	if (!edp_have_panel_power(intel_dp)) {
2739 2740 2741 2742
		drm_dbg_kms(&dev_priv->drm,
			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
2743 2744
		msleep(intel_dp->panel_power_up_delay);
	}
2745 2746 2747 2748

	return need_to_disable;
}

2749 2750 2751 2752 2753 2754 2755
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2756
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2757
{
2758
	intel_wakeref_t wakeref;
2759
	bool vdd;
2760

2761
	if (!intel_dp_is_edp(intel_dp))
2762 2763
		return;

2764 2765 2766
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2767 2768 2769
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2770 2771
}

2772
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2773
{
2774
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2775 2776
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2777
	u32 pp;
2778
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2779

V
Ville Syrjälä 已提交
2780
	lockdep_assert_held(&dev_priv->pps_mutex);
2781

2782
	WARN_ON(intel_dp->want_panel_vdd);
2783

2784
	if (!edp_have_panel_vdd(intel_dp))
2785
		return;
2786

2787 2788 2789
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2790

2791
	pp = ilk_get_pp_control(intel_dp);
2792
	pp &= ~EDP_FORCE_VDD;
2793

2794 2795
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2796

2797 2798
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
P
Paulo Zanoni 已提交
2799

2800
	/* Make sure sequencer is idle before allowing subsequent activity */
2801
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2802 2803
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2804

2805
	if ((pp & PANEL_POWER_ON) == 0)
2806
		intel_dp->panel_power_off_time = ktime_get_boottime();
2807

2808 2809
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2810
}
2811

2812
static void edp_panel_vdd_work(struct work_struct *__work)
2813
{
2814 2815 2816 2817
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2818

2819 2820 2821 2822
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2838 2839 2840 2841 2842
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2843
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2844
{
2845
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2846 2847 2848

	lockdep_assert_held(&dev_priv->pps_mutex);

2849
	if (!intel_dp_is_edp(intel_dp))
2850
		return;
2851

2852 2853 2854
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2855

2856 2857
	intel_dp->want_panel_vdd = false;

2858
	if (sync)
2859
		edp_panel_vdd_off_sync(intel_dp);
2860 2861
	else
		edp_panel_vdd_schedule_off(intel_dp);
2862 2863
}

2864
static void edp_panel_on(struct intel_dp *intel_dp)
2865
{
2866
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2867
	u32 pp;
2868
	i915_reg_t pp_ctrl_reg;
2869

2870 2871
	lockdep_assert_held(&dev_priv->pps_mutex);

2872
	if (!intel_dp_is_edp(intel_dp))
2873
		return;
2874

2875 2876 2877
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
		    dp_to_dig_port(intel_dp)->base.base.base.id,
		    dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
2878

2879
	if (WARN(edp_have_panel_power(intel_dp),
2880 2881 2882
		 "[ENCODER:%d:%s] panel power already on\n",
		 dp_to_dig_port(intel_dp)->base.base.base.id,
		 dp_to_dig_port(intel_dp)->base.base.name))
2883
		return;
2884

2885
	wait_panel_power_cycle(intel_dp);
2886

2887
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2888
	pp = ilk_get_pp_control(intel_dp);
2889
	if (IS_GEN(dev_priv, 5)) {
2890 2891
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2892 2893
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2894
	}
2895

2896
	pp |= PANEL_POWER_ON;
2897
	if (!IS_GEN(dev_priv, 5))
2898 2899
		pp |= PANEL_POWER_RESET;

2900 2901
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2902

2903
	wait_panel_on(intel_dp);
2904
	intel_dp->last_power_on = jiffies;
2905

2906
	if (IS_GEN(dev_priv, 5)) {
2907
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2908 2909
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2910
	}
2911
}
V
Ville Syrjälä 已提交
2912

2913 2914
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2915 2916
	intel_wakeref_t wakeref;

2917
	if (!intel_dp_is_edp(intel_dp))
2918 2919
		return;

2920 2921
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2922 2923
}

2924 2925

static void edp_panel_off(struct intel_dp *intel_dp)
2926
{
2927
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2928
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2929
	u32 pp;
2930
	i915_reg_t pp_ctrl_reg;
2931

2932 2933
	lockdep_assert_held(&dev_priv->pps_mutex);

2934
	if (!intel_dp_is_edp(intel_dp))
2935
		return;
2936

2937 2938
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
		    dig_port->base.base.base.id, dig_port->base.base.name);
2939

2940 2941
	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
	     dig_port->base.base.base.id, dig_port->base.base.name);
2942

2943
	pp = ilk_get_pp_control(intel_dp);
2944 2945
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2946
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2947
		EDP_BLC_ENABLE);
2948

2949
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2950

2951 2952
	intel_dp->want_panel_vdd = false;

2953 2954
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2955

2956
	wait_panel_off(intel_dp);
2957
	intel_dp->panel_power_off_time = ktime_get_boottime();
2958 2959

	/* We got a reference when we enabled the VDD. */
2960
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2961
}
V
Ville Syrjälä 已提交
2962

2963 2964
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2965 2966
	intel_wakeref_t wakeref;

2967
	if (!intel_dp_is_edp(intel_dp))
2968
		return;
V
Ville Syrjälä 已提交
2969

2970 2971
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2972 2973
}

2974 2975
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2976
{
2977
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2978
	intel_wakeref_t wakeref;
2979

2980 2981 2982 2983 2984 2985
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2986
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2987

2988 2989 2990
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2991

2992
		pp = ilk_get_pp_control(intel_dp);
2993
		pp |= EDP_BLC_ENABLE;
2994

2995 2996
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
2997
	}
2998 2999
}

3000
/* Enable backlight PWM and backlight PP control. */
3001 3002
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
3003
{
3004
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3005

3006
	if (!intel_dp_is_edp(intel_dp))
3007 3008 3009 3010
		return;

	DRM_DEBUG_KMS("\n");

3011
	intel_panel_enable_backlight(crtc_state, conn_state);
3012 3013 3014 3015 3016
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3017
{
3018
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3019
	intel_wakeref_t wakeref;
3020

3021
	if (!intel_dp_is_edp(intel_dp))
3022 3023
		return;

3024 3025 3026
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
3027

3028
		pp = ilk_get_pp_control(intel_dp);
3029
		pp &= ~EDP_BLC_ENABLE;
3030

3031 3032
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3033
	}
V
Ville Syrjälä 已提交
3034 3035

	intel_dp->last_backlight_off = jiffies;
3036
	edp_wait_backlight_off(intel_dp);
3037
}
3038

3039
/* Disable backlight PP control and backlight PWM. */
3040
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3041
{
3042
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3043

3044
	if (!intel_dp_is_edp(intel_dp))
3045 3046 3047
		return;

	DRM_DEBUG_KMS("\n");
3048

3049
	_intel_edp_backlight_off(intel_dp);
3050
	intel_panel_disable_backlight(old_conn_state);
3051
}
3052

3053 3054 3055 3056 3057 3058 3059
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
3060
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3061
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
3062 3063
	bool is_enabled;

3064 3065
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
3066
		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3067 3068 3069
	if (is_enabled == enable)
		return;

3070 3071
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
3072 3073 3074 3075 3076 3077 3078

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

3079 3080 3081 3082
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3083
	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3084 3085

	I915_STATE_WARN(cur_state != state,
3086 3087
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
3088
			onoff(state), onoff(cur_state));
3089 3090 3091 3092 3093
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
3094
	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3095 3096 3097

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
3098
			onoff(state), onoff(cur_state));
3099 3100 3101 3102
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

3103 3104
static void ilk_edp_pll_on(struct intel_dp *intel_dp,
			   const struct intel_crtc_state *pipe_config)
3105
{
3106
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3107
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3108

3109
	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3110 3111
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3112

3113 3114
	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
		    pipe_config->port_clock);
3115 3116 3117

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3118
	if (pipe_config->port_clock == 162000)
3119 3120 3121 3122
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

3123 3124
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3125 3126
	udelay(500);

3127 3128 3129 3130 3131 3132
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3133
	if (IS_GEN(dev_priv, 5))
3134
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3135

3136
	intel_dp->DP |= DP_PLL_ENABLE;
3137

3138 3139
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3140
	udelay(200);
3141 3142
}

3143 3144
static void ilk_edp_pll_off(struct intel_dp *intel_dp,
			    const struct intel_crtc_state *old_crtc_state)
3145
{
3146
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3147
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3148

3149
	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3150 3151
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3152

3153
	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3154

3155
	intel_dp->DP &= ~DP_PLL_ENABLE;
3156

3157 3158
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3159 3160 3161
	udelay(200);
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3177 3178 3179 3180 3181 3182
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

3183
	if (!crtc_state->dsc.compression_enable)
3184 3185 3186 3187 3188 3189 3190 3191 3192
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

3193
/* If the sink supports it, try to set the power state appropriately */
3194
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3195 3196 3197 3198 3199 3200 3201 3202
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3203 3204 3205
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3206 3207
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3208
	} else {
3209 3210
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3211 3212 3213 3214 3215
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3216 3217
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3218 3219 3220 3221
			if (ret == 1)
				break;
			msleep(1);
		}
3222 3223 3224

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3225
	}
3226 3227 3228 3229

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3230 3231
}

3232 3233 3234 3235 3236 3237
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
3238
		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3239 3240 3241 3242 3243 3244 3245

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

3246 3247
	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
		    port_name(port));
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

3262
	val = intel_de_read(dev_priv, dp_reg);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3279 3280
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3281
{
3282
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3283
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3284
	intel_wakeref_t wakeref;
3285
	bool ret;
3286

3287 3288 3289
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3290 3291
		return false;

3292 3293
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3294

3295
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3296 3297

	return ret;
3298
}
3299

3300
static void intel_dp_get_config(struct intel_encoder *encoder,
3301
				struct intel_crtc_state *pipe_config)
3302
{
3303
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3304
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3305
	u32 tmp, flags = 0;
3306
	enum port port = encoder->port;
3307
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3308

3309 3310 3311 3312
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3313

3314
	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3315 3316

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3317

3318
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3319 3320
		u32 trans_dp = intel_de_read(dev_priv,
					     TRANS_DP_CTL(crtc->pipe));
3321 3322

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3323 3324 3325
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3326

3327
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3328 3329 3330 3331
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3332
		if (tmp & DP_SYNC_HS_HIGH)
3333 3334 3335
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3336

3337
		if (tmp & DP_SYNC_VS_HIGH)
3338 3339 3340 3341
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3342

3343
	pipe_config->hw.adjusted_mode.flags |= flags;
3344

3345
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3346 3347
		pipe_config->limited_color_range = true;

3348 3349 3350
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3351 3352
	intel_dp_get_m_n(crtc, pipe_config);

3353
	if (port == PORT_A) {
3354
		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3355 3356 3357 3358
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3359

3360
	pipe_config->hw.adjusted_mode.crtc_clock =
3361 3362
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3363

3364
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3365
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
3379 3380 3381
		drm_dbg_kms(&dev_priv->drm,
			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3382
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3383
	}
3384 3385
}

3386
static void intel_disable_dp(struct intel_encoder *encoder,
3387 3388
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3389
{
3390
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3391

3392 3393
	intel_dp->link_trained = false;

3394
	if (old_crtc_state->has_audio)
3395 3396
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3397 3398 3399

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3400
	intel_edp_panel_vdd_on(intel_dp);
3401
	intel_edp_backlight_off(old_conn_state);
3402
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3403
	intel_edp_panel_off(intel_dp);
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3418 3419
}

3420
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3421 3422
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3423
{
3424
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3425
	enum port port = encoder->port;
3426

3427 3428 3429 3430 3431 3432
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3433
	intel_dp_link_down(encoder, old_crtc_state);
3434 3435

	/* Only ilk+ has port A */
3436
	if (port == PORT_A)
3437
		ilk_edp_pll_off(intel_dp, old_crtc_state);
3438 3439
}

3440
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3441 3442
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3443
{
3444
	intel_dp_link_down(encoder, old_crtc_state);
3445 3446
}

3447
static void chv_post_disable_dp(struct intel_encoder *encoder,
3448 3449
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3450
{
3451
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3452

3453
	intel_dp_link_down(encoder, old_crtc_state);
3454

3455
	vlv_dpio_get(dev_priv);
3456 3457

	/* Assert data lane reset */
3458
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3459

3460
	vlv_dpio_put(dev_priv);
3461 3462
}

3463 3464
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3465 3466
			 u32 *DP,
			 u8 dp_train_pat)
3467
{
3468
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3469
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3470
	enum port port = intel_dig_port->base.port;
3471
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3472

3473
	if (dp_train_pat & train_pat_mask)
3474 3475 3476
		drm_dbg_kms(&dev_priv->drm,
			    "Using DP training pattern TPS%d\n",
			    dp_train_pat & train_pat_mask);
3477

3478
	if (HAS_DDI(dev_priv)) {
3479
		u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3480 3481 3482 3483 3484 3485 3486

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3487
		switch (dp_train_pat & train_pat_mask) {
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3501 3502 3503
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3504
		}
3505
		intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3506

3507
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3508
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3522 3523
			drm_dbg_kms(&dev_priv->drm,
				    "TPS3 not supported, using TPS2 instead\n");
3524 3525 3526 3527 3528
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3529
		*DP &= ~DP_LINK_TRAIN_MASK;
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3542 3543
			drm_dbg_kms(&dev_priv->drm,
				    "TPS3 not supported, using TPS2 instead\n");
3544
			*DP |= DP_LINK_TRAIN_PAT_2;
3545 3546 3547 3548 3549
			break;
		}
	}
}

3550
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3551
				 const struct intel_crtc_state *old_crtc_state)
3552
{
3553
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3554 3555 3556

	/* enable with pattern 1 (as per spec) */

3557
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3558 3559 3560 3561 3562 3563 3564 3565

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3566
	if (old_crtc_state->has_audio)
3567
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3568

3569 3570
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3571 3572
}

3573
static void intel_enable_dp(struct intel_encoder *encoder,
3574 3575
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3576
{
3577
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3578
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3579
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3580
	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3581
	enum pipe pipe = crtc->pipe;
3582
	intel_wakeref_t wakeref;
3583

3584 3585
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3586

3587 3588 3589
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3590

3591
		intel_dp_enable_port(intel_dp, pipe_config);
3592

3593 3594 3595 3596
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3597

3598
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3599 3600
		unsigned int lane_mask = 0x0;

3601
		if (IS_CHERRYVIEW(dev_priv))
3602
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3603

3604 3605
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3606
	}
3607

3608
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3609
	intel_dp_start_link_train(intel_dp);
3610
	intel_dp_stop_link_train(intel_dp);
3611

3612
	if (pipe_config->has_audio) {
3613 3614
		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
			pipe_name(pipe));
3615
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3616
	}
3617
}
3618

3619
static void g4x_enable_dp(struct intel_encoder *encoder,
3620 3621
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3622
{
3623
	intel_enable_dp(encoder, pipe_config, conn_state);
3624
	intel_edp_backlight_on(pipe_config, conn_state);
3625
}
3626

3627
static void vlv_enable_dp(struct intel_encoder *encoder,
3628 3629
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3630
{
3631
	intel_edp_backlight_on(pipe_config, conn_state);
3632 3633
}

3634
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3635 3636
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3637
{
3638
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3639
	enum port port = encoder->port;
3640

3641
	intel_dp_prepare(encoder, pipe_config);
3642

3643
	/* Only ilk+ has port A */
3644
	if (port == PORT_A)
3645
		ilk_edp_pll_on(intel_dp, pipe_config);
3646 3647
}

3648 3649 3650
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3651
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3652
	enum pipe pipe = intel_dp->pps_pipe;
3653
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3654

3655 3656
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3657 3658 3659
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3660 3661 3662
	edp_panel_vdd_off_sync(intel_dp);

	/*
3663
	 * VLV seems to get confused when multiple power sequencers
3664 3665 3666
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3667
	 * selected in multiple power sequencers, but let's clear the
3668 3669 3670
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3671 3672 3673 3674
	drm_dbg_kms(&dev_priv->drm,
		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
3675 3676
	intel_de_write(dev_priv, pp_on_reg, 0);
	intel_de_posting_read(dev_priv, pp_on_reg);
3677 3678 3679 3680

	intel_dp->pps_pipe = INVALID_PIPE;
}

3681
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3682 3683 3684 3685 3686 3687
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3688
	for_each_intel_dp(&dev_priv->drm, encoder) {
3689
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3690

3691
		WARN(intel_dp->active_pipe == pipe,
3692 3693 3694
		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
		     pipe_name(pipe), encoder->base.base.id,
		     encoder->base.name);
3695

3696 3697 3698
		if (intel_dp->pps_pipe != pipe)
			continue;

3699 3700 3701 3702
		drm_dbg_kms(&dev_priv->drm,
			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			    pipe_name(pipe), encoder->base.base.id,
			    encoder->base.name);
3703 3704

		/* make sure vdd is off before we steal it */
3705
		vlv_detach_power_sequencer(intel_dp);
3706 3707 3708
	}
}

3709 3710
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3711
{
3712
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3713
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3714
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3715 3716 3717

	lockdep_assert_held(&dev_priv->pps_mutex);

3718
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3719

3720 3721 3722 3723 3724 3725 3726
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3727
		vlv_detach_power_sequencer(intel_dp);
3728
	}
3729 3730 3731 3732 3733

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3734
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3735

3736 3737
	intel_dp->active_pipe = crtc->pipe;

3738
	if (!intel_dp_is_edp(intel_dp))
3739 3740
		return;

3741 3742 3743
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3744 3745 3746 3747
	drm_dbg_kms(&dev_priv->drm,
		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		    encoder->base.name);
3748 3749

	/* init power sequencer on this pipe and port */
3750 3751
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3752 3753
}

3754
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3755 3756
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3757
{
3758
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3759

3760
	intel_enable_dp(encoder, pipe_config, conn_state);
3761 3762
}

3763
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3764 3765
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3766
{
3767
	intel_dp_prepare(encoder, pipe_config);
3768

3769
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3770 3771
}

3772
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3773 3774
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3775
{
3776
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3777

3778
	intel_enable_dp(encoder, pipe_config, conn_state);
3779 3780

	/* Second common lane will stay alive on its own now */
3781
	chv_phy_release_cl2_override(encoder);
3782 3783
}

3784
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3785 3786
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3787
{
3788
	intel_dp_prepare(encoder, pipe_config);
3789

3790
	chv_phy_pre_pll_enable(encoder, pipe_config);
3791 3792
}

3793
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3794 3795
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3796
{
3797
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3798 3799
}

3800 3801 3802 3803
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3804
bool
3805
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3806
{
3807 3808
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3809 3810
}

3811
/* These are source-specific values. */
3812
u8
K
Keith Packard 已提交
3813
intel_dp_voltage_max(struct intel_dp *intel_dp)
3814
{
3815
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3816 3817
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3818

3819
	if (HAS_DDI(dev_priv))
3820
		return intel_ddi_dp_voltage_max(encoder);
3821
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3822
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3823
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3824
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3825
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3826
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3827
	else
3828
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3829 3830
}

3831 3832
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3833
{
3834
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3835 3836
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3837

3838 3839
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3840
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3841
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3842 3843 3844 3845 3846 3847 3848
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3849
		default:
3850
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3851
		}
3852
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3853
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3854 3855 3856 3857 3858
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3859
		default:
3860
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3861 3862 3863
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3864 3865 3866 3867 3868 3869 3870
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3871
		default:
3872
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3873
		}
3874 3875 3876
	}
}

3877
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3878
{
3879
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3880 3881
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3882
	u8 train_set = intel_dp->train_set[0];
3883 3884

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3885
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3886 3887
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3888
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3889 3890 3891
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3892
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3893 3894 3895
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3896
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3897 3898 3899
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3900
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3901 3902 3903 3904 3905 3906 3907
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3908
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3909 3910
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3911
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3912 3913 3914
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3915
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3916 3917 3918
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3919
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3920 3921 3922 3923 3924 3925 3926
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3927
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3928 3929
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3930
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3931 3932 3933
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3934
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3935 3936 3937 3938 3939 3940 3941
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3942
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3943 3944
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3945
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3957 3958
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3959 3960 3961 3962

	return 0;
}

3963
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3964
{
3965 3966 3967
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3968
	u8 train_set = intel_dp->train_set[0];
3969 3970

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3971
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3972
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3973
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3974 3975 3976
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3977
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3978 3979 3980
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3981
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3982 3983 3984
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3985
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3986 3987
			deemph_reg_value = 128;
			margin_reg_value = 154;
3988
			uniq_trans_scale = true;
3989 3990 3991 3992 3993
			break;
		default:
			return 0;
		}
		break;
3994
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3995
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3996
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3997 3998 3999
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
4000
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4001 4002 4003
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
4004
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4005 4006 4007 4008 4009 4010 4011
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
4012
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4013
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4014
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4015 4016 4017
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
4018
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4019 4020 4021 4022 4023 4024 4025
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
4026
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4027
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4028
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

4040 4041
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
4042 4043 4044 4045

	return 0;
}

4046 4047
static u32
g4x_signal_levels(u8 train_set)
4048
{
4049
	u32 signal_levels = 0;
4050

4051
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4052
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4053 4054 4055
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
4056
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4057 4058
		signal_levels |= DP_VOLTAGE_0_6;
		break;
4059
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4060 4061
		signal_levels |= DP_VOLTAGE_0_8;
		break;
4062
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4063 4064 4065
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
4066
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4067
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4068 4069 4070
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
4071
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4072 4073
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
4074
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4075 4076
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
4077
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4078 4079 4080 4081 4082 4083
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

4084
/* SNB CPU eDP voltage swing and pre-emphasis control */
4085 4086
static u32
snb_cpu_edp_signal_levels(u8 train_set)
4087
{
4088 4089 4090
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4091 4092
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4093
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4094
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4095
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4096 4097
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4098
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4099 4100
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4101
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4102 4103
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4104
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4105
	default:
4106 4107 4108
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4109 4110 4111
	}
}

4112
/* IVB CPU eDP voltage swing and pre-emphasis control */
4113 4114
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4115 4116 4117 4118
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4119
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4120
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4121
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4122
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4123
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4124 4125
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4126
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4127
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4128
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4129 4130
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4131
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4132
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4133
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4143
void
4144
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4145
{
4146
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4147
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4148
	enum port port = intel_dig_port->base.port;
4149 4150
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
4151

R
Rodrigo Vivi 已提交
4152
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4153 4154
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
4155
		signal_levels = ddi_signal_levels(intel_dp);
4156
		mask = DDI_BUF_EMP_MASK;
4157
	} else if (IS_CHERRYVIEW(dev_priv)) {
4158
		signal_levels = chv_signal_levels(intel_dp);
4159
	} else if (IS_VALLEYVIEW(dev_priv)) {
4160
		signal_levels = vlv_signal_levels(intel_dp);
4161
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4162
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4163
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4164
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4165
		signal_levels = snb_cpu_edp_signal_levels(train_set);
4166 4167
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
4168
		signal_levels = g4x_signal_levels(train_set);
4169 4170 4171
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

4172
	if (mask)
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
		drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
			    signal_levels);

	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
		    " (max)" : "");
4184

4185
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4186

4187 4188
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4189 4190
}

4191
void
4192
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4193
				       u8 dp_train_pat)
4194
{
4195
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4196 4197
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
4198

4199
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4200

4201 4202
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4203 4204
}

4205
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4206
{
4207
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4208
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4209
	enum port port = intel_dig_port->base.port;
4210
	u32 val;
4211

4212
	if (!HAS_DDI(dev_priv))
4213 4214
		return;

4215
	val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4216 4217
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4218
	intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4219 4220

	/*
4221 4222 4223
	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
	 * reason we need to set idle transmission mode is to work around a HW
	 * issue where we enable the pipe while not in idle link-training mode.
4224 4225 4226
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
4227
	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4228 4229
		return;

4230
	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4231
				  DP_TP_STATUS_IDLE_DONE, 1))
4232 4233
		drm_err(&dev_priv->drm,
			"Timed out waiting for DP idle patterns\n");
4234 4235
}

4236
static void
4237 4238
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4239
{
4240
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4241
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4242
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4243
	enum port port = encoder->port;
4244
	u32 DP = intel_dp->DP;
4245

4246
	if (WARN_ON((intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN) == 0))
4247 4248
		return;

4249
	drm_dbg_kms(&dev_priv->drm, "\n");
4250

4251
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4252
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4253
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4254
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4255
	} else {
4256
		DP &= ~DP_LINK_TRAIN_MASK;
4257
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4258
	}
4259 4260
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4261

4262
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4263 4264
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4265 4266 4267 4268 4269 4270

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4271
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4272 4273 4274 4275 4276 4277 4278
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4279
		/* always enable with pattern 1 (as per spec) */
4280 4281 4282
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4283 4284
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4285 4286

		DP &= ~DP_PORT_EN;
4287 4288
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4289

4290
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4291 4292
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4293 4294
	}

4295
	msleep(intel_dp->panel_power_down_delay);
4296 4297

	intel_dp->DP = DP;
4298 4299

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4300 4301 4302 4303
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4304
	}
4305 4306
}

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4343
bool
4344
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4345
{
4346 4347
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4348
		return false; /* aux transfer failed */
4349

4350 4351
	intel_dp_extended_receiver_capabilities(intel_dp);

4352
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4353

4354 4355
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4356

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4367 4368 4369 4370 4371 4372 4373 4374
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4375 4376 4377
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4390

4391
		/* FEC is supported only on DP 1.4 */
4392 4393 4394 4395
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4396

4397
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4398 4399 4400
	}
}

4401 4402 4403 4404 4405
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4406

4407 4408
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4409

4410
	if (!intel_dp_read_dpcd(intel_dp))
4411 4412
		return false;

4413 4414
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4426 4427
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4428 4429 4430
		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
			    (int)sizeof(intel_dp->edp_dpcd),
			    intel_dp->edp_dpcd);
4431

4432 4433 4434 4435 4436 4437
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4438 4439
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4440
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4441 4442
		int i;

4443 4444
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4445

4446 4447
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4448 4449 4450 4451

			if (val == 0)
				break;

4452 4453 4454 4455 4456 4457
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4458
			intel_dp->sink_rates[i] = (val * 200) / 10;
4459
		}
4460
		intel_dp->num_sink_rates = i;
4461
	}
4462

4463 4464 4465 4466
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4467 4468 4469 4470 4471
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4472 4473
	intel_dp_set_common_rates(intel_dp);

4474 4475 4476 4477
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4488 4489 4490 4491
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4492
	if (!intel_dp_is_edp(intel_dp)) {
4493 4494 4495
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4496
		intel_dp_set_sink_rates(intel_dp);
4497 4498
		intel_dp_set_common_rates(intel_dp);
	}
4499

4500
	/*
4501 4502
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4503
	 */
4504 4505
	if (!intel_dp_is_edp(intel_dp) &&
	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4506 4507
		u8 count;
		ssize_t r;
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4530

4531
	if (!drm_dp_is_branch(intel_dp->dpcd))
4532 4533 4534 4535 4536
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4537 4538 4539
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4540 4541 4542
		return false; /* downstream port status fetch failed */

	return true;
4543 4544
}

4545
static bool
4546
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4547
{
4548
	u8 mstm_cap;
4549 4550 4551 4552

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4553
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4554
		return false;
4555

4556
	return mstm_cap & DP_MST_CAP;
4557 4558
}

4559 4560 4561 4562 4563 4564 4565 4566
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4567 4568 4569
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4570 4571 4572 4573
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4574
	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4575 4576 4577
		      encoder->base.base.id, encoder->base.name,
		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
		      yesno(i915_modparams.enable_dp_mst));
4578 4579 4580 4581

	if (!intel_dp->can_mst)
		return;

4582 4583
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4584 4585 4586

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4587 4588 4589 4590 4591
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4592 4593 4594
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4595 4596
}

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
{
	/*
	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
	 * of Color Encoding Format and Content Color Gamut], in order to
	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		return true;

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_SYCC_601:
	case DRM_MODE_COLORIMETRY_OPYCC_601:
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		return true;
	default:
		break;
	}

	return false;
}

4623
static void
4624 4625 4626
intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
		       const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		/* RGB: DB16[7:4] = 0h */
		break;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc_sdp.db[16] |= 0x1;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc_sdp.db[16] |= 0x2;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc_sdp.db[16] |= 0x3;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc_sdp.db[16] |= 0x4;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc_sdp.db[16] |= 0x5;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc_sdp.db[16] |= 0x6;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc_sdp.db[16] |= 0x7;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
		break;
	default:
		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */

		/* RGB->YCBCR color conversion uses the BT.709 color space. */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
		break;
	}
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
static void
intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					  const struct intel_crtc_state *crtc_state,
					  const struct drm_connector_state *conn_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp infoframe_sdp = {};
	struct hdmi_drm_infoframe drm_infoframe = {};
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;
	int ret;

	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
	if (ret) {
		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
		return;
	}

	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Packet ID, 00h for non-Audio INFOFRAME */
	infoframe_sdp.sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
	 */
	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1,
	 */
	infoframe_sdp.sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	infoframe_sdp.db[0] = drm_infoframe.version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	infoframe_sdp.db[1] = drm_infoframe.length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
					HDMI_PACKET_TYPE_GAMUT_METADATA,
					&infoframe_sdp,
					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
}

4827 4828 4829
void intel_dp_vsc_enable(struct intel_dp *intel_dp,
			 const struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
4830
{
4831
	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4832 4833
		return;

4834
	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4835 4836
}

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	if (!conn_state->hdr_output_metadata)
		return;

	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
						  crtc_state,
						  conn_state);
}

4849
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4850
{
4851
	int status = 0;
4852
	int test_link_rate;
4853
	u8 test_lane_count, test_link_bw;
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4874 4875 4876 4877

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4878 4879 4880 4881 4882 4883
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4884 4885
}

4886
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4887
{
4888 4889
	u8 test_pattern;
	u8 test_misc;
4890 4891 4892 4893
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4894 4895
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4917 4918
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
4942
	intel_dp->compliance.test_active = true;
4943 4944

	return DP_TEST_ACK;
4945 4946
}

4947
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4948
{
4949
	u8 test_result = DP_TEST_ACK;
4950 4951 4952 4953
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4954
	    connector->edid_corrupt ||
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4968
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4969
	} else {
4970 4971 4972 4973 4974 4975 4976
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4977 4978
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4979 4980 4981
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4982
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4983 4984 4985
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4986
	intel_dp->compliance.test_active = true;
4987

4988 4989 4990
	return test_result;
}

4991
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4992
{
4993
	u8 test_result = DP_TEST_NAK;
4994 4995 4996 4997 4998
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4999 5000
	u8 response = DP_TEST_NAK;
	u8 request = 0;
5001
	int status;
5002

5003
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5004 5005 5006 5007 5008
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

5009
	switch (request) {
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
5027
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5028 5029 5030
		break;
	}

5031 5032 5033
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

5034
update_status:
5035
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5036 5037
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
5038 5039
}

5040 5041 5042 5043 5044 5045
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
5046
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5047 5048 5049
		int ret = 0;
		int retry;
		bool handled;
5050 5051

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5052 5053 5054 5055 5056
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
5057
			if (intel_dp->active_mst_links > 0 &&
5058
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5059 5060 5061 5062 5063
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

5064
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
5080
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5081 5082 5083 5084 5085 5086 5087 5088 5089
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
5090 5091
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
5092 5093 5094 5095 5096
		}
	}
	return -EINVAL;
}

5097 5098 5099 5100 5101
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

5102
	if (!intel_dp->link_trained)
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
5114 5115 5116
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
5133 5134
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5135
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

5166
	if (!crtc_state->hw.active)
5167 5168 5169 5170 5171 5172 5173 5174
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
5175 5176 5177

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5178
	if (crtc_state->has_pch_encoder)
5179 5180 5181 5182 5183 5184 5185
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
5186
	intel_wait_for_vblank(dev_priv, crtc->pipe);
5187 5188

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5189
	if (crtc_state->has_pch_encoder)
5190 5191
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
5192 5193

	return 0;
5194 5195
}

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
5208 5209 5210 5211
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
5212
{
5213
	struct drm_modeset_acquire_ctx ctx;
5214
	enum intel_hotplug_state state;
5215
	int ret;
5216

5217
	state = intel_encoder_hotplug(encoder, connector, irq_received);
5218

5219
	drm_modeset_acquire_init(&ctx, 0);
5220

5221 5222
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
5223

5224 5225 5226 5227
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
5228

5229 5230
		break;
	}
5231

5232 5233
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
5234 5235
	drm_WARN(encoder->base.dev, ret,
		 "Acquiring modeset locks failed with %i\n", ret);
5236

5237 5238 5239 5240 5241 5242 5243
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

5244
	return state;
5245 5246
}

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

5263
	if (val & DP_CP_IRQ)
5264
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5265 5266 5267

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5268 5269
}

5270 5271 5272 5273 5274 5275 5276
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
5277 5278 5279 5280 5281
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
5282
 */
5283
static bool
5284
intel_dp_short_pulse(struct intel_dp *intel_dp)
5285
{
5286
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5287 5288
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5289

5290 5291 5292 5293
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5294
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5295

5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5307 5308
	}

5309
	intel_dp_check_service_irq(intel_dp);
5310

5311 5312 5313
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5314 5315 5316
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5317

5318 5319
	intel_psr_short_pulse(intel_dp);

5320
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5321 5322
		drm_dbg_kms(&dev_priv->drm,
			    "Link Training Compliance Test requested\n");
5323
		/* Send a Hotplug Uevent to userspace to start modeset */
5324
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5325
	}
5326 5327

	return true;
5328 5329
}

5330
/* XXX this is probably wrong for multiple downstream ports */
5331
static enum drm_connector_status
5332
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5333
{
5334
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5335 5336
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5337

5338 5339 5340
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5341 5342 5343
	if (lspcon->active)
		lspcon_resume(lspcon);

5344 5345 5346 5347
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5348
	if (!drm_dp_is_branch(dpcd))
5349
		return connector_status_connected;
5350 5351

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5352 5353
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5354

5355 5356
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5357 5358
	}

5359 5360 5361
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5362
	/* If no HPD, poke DDC gently */
5363
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5364
		return connector_status_connected;
5365 5366

	/* Well we tried, say unknown for unreliable port types */
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5379 5380 5381

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5382
	return connector_status_disconnected;
5383 5384
}

5385 5386 5387
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5388
	return connector_status_connected;
5389 5390
}

5391
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5392
{
5393
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5394
	u32 bit;
5395

5396 5397
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5398 5399
		bit = SDE_PORTB_HOTPLUG;
		break;
5400
	case HPD_PORT_C:
5401 5402
		bit = SDE_PORTC_HOTPLUG;
		break;
5403
	case HPD_PORT_D:
5404 5405 5406
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5407
		MISSING_CASE(encoder->hpd_pin);
5408 5409 5410
		return false;
	}

5411
	return intel_de_read(dev_priv, SDEISR) & bit;
5412 5413
}

5414
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5415
{
5416
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5417 5418
	u32 bit;

5419 5420
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5421 5422
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5423
	case HPD_PORT_C:
5424 5425
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5426
	case HPD_PORT_D:
5427 5428
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5429
	default:
5430
		MISSING_CASE(encoder->hpd_pin);
5431 5432 5433
		return false;
	}

5434
	return intel_de_read(dev_priv, SDEISR) & bit;
5435 5436
}

5437
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5438
{
5439
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5440 5441
	u32 bit;

5442 5443
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5444 5445
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5446
	case HPD_PORT_E:
5447 5448
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5449
	default:
5450
		return cpt_digital_port_connected(encoder);
5451
	}
5452

5453
	return intel_de_read(dev_priv, SDEISR) & bit;
5454 5455
}

5456
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5457
{
5458
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5459
	u32 bit;
5460

5461 5462
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5463 5464
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5465
	case HPD_PORT_C:
5466 5467
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5468
	case HPD_PORT_D:
5469 5470 5471
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5472
		MISSING_CASE(encoder->hpd_pin);
5473 5474 5475
		return false;
	}

5476
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5477 5478
}

5479
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5480
{
5481
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5482 5483
	u32 bit;

5484 5485
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5486
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5487
		break;
5488
	case HPD_PORT_C:
5489
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5490
		break;
5491
	case HPD_PORT_D:
5492
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5493 5494
		break;
	default:
5495
		MISSING_CASE(encoder->hpd_pin);
5496
		return false;
5497 5498
	}

5499
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5500 5501
}

5502
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5503
{
5504 5505 5506
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5507
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5508
	else
5509
		return ibx_digital_port_connected(encoder);
5510 5511
}

5512
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5513
{
5514 5515 5516
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5517
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5518
	else
5519
		return cpt_digital_port_connected(encoder);
5520 5521
}

5522
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5523
{
5524 5525 5526
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5527
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5528
	else
5529
		return cpt_digital_port_connected(encoder);
5530 5531
}

5532
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5533
{
5534 5535 5536
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5537
		return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5538
	else
5539
		return cpt_digital_port_connected(encoder);
5540 5541
}

5542
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5543
{
5544
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5545 5546
	u32 bit;

5547 5548
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5549 5550
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5551
	case HPD_PORT_B:
5552 5553
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5554
	case HPD_PORT_C:
5555 5556 5557
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5558
		MISSING_CASE(encoder->hpd_pin);
5559 5560 5561
		return false;
	}

5562
	return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5563 5564
}

5565 5566
static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
				      enum phy phy)
5567
{
5568
	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5569
		return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5570

5571
	return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5572 5573
}

5574
static bool icp_digital_port_connected(struct intel_encoder *encoder)
5575 5576
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5577
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5578
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5579

5580
	if (intel_phy_is_combo(dev_priv, phy))
5581
		return intel_combo_phy_connected(dev_priv, phy);
5582
	else if (intel_phy_is_tc(dev_priv, phy))
5583
		return intel_tc_port_connected(dig_port);
5584
	else
5585
		MISSING_CASE(encoder->hpd_pin);
5586 5587

	return false;
5588 5589
}

5590 5591
/*
 * intel_digital_port_connected - is the specified port connected?
5592
 * @encoder: intel_encoder
5593
 *
5594 5595 5596 5597 5598
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5599
 * Return %true if port is connected, %false otherwise.
5600
 */
5601
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5602
{
5603 5604
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5605
	if (HAS_GMCH(dev_priv)) {
5606
		if (IS_GM45(dev_priv))
5607
			return gm45_digital_port_connected(encoder);
5608
		else
5609
			return g4x_digital_port_connected(encoder);
5610 5611
	}

5612 5613 5614
	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
		return icp_digital_port_connected(encoder);
	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5615
		return spt_digital_port_connected(encoder);
5616
	else if (IS_GEN9_LP(dev_priv))
5617
		return bxt_digital_port_connected(encoder);
5618
	else if (IS_GEN(dev_priv, 8))
5619
		return bdw_digital_port_connected(encoder);
5620
	else if (IS_GEN(dev_priv, 7))
5621
		return ivb_digital_port_connected(encoder);
5622
	else if (IS_GEN(dev_priv, 6))
5623
		return snb_digital_port_connected(encoder);
5624
	else if (IS_GEN(dev_priv, 5))
5625 5626 5627 5628
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5629 5630
}

5631 5632 5633
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5634
	bool is_connected = false;
5635 5636 5637 5638 5639 5640 5641 5642
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5643
static struct edid *
5644
intel_dp_get_edid(struct intel_dp *intel_dp)
5645
{
5646
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5647

5648 5649 5650 5651
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5652 5653
			return NULL;

J
Jani Nikula 已提交
5654
		return drm_edid_duplicate(intel_connector->edid);
5655 5656 5657 5658
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5659

5660 5661 5662 5663 5664
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5665

5666
	intel_dp_unset_edid(intel_dp);
5667 5668 5669
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5670
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5671
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5672 5673
}

5674 5675
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5676
{
5677
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5678

5679
	drm_dp_cec_unset_edid(&intel_dp->aux);
5680 5681
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5682

5683 5684
	intel_dp->has_audio = false;
}
5685

5686
static int
5687 5688 5689
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5690
{
5691
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5692
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5693 5694
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5695 5696
	enum drm_connector_status status;

5697 5698
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
5699
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5700

5701
	/* Can't disconnect eDP */
5702
	if (intel_dp_is_edp(intel_dp))
5703
		status = edp_detect(intel_dp);
5704
	else if (intel_digital_port_connected(encoder))
5705
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5706
	else
5707 5708
		status = connector_status_disconnected;

5709
	if (status == connector_status_disconnected) {
5710
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5711
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5712

5713
		if (intel_dp->is_mst) {
5714 5715 5716 5717
			drm_dbg_kms(&dev_priv->drm,
				    "MST device may have disappeared %d vs %d\n",
				    intel_dp->is_mst,
				    intel_dp->mst_mgr.mst_state);
5718 5719 5720 5721 5722
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5723
		goto out;
5724
	}
Z
Zhenyu Wang 已提交
5725

5726
	if (intel_dp->reset_link_params) {
5727 5728
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5729

5730 5731
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5732 5733 5734

		intel_dp->reset_link_params = false;
	}
5735

5736 5737
	intel_dp_print_rates(intel_dp);

5738 5739 5740 5741
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5742 5743 5744
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5745 5746 5747 5748 5749
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5750 5751
		status = connector_status_disconnected;
		goto out;
5752 5753 5754 5755 5756 5757
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5758 5759 5760 5761
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5762
		if (ret)
5763 5764
			return ret;
	}
5765

5766 5767 5768 5769 5770 5771 5772 5773
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5774
	intel_dp_set_edid(intel_dp);
5775 5776
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5777
		status = connector_status_connected;
5778

5779
	intel_dp_check_service_irq(intel_dp);
5780

5781
out:
5782
	if (status != connector_status_connected && !intel_dp->is_mst)
5783
		intel_dp_unset_edid(intel_dp);
5784

5785 5786 5787 5788 5789 5790
	/*
	 * Make sure the refs for power wells enabled during detect are
	 * dropped to avoid a new detect cycle triggered by HPD polling.
	 */
	intel_display_power_flush_work(dev_priv);

5791
	return status;
5792 5793
}

5794 5795
static void
intel_dp_force(struct drm_connector *connector)
5796
{
5797
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5798 5799
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5800
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5801 5802
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5803
	intel_wakeref_t wakeref;
5804

5805 5806
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
5807
	intel_dp_unset_edid(intel_dp);
5808

5809 5810
	if (connector->status != connector_status_connected)
		return;
5811

5812
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5813 5814 5815

	intel_dp_set_edid(intel_dp);

5816
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5830

5831
	/* if eDP has no EDID, fall back to fixed mode */
5832
	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5833
	    intel_connector->panel.fixed_mode) {
5834
		struct drm_display_mode *mode;
5835 5836

		mode = drm_mode_duplicate(connector->dev,
5837
					  intel_connector->panel.fixed_mode);
5838
		if (mode) {
5839 5840 5841 5842
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5843

5844
	return 0;
5845 5846
}

5847 5848 5849
static int
intel_dp_connector_register(struct drm_connector *connector)
{
5850
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5851 5852 5853 5854 5855
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5856

5857
	intel_connector_debugfs_add(connector);
5858 5859 5860 5861 5862

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5863 5864
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
5865
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5866
	return ret;
5867 5868
}

5869 5870 5871
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5872
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5873 5874 5875

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5876 5877 5878
	intel_connector_unregister(connector);
}

5879
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5880
{
5881
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5882
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5883

5884
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5885
	if (intel_dp_is_edp(intel_dp)) {
5886 5887
		intel_wakeref_t wakeref;

5888
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5889 5890 5891 5892
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5893 5894
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5895

5896 5897 5898 5899
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5900
	}
5901 5902

	intel_dp_aux_fini(intel_dp);
5903 5904 5905 5906 5907
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5908

5909
	drm_encoder_cleanup(encoder);
5910
	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5911 5912
}

5913
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5914
{
5915
	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5916
	intel_wakeref_t wakeref;
5917

5918
	if (!intel_dp_is_edp(intel_dp))
5919 5920
		return;

5921 5922 5923 5924
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5925
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5926 5927
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5928 5929
}

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5942 5943 5944 5945
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
5946
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5947 5948 5949 5950 5951
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5952
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5953 5954 5955 5956 5957 5958 5959
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5960 5961
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5962 5963 5964 5965 5966 5967 5968 5969 5970
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5971
	intel_dp_aux_header(txbuf, &msg);
5972

5973
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5974 5975
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5976
	if (ret < 0) {
5977
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5978 5979
		return ret;
	} else if (ret == 0) {
5980
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5981 5982 5983 5984
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5985 5986 5987 5988 5989 5990
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5991 5992 5993 5994 5995 5996 5997 5998 5999
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
6000
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
6018
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6019 6020 6021 6022 6023 6024
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
6025 6026
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
6027 6028
{
	ssize_t ret;
6029

6030
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6031
			       bcaps, 1);
6032
	if (ret != 1) {
6033
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6034 6035
		return ret >= 0 ? -EIO : ret;
	}
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
6063
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6078
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
6100 6101
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6121
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
6140

6141 6142 6143
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6144
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6145
		return false;
6146
	}
6147

6148 6149 6150
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6166 6167 6168 6169 6170
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

6171
struct hdcp2_dp_msg_data {
6172 6173 6174 6175 6176
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
6177 6178
};

6179
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6208 6209
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6210 6211 6212 6213
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6267
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6288 6289 6290 6291 6292 6293 6294
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

6306
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6307 6308 6309
{
	int i;

6310 6311 6312
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6313 6314 6315 6316 6317 6318 6319 6320

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6321 6322
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6323 6324 6325
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6326
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6338 6339
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6390
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6509
	.hdcp_capable = intel_dp_hdcp_capable,
6510 6511 6512 6513 6514 6515
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6516 6517
};

6518 6519
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6520
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6521
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
6534 6535
	drm_dbg_kms(&dev_priv->drm,
		    "VDD left on by BIOS, adjusting state tracking\n");
6536
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6537 6538 6539 6540

	edp_panel_vdd_schedule_off(intel_dp);
}

6541 6542
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6543
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6544 6545
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6546

6547 6548 6549
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6550

6551
	return INVALID_PIPE;
6552 6553
}

6554
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6555
{
6556
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6557
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6558
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6559
	intel_wakeref_t wakeref;
6560 6561

	if (!HAS_DDI(dev_priv))
6562
		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6563

6564
	if (lspcon->active)
6565 6566
		lspcon_resume(lspcon);

6567 6568
	intel_dp->reset_link_params = true;

6569 6570 6571 6572
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6573 6574 6575
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6576

6577 6578 6579 6580 6581 6582 6583 6584
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6585
	}
6586 6587
}

6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
static int intel_modeset_tile_group(struct intel_atomic_state *state,
				    int tile_group_id)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector;
	int ret = 0;

	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!connector->has_tile ||
		    connector->tile_group->id != tile_group_id)
			continue;

		conn_state = drm_atomic_get_connector_state(&state->base,
							    connector);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			break;
		}

		crtc = to_intel_crtc(conn_state->crtc);

		if (!crtc)
			continue;

		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			break;
	}
	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);

	return ret;
}

static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	if (transcoders == 0)
		return 0;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;
		int ret;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (!crtc_state->hw.enable)
			continue;

		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
			continue;

		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
		if (ret)
			return ret;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			return ret;

		transcoders &= ~BIT(crtc_state->cpu_transcoder);
	}

	WARN_ON(transcoders != 0);

	return 0;
}

static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
				      struct drm_connector *connector)
{
	const struct drm_connector_state *old_conn_state =
		drm_atomic_get_old_connector_state(&state->base, connector);
	const struct intel_crtc_state *old_crtc_state;
	struct intel_crtc *crtc;
	u8 transcoders;

	crtc = to_intel_crtc(old_conn_state->crtc);
	if (!crtc)
		return 0;

	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);

	if (!old_crtc_state->hw.active)
		return 0;

	transcoders = old_crtc_state->sync_mode_slaves_mask;
	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
		transcoders |= BIT(old_crtc_state->master_transcoder);

	return intel_modeset_affected_transcoders(state,
						  transcoders);
}

static int intel_dp_connector_atomic_check(struct drm_connector *conn,
					   struct drm_atomic_state *_state)
{
	struct drm_i915_private *dev_priv = to_i915(conn->dev);
	struct intel_atomic_state *state = to_intel_atomic_state(_state);
	int ret;

	ret = intel_digital_connector_atomic_check(conn, &state->base);
	if (ret)
		return ret;

	if (INTEL_GEN(dev_priv) < 11)
		return 0;

	if (!intel_connector_needs_modeset(state, conn))
		return 0;

	if (conn->has_tile) {
		ret = intel_modeset_tile_group(state, conn->tile_group->id);
		if (ret)
			return ret;
	}

	return intel_modeset_synced_crtcs(state, conn);
}

6722
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6723
	.force = intel_dp_force,
6724
	.fill_modes = drm_helper_probe_single_connector_modes,
6725 6726
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6727
	.late_register = intel_dp_connector_register,
6728
	.early_unregister = intel_dp_connector_unregister,
6729
	.destroy = intel_connector_destroy,
6730
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6731
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6732 6733 6734
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6735
	.detect_ctx = intel_dp_detect,
6736 6737
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6738
	.atomic_check = intel_dp_connector_atomic_check,
6739 6740 6741
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6742
	.reset = intel_dp_encoder_reset,
6743
	.destroy = intel_dp_encoder_destroy,
6744 6745
};

6746
enum irqreturn
6747 6748 6749
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6750

6751 6752 6753 6754 6755 6756 6757
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
6758 6759 6760
		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
6761
		return IRQ_HANDLED;
6762 6763
	}

6764 6765 6766
	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
6767
		      long_hpd ? "long" : "short");
6768

6769
	if (long_hpd) {
6770
		intel_dp->reset_link_params = true;
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6785 6786

			return IRQ_NONE;
6787
		}
6788
	}
6789

6790
	if (!intel_dp->is_mst) {
6791
		bool handled;
6792 6793 6794

		handled = intel_dp_short_pulse(intel_dp);

6795
		if (!handled)
6796
			return IRQ_NONE;
6797
	}
6798

6799
	return IRQ_HANDLED;
6800 6801
}

6802
/* check the VBT to see whether the eDP is on another port */
6803
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6804
{
6805 6806 6807 6808
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6809
	if (INTEL_GEN(dev_priv) < 5)
6810 6811
		return false;

6812
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6813 6814
		return true;

6815
	return intel_bios_is_port_edp(dev_priv, port);
6816 6817
}

6818
static void
6819 6820
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6821
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6822 6823 6824 6825
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6826

6827
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6828
	if (HAS_GMCH(dev_priv))
6829 6830 6831
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6832

6833 6834
	intel_attach_colorspace_property(connector);

6835 6836 6837 6838 6839
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
		drm_object_attach_property(&connector->base,
					   connector->dev->mode_config.hdr_output_metadata_property,
					   0);

6840
	if (intel_dp_is_edp(intel_dp)) {
6841 6842 6843
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6844
		if (!HAS_GMCH(dev_priv))
6845 6846 6847 6848
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6849
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6850

6851
	}
6852 6853
}

6854 6855
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6856
	intel_dp->panel_power_off_time = ktime_get_boottime();
6857 6858 6859 6860
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6861
static void
6862
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6863
{
6864
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6865
	u32 pp_on, pp_off, pp_ctl;
6866
	struct pps_registers regs;
6867

6868
	intel_pps_get_registers(intel_dp, &regs);
6869

6870
	pp_ctl = ilk_get_pp_control(intel_dp);
6871

6872 6873
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
6874
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6875

6876 6877
	pp_on = intel_de_read(dev_priv, regs.pp_on);
	pp_off = intel_de_read(dev_priv, regs.pp_off);
6878 6879

	/* Pull timing values out of registers */
6880 6881 6882 6883
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6884

6885 6886 6887
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

6888
		pp_div = intel_de_read(dev_priv, regs.pp_div);
6889

6890
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6891
	} else {
6892
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6893
	}
6894 6895
}

I
Imre Deak 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6905
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6906 6907 6908 6909
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6910
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6920
static void
6921
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6922
{
6923
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6924 6925 6926 6927 6928 6929 6930 6931 6932
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6933
	intel_pps_readout_hw_state(intel_dp, &cur);
6934

I
Imre Deak 已提交
6935
	intel_pps_dump_state("cur", &cur);
6936

6937
	vbt = dev_priv->vbt.edp.pps;
6938 6939 6940 6941 6942 6943
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6944
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6945 6946 6947
		drm_dbg_kms(&dev_priv->drm,
			    "Increasing T12 panel delay as per the quirk to %d\n",
			    vbt.t11_t12);
6948
	}
6949 6950 6951 6952 6953
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6967
	intel_pps_dump_state("vbt", &vbt);
6968 6969 6970

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6971
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6972 6973 6974 6975 6976 6977 6978 6979 6980
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6981
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6982 6983 6984 6985 6986 6987 6988
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6989 6990 6991 6992 6993
	drm_dbg_kms(&dev_priv->drm,
		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
		    intel_dp->panel_power_up_delay,
		    intel_dp->panel_power_down_delay,
		    intel_dp->panel_power_cycle_delay);
6994

6995 6996 6997
	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
		    intel_dp->backlight_on_delay,
		    intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
7008 7009 7010 7011 7012 7013

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7014 7015 7016
}

static void
7017
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7018
					      bool force_disable_vdd)
7019
{
7020
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7021
	u32 pp_on, pp_off, port_sel = 0;
7022
	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7023
	struct pps_registers regs;
7024
	enum port port = dp_to_dig_port(intel_dp)->base.port;
7025
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7026

V
Ville Syrjälä 已提交
7027
	lockdep_assert_held(&dev_priv->pps_mutex);
7028

7029
	intel_pps_get_registers(intel_dp, &regs);
7030

7031 7032
	/*
	 * On some VLV machines the BIOS can leave the VDD
7033
	 * enabled even on power sequencers which aren't
7034 7035 7036 7037 7038 7039 7040
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
7041
	 * soon as the new power sequencer gets initialized.
7042 7043
	 */
	if (force_disable_vdd) {
7044
		u32 pp = ilk_get_pp_control(intel_dp);
7045 7046 7047 7048

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
7049 7050
			drm_dbg_kms(&dev_priv->drm,
				    "VDD already on, disabling first\n");
7051 7052 7053

		pp &= ~EDP_FORCE_VDD;

7054
		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7055 7056
	}

7057 7058 7059 7060
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7061 7062 7063

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
7064
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7065
		port_sel = PANEL_PORT_SELECT_VLV(port);
7066
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7067 7068
		switch (port) {
		case PORT_A:
7069
			port_sel = PANEL_PORT_SELECT_DPA;
7070 7071 7072 7073 7074
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
7075
			port_sel = PANEL_PORT_SELECT_DPD;
7076 7077 7078 7079 7080
			break;
		default:
			MISSING_CASE(port);
			break;
		}
7081 7082
	}

7083 7084
	pp_on |= port_sel;

7085 7086
	intel_de_write(dev_priv, regs.pp_on, pp_on);
	intel_de_write(dev_priv, regs.pp_off, pp_off);
7087 7088 7089 7090 7091

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
7092 7093
		intel_de_write(dev_priv, regs.pp_div,
			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7094 7095 7096
	} else {
		u32 pp_ctl;

7097
		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7098
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7099
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7100
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7101
	}
7102

7103 7104
	drm_dbg_kms(&dev_priv->drm,
		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7105 7106
		    intel_de_read(dev_priv, regs.pp_on),
		    intel_de_read(dev_priv, regs.pp_off),
7107
		    i915_mmio_reg_valid(regs.pp_div) ?
7108 7109
		    intel_de_read(dev_priv, regs.pp_div) :
		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7110 7111
}

7112
static void intel_dp_pps_init(struct intel_dp *intel_dp)
7113
{
7114
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7115 7116

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7117 7118
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
7119 7120
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7121 7122 7123
	}
}

7124 7125
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7126
 * @dev_priv: i915 device
7127
 * @crtc_state: a pointer to the active intel_crtc_state
7128 7129 7130 7131 7132 7133 7134 7135 7136
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
7137
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7138
				    const struct intel_crtc_state *crtc_state,
7139
				    int refresh_rate)
7140
{
7141
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7142
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7143
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7144 7145

	if (refresh_rate <= 0) {
7146 7147
		drm_dbg_kms(&dev_priv->drm,
			    "Refresh rate should be positive non-zero.\n");
7148 7149 7150
		return;
	}

7151
	if (intel_dp == NULL) {
7152
		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7153 7154 7155 7156
		return;
	}

	if (!intel_crtc) {
7157 7158
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS: intel_crtc not initialized\n");
7159 7160 7161
		return;
	}

7162
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7163
		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7164 7165 7166
		return;
	}

7167 7168
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
7169 7170
		index = DRRS_LOW_RR;

7171
	if (index == dev_priv->drrs.refresh_rate_type) {
7172 7173
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS requested for previously set RR...ignoring\n");
7174 7175 7176
		return;
	}

7177
	if (!crtc_state->hw.active) {
7178 7179
		drm_dbg_kms(&dev_priv->drm,
			    "eDP encoder disabled. CRTC not Active\n");
7180 7181 7182
		return;
	}

7183
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7184 7185
		switch (index) {
		case DRRS_HIGH_RR:
7186
			intel_dp_set_m_n(crtc_state, M1_N1);
7187 7188
			break;
		case DRRS_LOW_RR:
7189
			intel_dp_set_m_n(crtc_state, M2_N2);
7190 7191 7192
			break;
		case DRRS_MAX_RR:
		default:
7193 7194
			drm_err(&dev_priv->drm,
				"Unsupported refreshrate type\n");
7195
		}
7196 7197
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7198
		u32 val;
7199

7200
		val = intel_de_read(dev_priv, reg);
7201
		if (index > DRRS_HIGH_RR) {
7202
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7203 7204 7205
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7206
		} else {
7207
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7208 7209 7210
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7211
		}
7212
		intel_de_write(dev_priv, reg, val);
7213 7214
	}

7215 7216
	dev_priv->drrs.refresh_rate_type = index;

7217 7218
	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
		    refresh_rate);
7219 7220
}

7221 7222 7223
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
7224
 * @crtc_state: A pointer to the active crtc state.
7225 7226 7227
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
7228
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7229
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
7230
{
7231
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7232

7233
	if (!crtc_state->has_drrs) {
7234
		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
V
Vandana Kannan 已提交
7235 7236 7237
		return;
	}

7238
	if (dev_priv->psr.enabled) {
7239 7240
		drm_dbg_kms(&dev_priv->drm,
			    "PSR enabled. Not enabling DRRS.\n");
7241 7242 7243
		return;
	}

V
Vandana Kannan 已提交
7244
	mutex_lock(&dev_priv->drrs.mutex);
7245
	if (dev_priv->drrs.dp) {
7246
		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
V
Vandana Kannan 已提交
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

7258 7259 7260
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
7261
 * @old_crtc_state: Pointer to old crtc_state.
7262 7263
 *
 */
7264
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7265
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
7266
{
7267
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7268

7269
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
7270 7271 7272 7273 7274 7275 7276 7277 7278
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7279 7280
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
7281 7282 7283 7284 7285 7286 7287

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

7301
	/*
7302 7303
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
7304 7305
	 */

7306 7307
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7308

7309 7310 7311 7312 7313 7314
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7315

7316 7317
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7318 7319
}

7320
/**
7321
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7322
 * @dev_priv: i915 device
7323 7324
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7325 7326
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7327 7328 7329
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7330 7331
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7332 7333 7334 7335
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7336
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7337 7338
		return;

7339
	cancel_delayed_work(&dev_priv->drrs.work);
7340

7341
	mutex_lock(&dev_priv->drrs.mutex);
7342 7343 7344 7345 7346
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7347 7348 7349
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7350 7351 7352
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7353
	/* invalidate means busy screen hence upclock */
7354
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7355 7356
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7357 7358 7359 7360

	mutex_unlock(&dev_priv->drrs.mutex);
}

7361
/**
7362
 * intel_edp_drrs_flush - Restart Idleness DRRS
7363
 * @dev_priv: i915 device
7364 7365
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7366 7367 7368 7369
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7370 7371 7372
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7373 7374
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7375 7376 7377 7378
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7379
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7380 7381
		return;

7382
	cancel_delayed_work(&dev_priv->drrs.work);
7383

7384
	mutex_lock(&dev_priv->drrs.mutex);
7385 7386 7387 7388 7389
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7390 7391
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7392 7393

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7394 7395
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7396
	/* flush means busy screen hence upclock */
7397
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7398 7399
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7400 7401 7402 7403 7404 7405

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7406 7407 7408 7409 7410
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7434 7435 7436 7437 7438 7439 7440 7441
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7442 7443 7444 7445 7446 7447 7448 7449
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7450
 * @connector: eDP connector
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7461
static struct drm_display_mode *
7462 7463
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7464
{
7465
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7466 7467
	struct drm_display_mode *downclock_mode = NULL;

7468 7469 7470
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7471
	if (INTEL_GEN(dev_priv) <= 6) {
7472 7473
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS supported for Gen7 and above\n");
7474 7475 7476 7477
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7478
		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7479 7480 7481
		return NULL;
	}

7482
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7483
	if (!downclock_mode) {
7484 7485
		drm_dbg_kms(&dev_priv->drm,
			    "Downclock mode is not found. DRRS not supported\n");
7486 7487 7488
		return NULL;
	}

7489
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7490

7491
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7492 7493
	drm_dbg_kms(&dev_priv->drm,
		    "seamless DRRS supported for eDP panel.\n");
7494 7495 7496
	return downclock_mode;
}

7497
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7498
				     struct intel_connector *intel_connector)
7499
{
7500 7501
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7502
	struct drm_connector *connector = &intel_connector->base;
7503
	struct drm_display_mode *fixed_mode = NULL;
7504
	struct drm_display_mode *downclock_mode = NULL;
7505
	bool has_dpcd;
7506
	enum pipe pipe = INVALID_PIPE;
7507 7508
	intel_wakeref_t wakeref;
	struct edid *edid;
7509

7510
	if (!intel_dp_is_edp(intel_dp))
7511 7512
		return true;

7513 7514
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7515 7516 7517 7518 7519 7520
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7521
	if (intel_get_lvds_encoder(dev_priv)) {
7522
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7523 7524
		drm_info(&dev_priv->drm,
			 "LVDS was detected, not registering eDP\n");
7525 7526 7527 7528

		return false;
	}

7529 7530 7531 7532 7533
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7534

7535
	/* Cache DPCD and EDID for edp. */
7536
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7537

7538
	if (!has_dpcd) {
7539
		/* if this fails, presume the device is a ghost */
7540 7541
		drm_info(&dev_priv->drm,
			 "failed to retrieve link info, disabling eDP\n");
7542
		goto out_vdd_off;
7543 7544
	}

7545
	mutex_lock(&dev->mode_config.mutex);
7546
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7547 7548
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7549
			drm_connector_update_edid_property(connector,
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7560 7561 7562
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7563 7564

	/* fallback to VBT if available for eDP */
7565 7566
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7567
	mutex_unlock(&dev->mode_config.mutex);
7568

7569
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7570 7571
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7572 7573 7574 7575 7576 7577

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7578
		pipe = vlv_active_pipe(intel_dp);
7579 7580 7581 7582 7583 7584 7585

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

7586 7587 7588
		drm_dbg_kms(&dev_priv->drm,
			    "using pipe %c for initial backlight setup\n",
			    pipe_name(pipe));
7589 7590
	}

7591
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7592
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7593
	intel_panel_setup_backlight(connector, pipe);
7594

7595 7596 7597 7598
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7599
	return true;
7600 7601 7602 7603 7604 7605 7606

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7607 7608
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7609 7610

	return false;
7611 7612
}

7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7629 7630
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7631 7632 7633 7634 7635
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7636
bool
7637 7638
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7639
{
7640 7641 7642 7643
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7644
	struct drm_i915_private *dev_priv = to_i915(dev);
7645
	enum port port = intel_encoder->port;
7646
	enum phy phy = intel_port_to_phy(dev_priv, port);
7647
	int type;
7648

7649 7650 7651 7652
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7653
	if (WARN(intel_dig_port->max_lanes < 1,
7654 7655 7656
		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
		 intel_encoder->base.name))
7657 7658
		return false;

7659 7660
	intel_dp_set_source_rates(intel_dp);

7661
	intel_dp->reset_link_params = true;
7662
	intel_dp->pps_pipe = INVALID_PIPE;
7663
	intel_dp->active_pipe = INVALID_PIPE;
7664

7665
	/* Preserve the current hw state. */
7666
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7667
	intel_dp->attached_connector = intel_connector;
7668

7669 7670 7671 7672 7673
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
7674
		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7675
		type = DRM_MODE_CONNECTOR_eDP;
7676
	} else {
7677
		type = DRM_MODE_CONNECTOR_DisplayPort;
7678
	}
7679

7680 7681 7682
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7683 7684 7685 7686 7687 7688 7689 7690
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7691
	/* eDP only on port B and/or C on vlv/chv */
7692
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7693 7694
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7695 7696
		return false;

7697 7698 7699 7700
	drm_dbg_kms(&dev_priv->drm,
		    "Adding %s connector on [ENCODER:%d:%s]\n",
		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		    intel_encoder->base.base.id, intel_encoder->base.name);
7701

7702
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7703 7704
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7705
	if (!HAS_GMCH(dev_priv))
7706
		connector->interlace_allowed = true;
7707 7708
	connector->doublescan_allowed = 0;

7709 7710 7711
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

7712
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7713
	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7714

7715
	intel_dp_aux_init(intel_dp);
7716

7717
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7718

7719
	if (HAS_DDI(dev_priv))
7720 7721 7722 7723
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7724
	/* init MST on ports that can support it */
7725 7726
	intel_dp_mst_encoder_init(intel_dig_port,
				  intel_connector->base.base.id);
7727

7728
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7729 7730 7731
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7732
	}
7733

7734
	intel_dp_add_properties(intel_dp, connector);
7735

7736
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7737 7738
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
7739 7740
			drm_dbg_kms(&dev_priv->drm,
				    "HDCP init failed, skipping.\n");
7741
	}
7742

7743 7744 7745 7746
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7747
	if (IS_G45(dev_priv)) {
7748 7749 7750
		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
			       (temp & ~0xf) | 0xd);
7751
	}
7752 7753

	return true;
7754 7755 7756 7757 7758

fail:
	drm_connector_cleanup(connector);

	return false;
7759
}
7760

7761
bool intel_dp_init(struct drm_i915_private *dev_priv,
7762 7763
		   i915_reg_t output_reg,
		   enum port port)
7764 7765 7766 7767 7768 7769
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7770
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7771
	if (!intel_dig_port)
7772
		return false;
7773

7774
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7775 7776
	if (!intel_connector)
		goto err_connector_alloc;
7777 7778 7779 7780

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7781 7782 7783
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7784
		goto err_encoder_init;
7785

7786
	intel_encoder->hotplug = intel_dp_hotplug;
7787
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7788
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7789
	intel_encoder->get_config = intel_dp_get_config;
7790
	intel_encoder->update_pipe = intel_panel_update_backlight;
7791
	intel_encoder->suspend = intel_dp_encoder_suspend;
7792
	if (IS_CHERRYVIEW(dev_priv)) {
7793
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7794 7795
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7796
		intel_encoder->disable = vlv_disable_dp;
7797
		intel_encoder->post_disable = chv_post_disable_dp;
7798
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7799
	} else if (IS_VALLEYVIEW(dev_priv)) {
7800
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7801 7802
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7803
		intel_encoder->disable = vlv_disable_dp;
7804
		intel_encoder->post_disable = vlv_post_disable_dp;
7805
	} else {
7806 7807
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7808
		intel_encoder->disable = g4x_disable_dp;
7809
		intel_encoder->post_disable = g4x_post_disable_dp;
7810
	}
7811 7812

	intel_dig_port->dp.output_reg = output_reg;
7813
	intel_dig_port->max_lanes = 4;
7814

7815
	intel_encoder->type = INTEL_OUTPUT_DP;
7816
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7817
	if (IS_CHERRYVIEW(dev_priv)) {
7818
		if (port == PORT_D)
V
Ville Syrjälä 已提交
7819
			intel_encoder->pipe_mask = BIT(PIPE_C);
7820
		else
V
Ville Syrjälä 已提交
7821
			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7822
	} else {
7823
		intel_encoder->pipe_mask = ~0;
7824
	}
7825
	intel_encoder->cloneable = 0;
7826
	intel_encoder->port = port;
7827

7828 7829
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7830 7831 7832
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7833
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7834 7835 7836
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7837
	return true;
S
Sudip Mukherjee 已提交
7838 7839 7840

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7841
err_encoder_init:
S
Sudip Mukherjee 已提交
7842 7843 7844
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7845
	return false;
7846
}
7847

7848
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7849
{
7850 7851 7852 7853
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7854

7855 7856
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7857

7858
		intel_dp = enc_to_intel_dp(encoder);
7859

7860
		if (!intel_dp->can_mst)
7861 7862
			continue;

7863 7864
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7865 7866 7867
	}
}

7868
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7869
{
7870
	struct intel_encoder *encoder;
7871

7872 7873
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7874
		int ret;
7875

7876 7877 7878
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

7879
		intel_dp = enc_to_intel_dp(encoder);
7880 7881

		if (!intel_dp->can_mst)
7882
			continue;
7883

7884 7885
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
						     true);
7886 7887 7888 7889 7890
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7891 7892
	}
}