intel_dp.c 206.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_debugfs.h"
46
#include "i915_drv.h"
47
#include "i915_trace.h"
48
#include "intel_atomic.h"
49
#include "intel_audio.h"
50
#include "intel_connector.h"
51
#include "intel_ddi.h"
52
#include "intel_display_types.h"
53
#include "intel_dp.h"
54
#include "intel_dp_link_training.h"
55
#include "intel_dp_mst.h"
56
#include "intel_dpio_phy.h"
57
#include "intel_fifo_underrun.h"
58
#include "intel_hdcp.h"
59
#include "intel_hdmi.h"
60
#include "intel_hotplug.h"
61
#include "intel_lspcon.h"
62
#include "intel_lvds.h"
63
#include "intel_panel.h"
64
#include "intel_psr.h"
65
#include "intel_sideband.h"
66
#include "intel_tc.h"
67
#include "intel_vdsc.h"
68

69
#define DP_DPRX_ESI_LEN 14
70

71 72 73 74 75
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

76 77
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78

79 80 81 82 83 84
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

85
struct dp_link_dpll {
86
	int clock;
87 88 89
	struct dpll dpll;
};

90
static const struct dp_link_dpll g4x_dpll[] = {
91
	{ 162000,
92
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93
	{ 270000,
94 95 96 97
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
98
	{ 162000,
99
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100
	{ 270000,
101 102 103
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

104
static const struct dp_link_dpll vlv_dpll[] = {
105
	{ 162000,
C
Chon Ming Lee 已提交
106
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107
	{ 270000,
108 109 110
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

111 112 113 114 115 116 117 118 119 120
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
121
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 125
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
126

127 128 129 130 131 132 133 134
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

135
/**
136
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137 138 139 140 141
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
142
bool intel_dp_is_edp(struct intel_dp *intel_dp)
143
{
144 145 146
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 148
}

149 150
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
151
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 153
}

154 155
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
156
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 159
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
160
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161
				      enum pipe pipe);
162
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163

164 165 166
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
167
	static const int dp_rates[] = {
168
		162000, 270000, 540000, 810000
169
	};
170
	int i, max_rate;
171

172
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173

174 175
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
176
			break;
177
		intel_dp->sink_rates[i] = dp_rates[i];
178
	}
179

180
	intel_dp->num_sink_rates = i;
181 182
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

205 206
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207
{
208
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 210
}

211 212
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 214
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215 216
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218

219
	return min3(source_max, sink_max, fia_max);
220 221
}

222
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 224 225 226
{
	return intel_dp->max_link_lane_count;
}

227
int
228
intel_dp_link_required(int pixel_clock, int bpp)
229
{
230 231
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 233
}

234
int
235 236
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
237 238 239 240 241 242 243
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

269
static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 271 272 273 274 275 276 277 278
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
279
		return 540000;
280 281 282

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
283
		return 810000;
284

285
	/* For other SKUs, max rate on ports A and D is 5.4G */
286
	if (port == PORT_A || port == PORT_D)
287
		return 540000;
288

289
	return 810000;
290 291
}

292 293 294
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297

298
	if (intel_phy_is_combo(dev_priv, phy) &&
299
	    !IS_ELKHARTLAKE(dev_priv) &&
300
	    !intel_dp_is_edp(intel_dp))
301 302 303 304 305
		return 540000;

	return 810000;
}

306 307
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
308
{
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
325 326
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 328
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
329
	const int *source_rates;
330
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331

332 333 334
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

335
	if (INTEL_GEN(dev_priv) >= 10) {
336
		source_rates = cnl_rates;
337
		size = ARRAY_SIZE(cnl_rates);
338
		if (IS_GEN(dev_priv, 10))
339 340 341
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
342 343 344
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
345
	} else if (IS_GEN9_BC(dev_priv)) {
346
		source_rates = skl_rates;
347
		size = ARRAY_SIZE(skl_rates);
348 349
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
350 351
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
352
	} else {
353 354
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
355 356
	}

357 358 359 360 361
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

362 363 364
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

365 366
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

392 393 394 395 396 397 398 399 400 401 402 403
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

404
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405
{
406
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407

408 409 410 411 412 413 414 415
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
416
		intel_dp->common_rates[0] = 162000;
417 418 419 420
		intel_dp->num_common_rates = 1;
	}
}

421
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422
				       u8 lane_count)
423 424 425 426 427 428
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
429 430
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
431 432
		return false;

433 434
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
435 436 437 438 439
		return false;

	return true;
}

440 441
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
442
						     u8 lane_count)
443 444 445 446 447 448 449 450 451 452 453 454 455
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

456
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457
					    int link_rate, u8 lane_count)
458
{
459
	int index;
460

461 462 463 464
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
465 466 467 468 469 470 471
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
472 473
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
474
	} else if (lane_count > 1) {
475 476 477 478 479 480 481
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
482
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483
		intel_dp->max_link_lane_count = lane_count >> 1;
484 485 486 487 488 489 490 491
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

492 493 494 495 496 497
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

498 499 500 501 502 503 504 505 506 507 508
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 526
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
			      bits_per_pixel, valid_dsc_bpp[0]);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

594
static enum drm_mode_status
595 596 597
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
598
	struct intel_dp *intel_dp = intel_attached_dp(connector);
599 600
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
601
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
602 603
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
604
	int max_dotclk;
605 606
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
607

608 609 610
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

611
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
612

613
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
614
		if (mode->hdisplay > fixed_mode->hdisplay)
615 616
			return MODE_PANEL;

617
		if (mode->vdisplay > fixed_mode->vdisplay)
618
			return MODE_PANEL;
619 620

		target_clock = fixed_mode->clock;
621 622
	}

623
	max_link_clock = intel_dp_max_link_rate(intel_dp);
624
	max_lanes = intel_dp_max_lane_count(intel_dp);
625 626 627 628

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

629 630 631 632 633 634 635 636 637 638 639 640
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
641
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
642
			dsc_max_output_bpp =
643 644
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
645 646 647 648 649 650 651 652 653 654 655 656
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
657
		return MODE_CLOCK_HIGH;
658 659 660 661

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

662 663 664
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

665
	return intel_mode_valid_max_plane_size(dev_priv, mode);
666 667
}

668
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
669
{
670 671
	int i;
	u32 v = 0;
672 673 674 675

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
676
		v |= ((u32)src[i]) << ((3 - i) * 8);
677 678 679
	return v;
}

680
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
681 682 683 684 685 686 687 688
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

689
static void
690
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
691
static void
692
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
693
					      bool force_disable_vdd);
694
static void
695
intel_dp_pps_init(struct intel_dp *intel_dp);
696

697 698
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
699
{
700
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
701
	intel_wakeref_t wakeref;
702 703

	/*
704
	 * See intel_power_sequencer_reset() why we need
705 706
	 * a power domain reference here.
	 */
707 708
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
709 710

	mutex_lock(&dev_priv->pps_mutex);
711 712

	return wakeref;
713 714
}

715 716
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
717
{
718
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
719 720

	mutex_unlock(&dev_priv->pps_mutex);
721 722 723 724
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
725 726
}

727 728 729
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

730 731 732
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
733
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
734 735
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
736 737 738
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
739
	u32 DP;
740 741

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
742 743 744
		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		 pipe_name(pipe), intel_dig_port->base.base.base.id,
		 intel_dig_port->base.base.name))
745 746
		return;

747 748 749
	DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		      pipe_name(pipe), intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
750 751 752 753 754 755 756 757 758

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

759
	if (IS_CHERRYVIEW(dev_priv))
760 761 762
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
763

764 765 766 767 768 769
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
770
	if (!pll_enabled) {
771
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
772 773
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

774
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
775 776 777 778 779
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
780
	}
781

782 783 784
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
785
	 * to make this power sequencer lock onto the port.
786 787 788 789 790 791 792 793 794 795
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
796

797
	if (!pll_enabled) {
798
		vlv_force_pll_off(dev_priv, pipe);
799 800 801 802

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
803 804
}

805 806 807 808 809 810 811 812 813
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
814 815
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

837 838 839
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
840
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
841
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
842
	enum pipe pipe;
843

V
Ville Syrjälä 已提交
844
	lockdep_assert_held(&dev_priv->pps_mutex);
845

846
	/* We should never land here with regular DP ports */
847
	WARN_ON(!intel_dp_is_edp(intel_dp));
848

849 850 851
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

852 853 854
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

855
	pipe = vlv_find_free_pps(dev_priv);
856 857 858 859 860

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
861
	if (WARN_ON(pipe == INVALID_PIPE))
862
		pipe = PIPE_A;
863

864
	vlv_steal_power_sequencer(dev_priv, pipe);
865
	intel_dp->pps_pipe = pipe;
866

867
	DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
868
		      pipe_name(intel_dp->pps_pipe),
869 870
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
871 872

	/* init power sequencer on this pipe and port */
873 874
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
875

876 877 878 879 880
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
881 882 883 884

	return intel_dp->pps_pipe;
}

885 886 887
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
888
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
889
	int backlight_controller = dev_priv->vbt.backlight.controller;
890 891 892 893

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
894
	WARN_ON(!intel_dp_is_edp(intel_dp));
895 896

	if (!intel_dp->pps_reset)
897
		return backlight_controller;
898 899 900 901 902 903 904

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
905
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
906

907
	return backlight_controller;
908 909
}

910 911 912 913 914 915
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
916
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
917 918 919 920 921
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
922
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
923 924 925 926 927 928 929
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
930

931
static enum pipe
932 933 934
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
935 936
{
	enum pipe pipe;
937 938

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
939
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
940
			PANEL_PORT_SELECT_MASK;
941 942 943 944

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

945 946 947
		if (!pipe_check(dev_priv, pipe))
			continue;

948
		return pipe;
949 950
	}

951 952 953 954 955 956
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
957
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
958
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
959
	enum port port = intel_dig_port->base.port;
960 961 962 963

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
964 965 966 967 968 969 970 971 972 973 974
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
975 976 977

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
978 979 980
		DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
981
		return;
982 983
	}

984 985 986 987
	DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
		      pipe_name(intel_dp->pps_pipe));
988

989 990
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
991 992
}

993
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
994 995 996
{
	struct intel_encoder *encoder;

997
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
998
		    !IS_GEN9_LP(dev_priv)))
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1011 1012
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1013

1014 1015 1016 1017 1018
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1019
		if (IS_GEN9_LP(dev_priv))
1020 1021 1022
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1023
	}
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1034
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1035 1036
				    struct pps_registers *regs)
{
1037
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1038 1039
	int pps_idx = 0;

1040 1041
	memset(regs, 0, sizeof(*regs));

1042
	if (IS_GEN9_LP(dev_priv))
1043 1044 1045
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1046

1047 1048 1049 1050
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1051 1052

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1053
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1054 1055
		regs->pp_div = INVALID_MMIO_REG;
	else
1056
		regs->pp_div = PP_DIVISOR(pps_idx);
1057 1058
}

1059 1060
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1061
{
1062
	struct pps_registers regs;
1063

1064
	intel_pps_get_registers(intel_dp, &regs);
1065 1066

	return regs.pp_ctrl;
1067 1068
}

1069 1070
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1071
{
1072
	struct pps_registers regs;
1073

1074
	intel_pps_get_registers(intel_dp, &regs);
1075 1076

	return regs.pp_stat;
1077 1078
}

1079 1080 1081 1082 1083 1084 1085
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1086
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1087
	intel_wakeref_t wakeref;
1088

1089
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1090 1091
		return 0;

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1105
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1106 1107
			msleep(intel_dp->panel_power_cycle_delay);
		}
1108 1109 1110 1111 1112
	}

	return 0;
}

1113
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1114
{
1115
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1116

V
Ville Syrjälä 已提交
1117 1118
	lockdep_assert_held(&dev_priv->pps_mutex);

1119
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1120 1121 1122
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1123
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1124 1125
}

1126
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1127
{
1128
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1129

V
Ville Syrjälä 已提交
1130 1131
	lockdep_assert_held(&dev_priv->pps_mutex);

1132
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1133 1134 1135
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1136
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1137 1138
}

1139 1140 1141
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1142
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1143

1144
	if (!intel_dp_is_edp(intel_dp))
1145
		return;
1146

1147
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1148 1149
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1150 1151
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1152 1153 1154
	}
}

1155
static u32
1156
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1157
{
1158
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1159
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1160
	u32 status;
1161 1162
	bool done;

1163 1164
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1165
				  msecs_to_jiffies_timeout(10));
1166 1167 1168 1169

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1170
	if (!done)
1171
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1172 1173 1174 1175 1176
#undef C

	return status;
}

1177
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1178
{
1179
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1180

1181 1182 1183
	if (index)
		return 0;

1184 1185
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1186
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1187
	 */
1188
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1189 1190
}

1191
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1192
{
1193
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1194
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1195 1196 1197 1198

	if (index)
		return 0;

1199 1200 1201 1202 1203
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1204
	if (dig_port->aux_ch == AUX_CH_A)
1205
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1206 1207
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1208 1209
}

1210
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1211
{
1212
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1213
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1214

1215
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1216
		/* Workaround for non-ULT HSW */
1217 1218 1219 1220 1221
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1222
	}
1223 1224

	return ilk_get_aux_clock_divider(intel_dp, index);
1225 1226
}

1227
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1237 1238 1239
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1240 1241
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1242 1243
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1244
	u32 precharge, timeout;
1245

1246
	if (IS_GEN(dev_priv, 6))
1247 1248 1249 1250
		precharge = 3;
	else
		precharge = 5;

1251
	if (IS_BROADWELL(dev_priv))
1252 1253 1254 1255 1256
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1257
	       DP_AUX_CH_CTL_DONE |
1258
	       DP_AUX_CH_CTL_INTERRUPT |
1259
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1260
	       timeout |
1261
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1262 1263
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1264
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1265 1266
}

1267 1268 1269
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1270
{
1271
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1272
	u32 ret;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1284
	if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1285 1286 1287
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1288 1289
}

1290
static int
1291
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1292 1293
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1294
		  u32 aux_send_ctl_flags)
1295 1296
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1297
	struct drm_i915_private *i915 =
1298
			to_i915(intel_dig_port->base.base.dev);
1299
	struct intel_uncore *uncore = &i915->uncore;
1300 1301
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1302
	i915_reg_t ch_ctl, ch_data[5];
1303
	u32 aux_clock_divider;
1304 1305 1306 1307
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1308
	int i, ret, recv_bytes;
1309
	int try, clock = 0;
1310
	u32 status;
1311 1312
	bool vdd;

1313 1314 1315 1316
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1317 1318 1319
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1320
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1321
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1322

1323 1324 1325 1326 1327 1328
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1329
	vdd = edp_panel_vdd_on(intel_dp);
1330 1331 1332 1333 1334

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1335
	pm_qos_update_request(&i915->pm_qos, 0);
1336 1337

	intel_dp_check_edp(intel_dp);
1338

1339 1340
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1341
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1342 1343 1344 1345
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1346 1347
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1348 1349

	if (try == 3) {
1350
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1351

1352
		if (status != intel_dp->aux_busy_last_status) {
1353 1354
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
1355
			intel_dp->aux_busy_last_status = status;
1356 1357
		}

1358 1359
		ret = -EBUSY;
		goto out;
1360 1361
	}

1362 1363 1364 1365 1366 1367
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1368
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1369 1370 1371 1372 1373
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1374

1375 1376 1377 1378
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1379 1380 1381 1382
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1383 1384

			/* Send the command and wait for it to complete */
1385
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1386

1387
			status = intel_dp_aux_wait_done(intel_dp);
1388 1389

			/* Clear done status and any errors */
1390 1391 1392 1393 1394 1395
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1396

1397 1398 1399 1400 1401
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1402 1403 1404
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1405 1406
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1407
				continue;
1408
			}
1409
			if (status & DP_AUX_CH_CTL_DONE)
1410
				goto done;
1411
		}
1412 1413 1414
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1415
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1416 1417
		ret = -EBUSY;
		goto out;
1418 1419
	}

1420
done:
1421 1422 1423
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1424
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1425
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1426 1427
		ret = -EIO;
		goto out;
1428
	}
1429 1430 1431

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1432
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1433
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1434 1435
		ret = -ETIMEDOUT;
		goto out;
1436 1437 1438 1439 1440
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1454 1455
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1456

1457
	for (i = 0; i < recv_bytes; i += 4)
1458
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1459
				    recv + i, recv_bytes - i);
1460

1461 1462
	ret = recv_bytes;
out:
1463
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1464

1465 1466 1467
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1468
	pps_unlock(intel_dp, pps_wakeref);
1469
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1470

1471 1472 1473
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1474
	return ret;
1475 1476
}

1477 1478
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1490 1491
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1492
{
1493
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1494
	u8 txbuf[20], rxbuf[20];
1495
	size_t txsize, rxsize;
1496 1497
	int ret;

1498
	intel_dp_aux_header(txbuf, msg);
1499

1500 1501 1502
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1503
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1504
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1505
		rxsize = 2; /* 0 or 1 data bytes */
1506

1507 1508
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1509

1510 1511
		WARN_ON(!msg->buffer != !msg->size);

1512 1513
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1514

1515
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1516
					rxbuf, rxsize, 0);
1517 1518
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1519

1520 1521 1522 1523 1524 1525 1526
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1527 1528
		}
		break;
1529

1530 1531
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1532
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1533
		rxsize = msg->size + 1;
1534

1535 1536
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1537

1538
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1539
					rxbuf, rxsize, 0);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1550
		}
1551 1552 1553 1554 1555
		break;

	default:
		ret = -EINVAL;
		break;
1556
	}
1557

1558
	return ret;
1559 1560
}

1561

1562
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1563
{
1564
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1565 1566
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1567

1568 1569 1570 1571 1572
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1573
	default:
1574 1575
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1576 1577 1578
	}
}

1579
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1580
{
1581
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1582 1583
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1584

1585 1586 1587 1588 1589
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1590
	default:
1591 1592
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1593 1594 1595
	}
}

1596
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1597
{
1598
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1599 1600
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1601

1602 1603 1604 1605 1606 1607 1608
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1609
	default:
1610 1611
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1612 1613 1614
	}
}

1615
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1616
{
1617
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1618 1619
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1620

1621 1622 1623 1624 1625 1626 1627
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1628
	default:
1629 1630
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1631 1632 1633
	}
}

1634
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1635
{
1636
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1637 1638
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1639

1640 1641 1642 1643 1644
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1645
	case AUX_CH_E:
1646 1647
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1648
	default:
1649 1650
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1651 1652 1653
	}
}

1654
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1655
{
1656
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1657 1658
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1659

1660 1661 1662 1663 1664
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1665
	case AUX_CH_E:
1666 1667
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1668
	default:
1669 1670
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1671 1672 1673
	}
}

1674 1675 1676 1677 1678 1679 1680 1681
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1682
{
1683
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1684 1685
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1697

1698 1699 1700 1701 1702 1703 1704 1705
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1706

1707 1708 1709 1710
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1711

1712
	drm_dp_aux_init(&intel_dp->aux);
1713

1714
	/* Failure to allocate our preferred name is not critical */
1715 1716
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1717
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1718 1719
}

1720
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1721
{
1722
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1723

1724
	return max_rate >= 540000;
1725 1726
}

1727 1728 1729 1730 1731 1732 1733
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1734 1735
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1736
		   struct intel_crtc_state *pipe_config)
1737
{
1738
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1739 1740
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1741

1742
	if (IS_G4X(dev_priv)) {
1743 1744
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1745
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1746 1747
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1748
	} else if (IS_CHERRYVIEW(dev_priv)) {
1749 1750
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1751
	} else if (IS_VALLEYVIEW(dev_priv)) {
1752 1753
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1754
	}
1755 1756 1757

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1758
			if (pipe_config->port_clock == divisor[i].clock) {
1759 1760 1761 1762 1763
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1764 1765 1766
	}
}

1767 1768 1769 1770 1771 1772 1773 1774
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1775
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1790 1791
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1792 1793
	DRM_DEBUG_KMS("source rates: %s\n", str);

1794 1795
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1796 1797
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1798 1799
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1800
	DRM_DEBUG_KMS("common rates: %s\n", str);
1801 1802
}

1803 1804 1805 1806 1807
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1808
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1809 1810 1811
	if (WARN_ON(len <= 0))
		return 162000;

1812
	return intel_dp->common_rates[len - 1];
1813 1814
}

1815 1816
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1817 1818
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1819 1820 1821 1822 1823

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1824 1825
}

1826
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1827
			   u8 *link_bw, u8 *rate_select)
1828
{
1829 1830
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1831 1832 1833 1834 1835 1836 1837 1838 1839
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1840
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1841 1842 1843 1844
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1845 1846 1847 1848 1849 1850 1851 1852
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875
	/* On TGL, DSC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (INTEL_GEN(dev_priv) >= 10 &&
	    pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1876 1877 1878 1879 1880
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1881 1882 1883
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1884 1885 1886 1887
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1888 1889
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1890
{
1891
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1892
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1893 1894 1895 1896 1897 1898 1899 1900
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1911 1912 1913
	return bpp;
}

1914
/* Adjust link config limits based on compliance test requests. */
1915
void
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

1963
/* Optimize link config in order: max bpp, min clock, min lanes */
1964
static int
1965 1966 1967 1968 1969 1970 1971 1972 1973
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1974 1975
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

1976
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1977
						   output_bpp);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1992
					return 0;
1993 1994 1995 1996 1997
				}
			}
		}
	}

1998
	return -EINVAL;
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2016 2017 2018 2019
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2020 2021 2022 2023 2024 2025
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
2026
	int ret;
2027

2028 2029 2030
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2031
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2032
		return -EINVAL;
2033

2034 2035 2036 2037 2038 2039
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2040 2041

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2042 2043 2044

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2045
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2046
		return -EINVAL;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2070 2071
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2072 2073 2074 2075 2076 2077 2078 2079 2080
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2081
			return -EINVAL;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2098
			return -EINVAL;
2099 2100
		}
	}
2101 2102 2103

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
2104 2105 2106 2107
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
2108
		return ret;
2109
	}
2110

2111 2112 2113 2114 2115 2116 2117
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

2118
	return 0;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2129
static int
2130
intel_dp_compute_link_config(struct intel_encoder *encoder,
2131 2132
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2133
{
2134
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2135
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2136
	struct link_config_limits limits;
2137
	int common_len;
2138
	int ret;
2139

2140
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2141
						    intel_dp->max_link_rate);
2142 2143

	/* No common link rates between source and sink */
2144
	WARN_ON(common_len <= 0);
2145

2146 2147 2148 2149 2150 2151
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2152
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2153
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2154

2155
	if (intel_dp_is_edp(intel_dp)) {
2156 2157
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2158 2159 2160 2161
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2162
		 */
2163 2164
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2165
	}
2166

2167 2168
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2169 2170 2171 2172 2173 2174
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2175 2176 2177 2178 2179
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2180 2181

	/* enable compression if the mode doesn't fit available BW */
2182
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2183 2184 2185 2186 2187
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2188
	}
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2212
	return 0;
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2245 2246 2247 2248 2249 2250 2251 2252
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2278
int
2279 2280 2281 2282 2283 2284 2285
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2286
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2287 2288 2289 2290 2291
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2292 2293
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2294
	int ret = 0, output_bpp;
2295 2296 2297 2298

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2299
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2300 2301
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2302 2303 2304 2305 2306 2307
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2318 2319
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2320 2321 2322 2323 2324 2325 2326

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2327
		if (HAS_GMCH(dev_priv))
2328 2329 2330 2331 2332 2333 2334
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2335
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2336
		return -EINVAL;
2337

R
Rodrigo Vivi 已提交
2338
	if (HAS_GMCH(dev_priv) &&
2339
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2340
		return -EINVAL;
2341 2342

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2343
		return -EINVAL;
2344

2345 2346 2347
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2348

2349 2350
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2351

2352 2353
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2354
	else
2355
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2356 2357 2358 2359 2360 2361

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2362
			       constant_n, pipe_config->fec_enable);
2363

2364
	if (intel_connector->panel.downclock_mode != NULL &&
2365
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2366
			pipe_config->has_drrs = true;
2367
			intel_link_compute_m_n(output_bpp,
2368 2369 2370 2371
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2372
					       constant_n, pipe_config->fec_enable);
2373 2374
	}

2375
	if (!HAS_DDI(dev_priv))
2376
		intel_dp_set_clock(encoder, pipe_config);
2377

2378 2379
	intel_psr_compute_config(intel_dp, pipe_config);

2380 2381 2382
	intel_hdcp_transcoder_config(intel_connector,
				     pipe_config->cpu_transcoder);

2383
	return 0;
2384 2385
}

2386
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2387
			      int link_rate, u8 lane_count,
2388
			      bool link_mst)
2389
{
2390
	intel_dp->link_trained = false;
2391 2392 2393
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2394 2395
}

2396
static void intel_dp_prepare(struct intel_encoder *encoder,
2397
			     const struct intel_crtc_state *pipe_config)
2398
{
2399
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2400
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2401
	enum port port = encoder->port;
2402
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2403
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2404

2405 2406 2407 2408
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2409

2410 2411 2412
	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);

2413
	/*
K
Keith Packard 已提交
2414
	 * There are four kinds of DP registers:
2415 2416
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2417 2418
	 * 	SNB CPU
	 *	IVB CPU
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2429

2430 2431 2432 2433
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2434

2435 2436
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2437
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2438

2439
	/* Split out the IBX/CPU vs CPT settings */
2440

2441
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2442 2443 2444 2445 2446 2447
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2448
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2449 2450
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2451
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2452
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2453 2454
		u32 trans_dp;

2455
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2456 2457 2458 2459 2460 2461 2462

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2463
	} else {
2464
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2465
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2466 2467 2468 2469 2470 2471 2472

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2473
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2474 2475
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2476
		if (IS_CHERRYVIEW(dev_priv))
2477 2478 2479
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2480
	}
2481 2482
}

2483 2484
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2485

2486 2487
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2488

2489 2490
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2491

2492
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2493

2494
static void wait_panel_status(struct intel_dp *intel_dp,
2495 2496
				       u32 mask,
				       u32 value)
2497
{
2498
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2499
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2500

V
Ville Syrjälä 已提交
2501 2502
	lockdep_assert_held(&dev_priv->pps_mutex);

2503
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2504

2505 2506
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2507

2508
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2509 2510 2511
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2512

2513 2514
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2515
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2516 2517
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2518 2519

	DRM_DEBUG_KMS("Wait complete\n");
2520
}
2521

2522
static void wait_panel_on(struct intel_dp *intel_dp)
2523 2524
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2525
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2526 2527
}

2528
static void wait_panel_off(struct intel_dp *intel_dp)
2529 2530
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2531
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2532 2533
}

2534
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2535
{
2536 2537 2538
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2539
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2540

2541 2542 2543 2544 2545
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2546 2547
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2548 2549 2550
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2551

2552
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2553 2554
}

2555
static void wait_backlight_on(struct intel_dp *intel_dp)
2556 2557 2558 2559 2560
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2561
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2562 2563 2564 2565
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2566

2567 2568 2569 2570
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2571
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2572
{
2573
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2574
	u32 control;
2575

V
Ville Syrjälä 已提交
2576 2577
	lockdep_assert_held(&dev_priv->pps_mutex);

2578
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2579 2580
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2581 2582 2583
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2584
	return control;
2585 2586
}

2587 2588 2589 2590 2591
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2592
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2593
{
2594
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2595
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2596
	u32 pp;
2597
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2598
	bool need_to_disable = !intel_dp->want_panel_vdd;
2599

V
Ville Syrjälä 已提交
2600 2601
	lockdep_assert_held(&dev_priv->pps_mutex);

2602
	if (!intel_dp_is_edp(intel_dp))
2603
		return false;
2604

2605
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2606
	intel_dp->want_panel_vdd = true;
2607

2608
	if (edp_have_panel_vdd(intel_dp))
2609
		return need_to_disable;
2610

2611 2612
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2613

2614 2615 2616
	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
2617

2618 2619
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2620

2621
	pp = ironlake_get_pp_control(intel_dp);
2622
	pp |= EDP_FORCE_VDD;
2623

2624 2625
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2626 2627 2628 2629 2630

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2631 2632 2633
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2634
	if (!edp_have_panel_power(intel_dp)) {
2635 2636 2637
		DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
2638 2639
		msleep(intel_dp->panel_power_up_delay);
	}
2640 2641 2642 2643

	return need_to_disable;
}

2644 2645 2646 2647 2648 2649 2650
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2651
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2652
{
2653
	intel_wakeref_t wakeref;
2654
	bool vdd;
2655

2656
	if (!intel_dp_is_edp(intel_dp))
2657 2658
		return;

2659 2660 2661
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2662 2663 2664
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2665 2666
}

2667
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2668
{
2669
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2670 2671
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2672
	u32 pp;
2673
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2674

V
Ville Syrjälä 已提交
2675
	lockdep_assert_held(&dev_priv->pps_mutex);
2676

2677
	WARN_ON(intel_dp->want_panel_vdd);
2678

2679
	if (!edp_have_panel_vdd(intel_dp))
2680
		return;
2681

2682 2683 2684
	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
2685

2686 2687
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2688

2689 2690
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2691

2692 2693
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2694

2695 2696 2697
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2698

2699
	if ((pp & PANEL_POWER_ON) == 0)
2700
		intel_dp->panel_power_off_time = ktime_get_boottime();
2701

2702 2703
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2704
}
2705

2706
static void edp_panel_vdd_work(struct work_struct *__work)
2707
{
2708 2709 2710 2711
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2712

2713 2714 2715 2716
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2717 2718
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2732 2733 2734 2735 2736
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2737
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2738
{
2739
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2740 2741 2742

	lockdep_assert_held(&dev_priv->pps_mutex);

2743
	if (!intel_dp_is_edp(intel_dp))
2744
		return;
2745

2746 2747 2748
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2749

2750 2751
	intel_dp->want_panel_vdd = false;

2752
	if (sync)
2753
		edp_panel_vdd_off_sync(intel_dp);
2754 2755
	else
		edp_panel_vdd_schedule_off(intel_dp);
2756 2757
}

2758
static void edp_panel_on(struct intel_dp *intel_dp)
2759
{
2760
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2761
	u32 pp;
2762
	i915_reg_t pp_ctrl_reg;
2763

2764 2765
	lockdep_assert_held(&dev_priv->pps_mutex);

2766
	if (!intel_dp_is_edp(intel_dp))
2767
		return;
2768

2769 2770 2771
	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
		      dp_to_dig_port(intel_dp)->base.base.base.id,
		      dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
2772

2773
	if (WARN(edp_have_panel_power(intel_dp),
2774 2775 2776
		 "[ENCODER:%d:%s] panel power already on\n",
		 dp_to_dig_port(intel_dp)->base.base.base.id,
		 dp_to_dig_port(intel_dp)->base.base.name))
2777
		return;
2778

2779
	wait_panel_power_cycle(intel_dp);
2780

2781
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2782
	pp = ironlake_get_pp_control(intel_dp);
2783
	if (IS_GEN(dev_priv, 5)) {
2784 2785
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2786 2787
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2788
	}
2789

2790
	pp |= PANEL_POWER_ON;
2791
	if (!IS_GEN(dev_priv, 5))
2792 2793
		pp |= PANEL_POWER_RESET;

2794 2795
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2796

2797
	wait_panel_on(intel_dp);
2798
	intel_dp->last_power_on = jiffies;
2799

2800
	if (IS_GEN(dev_priv, 5)) {
2801
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2802 2803
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2804
	}
2805
}
V
Ville Syrjälä 已提交
2806

2807 2808
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2809 2810
	intel_wakeref_t wakeref;

2811
	if (!intel_dp_is_edp(intel_dp))
2812 2813
		return;

2814 2815
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2816 2817
}

2818 2819

static void edp_panel_off(struct intel_dp *intel_dp)
2820
{
2821
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2822
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2823
	u32 pp;
2824
	i915_reg_t pp_ctrl_reg;
2825

2826 2827
	lockdep_assert_held(&dev_priv->pps_mutex);

2828
	if (!intel_dp_is_edp(intel_dp))
2829
		return;
2830

2831 2832
	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
		      dig_port->base.base.base.id, dig_port->base.base.name);
2833

2834 2835
	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
	     dig_port->base.base.base.id, dig_port->base.base.name);
2836

2837
	pp = ironlake_get_pp_control(intel_dp);
2838 2839
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2840
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2841
		EDP_BLC_ENABLE);
2842

2843
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2844

2845 2846
	intel_dp->want_panel_vdd = false;

2847 2848
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2849

2850
	wait_panel_off(intel_dp);
2851
	intel_dp->panel_power_off_time = ktime_get_boottime();
2852 2853

	/* We got a reference when we enabled the VDD. */
2854
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2855
}
V
Ville Syrjälä 已提交
2856

2857 2858
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2859 2860
	intel_wakeref_t wakeref;

2861
	if (!intel_dp_is_edp(intel_dp))
2862
		return;
V
Ville Syrjälä 已提交
2863

2864 2865
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2866 2867
}

2868 2869
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2870
{
2871
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2872
	intel_wakeref_t wakeref;
2873

2874 2875 2876 2877 2878 2879
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2880
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2881

2882 2883 2884
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2885

2886 2887
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2888

2889 2890 2891
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2892 2893
}

2894
/* Enable backlight PWM and backlight PP control. */
2895 2896
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2897
{
2898 2899
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2900
	if (!intel_dp_is_edp(intel_dp))
2901 2902 2903 2904
		return;

	DRM_DEBUG_KMS("\n");

2905
	intel_panel_enable_backlight(crtc_state, conn_state);
2906 2907 2908 2909 2910
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2911
{
2912
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2913
	intel_wakeref_t wakeref;
2914

2915
	if (!intel_dp_is_edp(intel_dp))
2916 2917
		return;

2918 2919 2920
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2921

2922 2923
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2924

2925 2926 2927
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2928 2929

	intel_dp->last_backlight_off = jiffies;
2930
	edp_wait_backlight_off(intel_dp);
2931
}
2932

2933
/* Disable backlight PP control and backlight PWM. */
2934
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2935
{
2936 2937
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2938
	if (!intel_dp_is_edp(intel_dp))
2939 2940 2941
		return;

	DRM_DEBUG_KMS("\n");
2942

2943
	_intel_edp_backlight_off(intel_dp);
2944
	intel_panel_disable_backlight(old_conn_state);
2945
}
2946

2947 2948 2949 2950 2951 2952 2953 2954
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2955
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2956 2957
	bool is_enabled;

2958 2959 2960
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2961 2962 2963
	if (is_enabled == enable)
		return;

2964 2965
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2966 2967 2968 2969 2970 2971 2972

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2973 2974 2975 2976 2977 2978 2979
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
2980 2981
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
2982
			onoff(state), onoff(cur_state));
2983 2984 2985 2986 2987 2988 2989 2990 2991
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2992
			onoff(state), onoff(cur_state));
2993 2994 2995 2996
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2997
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2998
				const struct intel_crtc_state *pipe_config)
2999
{
3000
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3001
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3002

3003 3004 3005
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3006

3007
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3008
		      pipe_config->port_clock);
3009 3010 3011

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3012
	if (pipe_config->port_clock == 162000)
3013 3014 3015 3016 3017 3018 3019 3020
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

3021 3022 3023 3024 3025 3026
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3027
	if (IS_GEN(dev_priv, 5))
3028
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3029

3030
	intel_dp->DP |= DP_PLL_ENABLE;
3031

3032
	I915_WRITE(DP_A, intel_dp->DP);
3033 3034
	POSTING_READ(DP_A);
	udelay(200);
3035 3036
}

3037 3038
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
3039
{
3040
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3041
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3042

3043 3044 3045
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3046

3047 3048
	DRM_DEBUG_KMS("disabling eDP PLL\n");

3049
	intel_dp->DP &= ~DP_PLL_ENABLE;
3050

3051
	I915_WRITE(DP_A, intel_dp->DP);
3052
	POSTING_READ(DP_A);
3053 3054 3055
	udelay(200);
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

3087
/* If the sink supports it, try to set the power state appropriately */
3088
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3089 3090 3091 3092 3093 3094 3095 3096
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3097 3098 3099
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3100 3101
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3102
	} else {
3103 3104
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3105 3106 3107 3108 3109
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3110 3111
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3112 3113 3114 3115
			if (ret == 1)
				break;
			msleep(1);
		}
3116 3117 3118

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3119
	}
3120 3121 3122 3123

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3172 3173
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3174
{
3175
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3176
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3177
	intel_wakeref_t wakeref;
3178
	bool ret;
3179

3180 3181 3182
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3183 3184
		return false;

3185 3186
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3187

3188
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3189 3190

	return ret;
3191
}
3192

3193
static void intel_dp_get_config(struct intel_encoder *encoder,
3194
				struct intel_crtc_state *pipe_config)
3195
{
3196
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3197 3198
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3199
	enum port port = encoder->port;
3200
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3201

3202 3203 3204 3205
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3206

3207
	tmp = I915_READ(intel_dp->output_reg);
3208 3209

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3210

3211
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3212 3213 3214
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3215 3216 3217
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3218

3219
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3220 3221 3222 3223
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3224
		if (tmp & DP_SYNC_HS_HIGH)
3225 3226 3227
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3228

3229
		if (tmp & DP_SYNC_VS_HIGH)
3230 3231 3232 3233
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3234

3235
	pipe_config->base.adjusted_mode.flags |= flags;
3236

3237
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3238 3239
		pipe_config->limited_color_range = true;

3240 3241 3242
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3243 3244
	intel_dp_get_m_n(crtc, pipe_config);

3245
	if (port == PORT_A) {
3246
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3247 3248 3249 3250
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3251

3252 3253 3254
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3255

3256
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3257
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3272 3273
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3274
	}
3275 3276
}

3277
static void intel_disable_dp(struct intel_encoder *encoder,
3278 3279
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3280
{
3281
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3282

3283 3284
	intel_dp->link_trained = false;

3285
	if (old_crtc_state->has_audio)
3286 3287
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3288 3289 3290

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3291
	intel_edp_panel_vdd_on(intel_dp);
3292
	intel_edp_backlight_off(old_conn_state);
3293
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3294
	intel_edp_panel_off(intel_dp);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3309 3310
}

3311
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3312 3313
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3314
{
3315
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3316
	enum port port = encoder->port;
3317

3318 3319 3320 3321 3322 3323
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3324
	intel_dp_link_down(encoder, old_crtc_state);
3325 3326

	/* Only ilk+ has port A */
3327
	if (port == PORT_A)
3328
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3329 3330
}

3331
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3332 3333
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3334
{
3335
	intel_dp_link_down(encoder, old_crtc_state);
3336 3337
}

3338
static void chv_post_disable_dp(struct intel_encoder *encoder,
3339 3340
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3341
{
3342
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3343

3344
	intel_dp_link_down(encoder, old_crtc_state);
3345

3346
	vlv_dpio_get(dev_priv);
3347 3348

	/* Assert data lane reset */
3349
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3350

3351
	vlv_dpio_put(dev_priv);
3352 3353
}

3354 3355
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3356 3357
			 u32 *DP,
			 u8 dp_train_pat)
3358
{
3359
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3360
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3361
	enum port port = intel_dig_port->base.port;
3362
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3363

3364
	if (dp_train_pat & train_pat_mask)
3365
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3366
			      dp_train_pat & train_pat_mask);
3367

3368
	if (HAS_DDI(dev_priv)) {
3369
		u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3370 3371 3372 3373 3374 3375 3376

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3377
		switch (dp_train_pat & train_pat_mask) {
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3391 3392 3393
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3394
		}
3395
		I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3396

3397
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3398
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3412
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3413 3414 3415 3416 3417
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3418
		*DP &= ~DP_LINK_TRAIN_MASK;
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3431 3432
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3433 3434 3435 3436 3437
			break;
		}
	}
}

3438
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3439
				 const struct intel_crtc_state *old_crtc_state)
3440
{
3441
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3442 3443 3444

	/* enable with pattern 1 (as per spec) */

3445
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3446 3447 3448 3449 3450 3451 3452 3453

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3454
	if (old_crtc_state->has_audio)
3455
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3456 3457 3458

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3459 3460
}

3461
static void intel_enable_dp(struct intel_encoder *encoder,
3462 3463
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3464
{
3465
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3466
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3467
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3468
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3469
	enum pipe pipe = crtc->pipe;
3470
	intel_wakeref_t wakeref;
3471

3472 3473
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3474

3475 3476 3477
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3478

3479
		intel_dp_enable_port(intel_dp, pipe_config);
3480

3481 3482 3483 3484
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3485

3486
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3487 3488
		unsigned int lane_mask = 0x0;

3489
		if (IS_CHERRYVIEW(dev_priv))
3490
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3491

3492 3493
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3494
	}
3495

3496
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3497
	intel_dp_start_link_train(intel_dp);
3498
	intel_dp_stop_link_train(intel_dp);
3499

3500
	if (pipe_config->has_audio) {
3501
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3502
				 pipe_name(pipe));
3503
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3504
	}
3505
}
3506

3507
static void g4x_enable_dp(struct intel_encoder *encoder,
3508 3509
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3510
{
3511
	intel_enable_dp(encoder, pipe_config, conn_state);
3512
	intel_edp_backlight_on(pipe_config, conn_state);
3513
}
3514

3515
static void vlv_enable_dp(struct intel_encoder *encoder,
3516 3517
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3518
{
3519
	intel_edp_backlight_on(pipe_config, conn_state);
3520 3521
}

3522
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3523 3524
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3525 3526
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3527
	enum port port = encoder->port;
3528

3529
	intel_dp_prepare(encoder, pipe_config);
3530

3531
	/* Only ilk+ has port A */
3532
	if (port == PORT_A)
3533
		ironlake_edp_pll_on(intel_dp, pipe_config);
3534 3535
}

3536 3537 3538
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3539
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3540
	enum pipe pipe = intel_dp->pps_pipe;
3541
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3542

3543 3544
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3545 3546 3547
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3548 3549 3550
	edp_panel_vdd_off_sync(intel_dp);

	/*
3551
	 * VLV seems to get confused when multiple power sequencers
3552 3553 3554
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3555
	 * selected in multiple power sequencers, but let's clear the
3556 3557 3558
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3559 3560 3561
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		      pipe_name(pipe), intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
3562 3563 3564 3565 3566 3567
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3568
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3569 3570 3571 3572 3573 3574
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3575 3576
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3577

3578
		WARN(intel_dp->active_pipe == pipe,
3579 3580 3581
		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
		     pipe_name(pipe), encoder->base.base.id,
		     encoder->base.name);
3582

3583 3584 3585
		if (intel_dp->pps_pipe != pipe)
			continue;

3586 3587 3588
		DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			      pipe_name(pipe), encoder->base.base.id,
			      encoder->base.name);
3589 3590

		/* make sure vdd is off before we steal it */
3591
		vlv_detach_power_sequencer(intel_dp);
3592 3593 3594
	}
}

3595 3596
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3597
{
3598
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3599 3600
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3601 3602 3603

	lockdep_assert_held(&dev_priv->pps_mutex);

3604
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3605

3606 3607 3608 3609 3610 3611 3612
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3613
		vlv_detach_power_sequencer(intel_dp);
3614
	}
3615 3616 3617 3618 3619

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3620
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3621

3622 3623
	intel_dp->active_pipe = crtc->pipe;

3624
	if (!intel_dp_is_edp(intel_dp))
3625 3626
		return;

3627 3628 3629
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3630 3631 3632
	DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		      pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		      encoder->base.name);
3633 3634

	/* init power sequencer on this pipe and port */
3635 3636
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3637 3638
}

3639
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3640 3641
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3642
{
3643
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3644

3645
	intel_enable_dp(encoder, pipe_config, conn_state);
3646 3647
}

3648
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3649 3650
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3651
{
3652
	intel_dp_prepare(encoder, pipe_config);
3653

3654
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3655 3656
}

3657
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3658 3659
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3660
{
3661
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3662

3663
	intel_enable_dp(encoder, pipe_config, conn_state);
3664 3665

	/* Second common lane will stay alive on its own now */
3666
	chv_phy_release_cl2_override(encoder);
3667 3668
}

3669
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3670 3671
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3672
{
3673
	intel_dp_prepare(encoder, pipe_config);
3674

3675
	chv_phy_pre_pll_enable(encoder, pipe_config);
3676 3677
}

3678
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3679 3680
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3681
{
3682
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3683 3684
}

3685 3686 3687 3688
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3689
bool
3690
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3691
{
3692 3693
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3694 3695
}

3696
/* These are source-specific values. */
3697
u8
K
Keith Packard 已提交
3698
intel_dp_voltage_max(struct intel_dp *intel_dp)
3699
{
3700
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3701 3702
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3703

3704
	if (HAS_DDI(dev_priv))
3705
		return intel_ddi_dp_voltage_max(encoder);
3706
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3707
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3708
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3709
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3710
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3711
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3712
	else
3713
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3714 3715
}

3716 3717
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3718
{
3719
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3720 3721
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3722

3723 3724
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3725
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3726
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3727 3728 3729 3730 3731 3732 3733
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3734
		default:
3735
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3736
		}
3737
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3738
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3739 3740 3741 3742 3743
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3744
		default:
3745
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3746 3747 3748
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3749 3750 3751 3752 3753 3754 3755
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3756
		default:
3757
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3758
		}
3759 3760 3761
	}
}

3762
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3763
{
3764
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3765 3766
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3767
	u8 train_set = intel_dp->train_set[0];
3768 3769

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3770
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3771 3772
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3773
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3774 3775 3776
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3777
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3778 3779 3780
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3781
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3782 3783 3784
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3785
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3786 3787 3788 3789 3790 3791 3792
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3793
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3794 3795
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3796
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3797 3798 3799
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3800
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3801 3802 3803
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3804
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3805 3806 3807 3808 3809 3810 3811
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3812
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3813 3814
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3815
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3816 3817 3818
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3819
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3820 3821 3822 3823 3824 3825 3826
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3827
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3828 3829
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3830
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3842 3843
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3844 3845 3846 3847

	return 0;
}

3848
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3849
{
3850 3851 3852
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3853
	u8 train_set = intel_dp->train_set[0];
3854 3855

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3856
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3857
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3858
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3859 3860 3861
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3862
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3863 3864 3865
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3866
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3867 3868 3869
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3870
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3871 3872
			deemph_reg_value = 128;
			margin_reg_value = 154;
3873
			uniq_trans_scale = true;
3874 3875 3876 3877 3878
			break;
		default:
			return 0;
		}
		break;
3879
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3880
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3881
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3882 3883 3884
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3885
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3886 3887 3888
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3889
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3890 3891 3892 3893 3894 3895 3896
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3897
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3898
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3899
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3900 3901 3902
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3903
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3904 3905 3906 3907 3908 3909 3910
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3911
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3912
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3913
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3925 3926
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3927 3928 3929 3930

	return 0;
}

3931 3932
static u32
g4x_signal_levels(u8 train_set)
3933
{
3934
	u32 signal_levels = 0;
3935

3936
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3937
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3938 3939 3940
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3941
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3942 3943
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3944
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3945 3946
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3947
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3948 3949 3950
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3951
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3952
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3953 3954 3955
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3956
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3957 3958
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3959
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3960 3961
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3962
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3963 3964 3965 3966 3967 3968
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3969
/* SNB CPU eDP voltage swing and pre-emphasis control */
3970 3971
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3972
{
3973 3974 3975
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3976 3977
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3978
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3979
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3980
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3981 3982
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3983
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3984 3985
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3986
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3987 3988
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3989
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3990
	default:
3991 3992 3993
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3994 3995 3996
	}
}

3997
/* IVB CPU eDP voltage swing and pre-emphasis control */
3998 3999
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4000 4001 4002 4003
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4004
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4005
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4006
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4007
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4008
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4009 4010
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4011
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4012
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4013
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4014 4015
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4016
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4017
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4018
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4028
void
4029
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4030
{
4031
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4032
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4033
	enum port port = intel_dig_port->base.port;
4034 4035
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
4036

R
Rodrigo Vivi 已提交
4037
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4038 4039
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
4040
		signal_levels = ddi_signal_levels(intel_dp);
4041
		mask = DDI_BUF_EMP_MASK;
4042
	} else if (IS_CHERRYVIEW(dev_priv)) {
4043
		signal_levels = chv_signal_levels(intel_dp);
4044
	} else if (IS_VALLEYVIEW(dev_priv)) {
4045
		signal_levels = vlv_signal_levels(intel_dp);
4046
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4047
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4048
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4049
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4050
		signal_levels = snb_cpu_edp_signal_levels(train_set);
4051 4052
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
4053
		signal_levels = g4x_signal_levels(train_set);
4054 4055 4056
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

4057 4058 4059 4060 4061 4062 4063 4064
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
4065

4066
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4067 4068 4069

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
4070 4071
}

4072
void
4073
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4074
				       u8 dp_train_pat)
4075
{
4076
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4077 4078
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
4079

4080
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4081

4082
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
4083
	POSTING_READ(intel_dp->output_reg);
4084 4085
}

4086
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4087
{
4088
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4089
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4090
	enum port port = intel_dig_port->base.port;
4091
	u32 val;
4092

4093
	if (!HAS_DDI(dev_priv))
4094 4095
		return;

4096
	val = I915_READ(intel_dp->regs.dp_tp_ctl);
4097 4098
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4099
	I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4100 4101

	/*
4102 4103 4104
	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
	 * reason we need to set idle transmission mode is to work around a HW
	 * issue where we enable the pipe while not in idle link-training mode.
4105 4106 4107
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
4108
	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4109 4110
		return;

4111
	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4112
				  DP_TP_STATUS_IDLE_DONE, 1))
4113 4114 4115
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

4116
static void
4117 4118
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4119
{
4120 4121 4122 4123
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
4124
	u32 DP = intel_dp->DP;
4125

4126
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4127 4128
		return;

4129
	DRM_DEBUG_KMS("\n");
4130

4131
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4132
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4133
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4134
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4135
	} else {
4136
		DP &= ~DP_LINK_TRAIN_MASK;
4137
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4138
	}
4139
	I915_WRITE(intel_dp->output_reg, DP);
4140
	POSTING_READ(intel_dp->output_reg);
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4151
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4152 4153 4154 4155 4156 4157 4158
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4159
		/* always enable with pattern 1 (as per spec) */
4160 4161 4162
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4163 4164 4165 4166
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
4167
		I915_WRITE(intel_dp->output_reg, DP);
4168
		POSTING_READ(intel_dp->output_reg);
4169

4170
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4171 4172
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4173 4174
	}

4175
	msleep(intel_dp->panel_power_down_delay);
4176 4177

	intel_dp->DP = DP;
4178 4179

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4180 4181 4182 4183
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4184
	}
4185 4186
}

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4223
bool
4224
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4225
{
4226 4227
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4228
		return false; /* aux transfer failed */
4229

4230 4231
	intel_dp_extended_receiver_capabilities(intel_dp);

4232
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4233

4234 4235
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4236

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4247 4248 4249 4250 4251 4252 4253 4254
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4255 4256 4257
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4270

4271
		/* FEC is supported only on DP 1.4 */
4272 4273 4274 4275
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4276

4277
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4278 4279 4280
	}
}

4281 4282 4283 4284 4285
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4286

4287 4288
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4289

4290
	if (!intel_dp_read_dpcd(intel_dp))
4291 4292
		return false;

4293 4294
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4295

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4306 4307
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4308
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4309
			      intel_dp->edp_dpcd);
4310

4311 4312 4313 4314 4315 4316
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4317 4318
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4319
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4320 4321
		int i;

4322 4323
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4324

4325 4326
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4327 4328 4329 4330

			if (val == 0)
				break;

4331 4332 4333 4334 4335 4336
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4337
			intel_dp->sink_rates[i] = (val * 200) / 10;
4338
		}
4339
		intel_dp->num_sink_rates = i;
4340
	}
4341

4342 4343 4344 4345
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4346 4347 4348 4349 4350
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4351 4352
	intel_dp_set_common_rates(intel_dp);

4353 4354 4355 4356
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4367 4368 4369 4370
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4371
	if (!intel_dp_is_edp(intel_dp)) {
4372 4373 4374
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4375
		intel_dp_set_sink_rates(intel_dp);
4376 4377
		intel_dp_set_common_rates(intel_dp);
	}
4378

4379
	/*
4380 4381
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4382
	 */
4383 4384
	if (!intel_dp_is_edp(intel_dp) &&
	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4385 4386
		u8 count;
		ssize_t r;
4387

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4409

4410
	if (!drm_dp_is_branch(intel_dp->dpcd))
4411 4412 4413 4414 4415
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4416 4417 4418
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4419 4420 4421
		return false; /* downstream port status fetch failed */

	return true;
4422 4423
}

4424
static bool
4425
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4426
{
4427
	u8 mstm_cap;
4428 4429 4430 4431

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4432
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4433
		return false;
4434

4435
	return mstm_cap & DP_MST_CAP;
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4446 4447 4448
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4449 4450 4451 4452
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4453 4454 4455 4456
	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support? port: %s, sink: %s, modparam: %s\n",
		      encoder->base.base.id, encoder->base.name,
		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
		      yesno(i915_modparams.enable_dp_mst));
4457 4458 4459 4460

	if (!intel_dp->can_mst)
		return;

4461 4462
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4463 4464 4465

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4466 4467 4468 4469 4470
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4471 4472 4473
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4474 4475
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
static void
intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

	/*
	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
	 * DB16[3:0] DP 1.4a spec, Table 2-120
	 */
	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
	/* RGB->YCBCR color conversion uses the BT.709 color space. */
	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
		return;

	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
}

4566
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4567
{
4568
	int status = 0;
4569
	int test_link_rate;
4570
	u8 test_lane_count, test_link_bw;
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4591 4592 4593 4594

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4595 4596 4597 4598 4599 4600
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4601 4602
}

4603
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4604
{
4605 4606
	u8 test_pattern;
	u8 test_misc;
4607 4608 4609 4610
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4611 4612
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4634 4635
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4662 4663
}

4664
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4665
{
4666
	u8 test_result = DP_TEST_ACK;
4667 4668 4669 4670
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4671
	    connector->edid_corrupt ||
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4685
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4686
	} else {
4687 4688 4689 4690 4691 4692 4693
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4694 4695
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4696 4697 4698
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4699
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4700 4701 4702
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4703
	intel_dp->compliance.test_active = 1;
4704

4705 4706 4707
	return test_result;
}

4708
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4709
{
4710
	u8 test_result = DP_TEST_NAK;
4711 4712 4713 4714 4715
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4716 4717
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4718
	int status;
4719

4720
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4721 4722 4723 4724 4725
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4726
	switch (request) {
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4744
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4745 4746 4747
		break;
	}

4748 4749 4750
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4751
update_status:
4752
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4753 4754
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4755 4756
}

4757 4758 4759 4760 4761 4762
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4763
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4764 4765 4766
		int ret = 0;
		int retry;
		bool handled;
4767 4768

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4769 4770 4771 4772 4773
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4774
			if (intel_dp->active_mst_links > 0 &&
4775
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4776 4777 4778 4779 4780
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4781
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4797
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4798 4799 4800 4801 4802 4803 4804 4805 4806
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4807 4808
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4809 4810 4811 4812 4813
		}
	}
	return -EINVAL;
}

4814 4815 4816 4817 4818
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4819
	if (!intel_dp->link_trained)
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4831 4832 4833
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4850 4851
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4892 4893 4894

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4895
	if (crtc_state->has_pch_encoder)
4896 4897 4898 4899 4900 4901 4902
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4903
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4904 4905

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4906
	if (crtc_state->has_pch_encoder)
4907 4908
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4909 4910

	return 0;
4911 4912
}

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
4925 4926 4927 4928
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
4929
{
4930
	struct drm_modeset_acquire_ctx ctx;
4931
	enum intel_hotplug_state state;
4932
	int ret;
4933

4934
	state = intel_encoder_hotplug(encoder, connector, irq_received);
4935

4936
	drm_modeset_acquire_init(&ctx, 0);
4937

4938 4939
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4940

4941 4942 4943 4944
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4945

4946 4947
		break;
	}
4948

4949 4950 4951
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4952

4953 4954 4955 4956 4957 4958 4959
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

4960
	return state;
4961 4962
}

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4979
	if (val & DP_CP_IRQ)
4980
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4981 4982 4983

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4984 4985
}

4986 4987 4988 4989 4990 4991 4992
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4993 4994 4995 4996 4997
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4998
 */
4999
static bool
5000
intel_dp_short_pulse(struct intel_dp *intel_dp)
5001
{
5002
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5003 5004
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5005

5006 5007 5008 5009
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5010
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5011

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5023 5024
	}

5025
	intel_dp_check_service_irq(intel_dp);
5026

5027 5028 5029
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5030 5031 5032
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5033

5034 5035
	intel_psr_short_pulse(intel_dp);

5036 5037 5038
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
5039
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5040
	}
5041 5042

	return true;
5043 5044
}

5045
/* XXX this is probably wrong for multiple downstream ports */
5046
static enum drm_connector_status
5047
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5048
{
5049
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5050 5051
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5052

5053 5054 5055
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5056 5057 5058
	if (lspcon->active)
		lspcon_resume(lspcon);

5059 5060 5061 5062
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5063
	if (!drm_dp_is_branch(dpcd))
5064
		return connector_status_connected;
5065 5066

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5067 5068
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5069

5070 5071
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5072 5073
	}

5074 5075 5076
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5077
	/* If no HPD, poke DDC gently */
5078
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5079
		return connector_status_connected;
5080 5081

	/* Well we tried, say unknown for unreliable port types */
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5094 5095 5096

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5097
	return connector_status_disconnected;
5098 5099
}

5100 5101 5102
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5103
	return connector_status_connected;
5104 5105
}

5106
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5107
{
5108
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5109
	u32 bit;
5110

5111 5112
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5113 5114
		bit = SDE_PORTB_HOTPLUG;
		break;
5115
	case HPD_PORT_C:
5116 5117
		bit = SDE_PORTC_HOTPLUG;
		break;
5118
	case HPD_PORT_D:
5119 5120 5121
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5122
		MISSING_CASE(encoder->hpd_pin);
5123 5124 5125 5126 5127 5128
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5129
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5130
{
5131
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5132 5133
	u32 bit;

5134 5135
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5136 5137
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5138
	case HPD_PORT_C:
5139 5140
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5141
	case HPD_PORT_D:
5142 5143
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5144
	default:
5145
		MISSING_CASE(encoder->hpd_pin);
5146 5147 5148 5149 5150 5151
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5152
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5153
{
5154
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5155 5156
	u32 bit;

5157 5158
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5159 5160
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5161
	case HPD_PORT_E:
5162 5163
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5164
	default:
5165
		return cpt_digital_port_connected(encoder);
5166
	}
5167

5168
	return I915_READ(SDEISR) & bit;
5169 5170
}

5171
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5172
{
5173
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5174
	u32 bit;
5175

5176 5177
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5178 5179
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5180
	case HPD_PORT_C:
5181 5182
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5183
	case HPD_PORT_D:
5184 5185 5186
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5187
		MISSING_CASE(encoder->hpd_pin);
5188 5189 5190 5191 5192 5193
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

5194
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5195
{
5196
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5197 5198
	u32 bit;

5199 5200
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5201
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5202
		break;
5203
	case HPD_PORT_C:
5204
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5205
		break;
5206
	case HPD_PORT_D:
5207
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5208 5209
		break;
	default:
5210
		MISSING_CASE(encoder->hpd_pin);
5211
		return false;
5212 5213
	}

5214
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5215 5216
}

5217
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5218
{
5219 5220 5221
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5222 5223
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5224
		return ibx_digital_port_connected(encoder);
5225 5226
}

5227
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5228
{
5229 5230 5231
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5232 5233
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5234
		return cpt_digital_port_connected(encoder);
5235 5236
}

5237
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5238
{
5239 5240 5241
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5242 5243
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5244
		return cpt_digital_port_connected(encoder);
5245 5246
}

5247
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5248
{
5249 5250 5251
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5252 5253
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5254
		return cpt_digital_port_connected(encoder);
5255 5256
}

5257
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5258
{
5259
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5260 5261
	u32 bit;

5262 5263
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5264 5265
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5266
	case HPD_PORT_B:
5267 5268
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5269
	case HPD_PORT_C:
5270 5271 5272
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5273
		MISSING_CASE(encoder->hpd_pin);
5274 5275 5276 5277 5278 5279
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5280 5281 5282 5283 5284
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

5285 5286 5287
	if (HAS_PCH_MCC(dev_priv) && port == PORT_C)
		return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);

5288 5289 5290 5291 5292 5293 5294
	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5295
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5296

5297
	if (intel_phy_is_combo(dev_priv, phy))
5298
		return icl_combo_port_connected(dev_priv, dig_port);
5299
	else if (intel_phy_is_tc(dev_priv, phy))
5300
		return intel_tc_port_connected(dig_port);
5301
	else
5302
		MISSING_CASE(encoder->hpd_pin);
5303 5304

	return false;
5305 5306
}

5307 5308
/*
 * intel_digital_port_connected - is the specified port connected?
5309
 * @encoder: intel_encoder
5310
 *
5311 5312 5313 5314 5315
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5316
 * Return %true if port is connected, %false otherwise.
5317
 */
5318
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5319
{
5320 5321
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5322
	if (HAS_GMCH(dev_priv)) {
5323
		if (IS_GM45(dev_priv))
5324
			return gm45_digital_port_connected(encoder);
5325
		else
5326
			return g4x_digital_port_connected(encoder);
5327 5328
	}

5329 5330
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5331
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5332
		return spt_digital_port_connected(encoder);
5333
	else if (IS_GEN9_LP(dev_priv))
5334
		return bxt_digital_port_connected(encoder);
5335
	else if (IS_GEN(dev_priv, 8))
5336
		return bdw_digital_port_connected(encoder);
5337
	else if (IS_GEN(dev_priv, 7))
5338
		return ivb_digital_port_connected(encoder);
5339
	else if (IS_GEN(dev_priv, 6))
5340
		return snb_digital_port_connected(encoder);
5341
	else if (IS_GEN(dev_priv, 5))
5342 5343 5344 5345
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5346 5347
}

5348 5349 5350
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5351
	bool is_connected = false;
5352 5353 5354 5355 5356 5357 5358 5359
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5360
static struct edid *
5361
intel_dp_get_edid(struct intel_dp *intel_dp)
5362
{
5363
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5364

5365 5366 5367 5368
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5369 5370
			return NULL;

J
Jani Nikula 已提交
5371
		return drm_edid_duplicate(intel_connector->edid);
5372 5373 5374 5375
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5376

5377 5378 5379 5380 5381
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5382

5383
	intel_dp_unset_edid(intel_dp);
5384 5385 5386
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5387
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5388
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5389 5390
}

5391 5392
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5393
{
5394
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5395

5396
	drm_dp_cec_unset_edid(&intel_dp->aux);
5397 5398
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5399

5400 5401
	intel_dp->has_audio = false;
}
5402

5403
static int
5404 5405 5406
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5407
{
5408 5409
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5410 5411
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5412 5413
	enum drm_connector_status status;

5414 5415
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5416
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5417

5418
	/* Can't disconnect eDP */
5419
	if (intel_dp_is_edp(intel_dp))
5420
		status = edp_detect(intel_dp);
5421
	else if (intel_digital_port_connected(encoder))
5422
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5423
	else
5424 5425
		status = connector_status_disconnected;

5426
	if (status == connector_status_disconnected) {
5427
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5428
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5429

5430 5431 5432 5433 5434 5435 5436 5437 5438
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5439
		goto out;
5440
	}
Z
Zhenyu Wang 已提交
5441

5442
	if (intel_dp->reset_link_params) {
5443 5444
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5445

5446 5447
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5448 5449 5450

		intel_dp->reset_link_params = false;
	}
5451

5452 5453
	intel_dp_print_rates(intel_dp);

5454 5455 5456 5457
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5458 5459 5460
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5461 5462 5463 5464 5465
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5466 5467
		status = connector_status_disconnected;
		goto out;
5468 5469 5470 5471 5472 5473
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5474 5475 5476 5477
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5478
		if (ret)
5479 5480
			return ret;
	}
5481

5482 5483 5484 5485 5486 5487 5488 5489
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5490
	intel_dp_set_edid(intel_dp);
5491 5492
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5493
		status = connector_status_connected;
5494

5495
	intel_dp_check_service_irq(intel_dp);
5496

5497
out:
5498
	if (status != connector_status_connected && !intel_dp->is_mst)
5499
		intel_dp_unset_edid(intel_dp);
5500

5501
	return status;
5502 5503
}

5504 5505
static void
intel_dp_force(struct drm_connector *connector)
5506
{
5507
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5508 5509
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5510
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5511 5512
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5513
	intel_wakeref_t wakeref;
5514

5515 5516 5517
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5518

5519 5520
	if (connector->status != connector_status_connected)
		return;
5521

5522
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5523 5524 5525

	intel_dp_set_edid(intel_dp);

5526
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5540

5541
	/* if eDP has no EDID, fall back to fixed mode */
5542
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5543
	    intel_connector->panel.fixed_mode) {
5544
		struct drm_display_mode *mode;
5545 5546

		mode = drm_mode_duplicate(connector->dev,
5547
					  intel_connector->panel.fixed_mode);
5548
		if (mode) {
5549 5550 5551 5552
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5553

5554
	return 0;
5555 5556
}

5557 5558 5559 5560
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5561 5562 5563 5564 5565
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5566 5567 5568 5569 5570 5571 5572

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5573 5574
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
5575
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5576
	return ret;
5577 5578
}

5579 5580 5581
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5582 5583 5584 5585
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5586 5587 5588
	intel_connector_unregister(connector);
}

5589
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5590
{
5591 5592
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5593

5594
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5595
	if (intel_dp_is_edp(intel_dp)) {
5596 5597
		intel_wakeref_t wakeref;

5598
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5599 5600 5601 5602
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5603 5604
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5605

5606 5607 5608 5609
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5610
	}
5611 5612

	intel_dp_aux_fini(intel_dp);
5613 5614 5615 5616 5617
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5618

5619
	drm_encoder_cleanup(encoder);
5620
	kfree(enc_to_dig_port(encoder));
5621 5622
}

5623
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5624 5625
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5626
	intel_wakeref_t wakeref;
5627

5628
	if (!intel_dp_is_edp(intel_dp))
5629 5630
		return;

5631 5632 5633 5634
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5635
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5636 5637
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5638 5639
}

5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5652 5653 5654 5655 5656
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5657 5658 5659 5660 5661
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5662
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5663 5664 5665 5666 5667 5668 5669
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5670 5671
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5672 5673 5674 5675 5676 5677 5678 5679 5680
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5681
	intel_dp_aux_header(txbuf, &msg);
5682

5683
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5684 5685
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5686
	if (ret < 0) {
5687
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5688 5689
		return ret;
	} else if (ret == 0) {
5690
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5691 5692 5693 5694
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5695 5696 5697 5698 5699 5700
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5701 5702 5703 5704 5705 5706 5707 5708 5709
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5710
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5728
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5729 5730 5731 5732 5733 5734
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5735 5736
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5737 5738
{
	ssize_t ret;
5739

5740
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5741
			       bcaps, 1);
5742
	if (ret != 1) {
5743
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5744 5745
		return ret >= 0 ? -EIO : ret;
	}
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5773
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5788
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5810 5811
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5831
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5850

5851 5852 5853
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5854
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5855
		return false;
5856
	}
5857

5858 5859 5860
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5876 5877 5878 5879 5880
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

5881
struct hdcp2_dp_msg_data {
5882 5883 5884 5885 5886
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
5887 5888
};

5889
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
5918 5919
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
5920 5921 5922 5923
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5977
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
5998 5999 6000 6001 6002 6003 6004
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

6016
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6017 6018 6019
{
	int i;

6020 6021 6022
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6023 6024 6025 6026 6027 6028 6029 6030

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6031 6032
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6033 6034 6035
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6036
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6048 6049
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6100
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6219
	.hdcp_capable = intel_dp_hdcp_capable,
6220 6221 6222 6223 6224 6225
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6226 6227
};

6228 6229
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6230
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6231
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6245
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6246 6247 6248 6249

	edp_panel_vdd_schedule_off(intel_dp);
}

6250 6251
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6252
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6253 6254
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6255

6256 6257 6258
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6259

6260
	return INVALID_PIPE;
6261 6262
}

6263
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6264
{
6265
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6266 6267
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6268
	intel_wakeref_t wakeref;
6269 6270 6271

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6272

6273
	if (lspcon->active)
6274 6275
		lspcon_resume(lspcon);

6276 6277
	intel_dp->reset_link_params = true;

6278 6279 6280 6281
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6282 6283 6284
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6285

6286 6287 6288 6289 6290 6291 6292 6293
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6294
	}
6295 6296
}

6297
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6298
	.force = intel_dp_force,
6299
	.fill_modes = drm_helper_probe_single_connector_modes,
6300 6301
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6302
	.late_register = intel_dp_connector_register,
6303
	.early_unregister = intel_dp_connector_unregister,
6304
	.destroy = intel_connector_destroy,
6305
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6306
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6307 6308 6309
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6310
	.detect_ctx = intel_dp_detect,
6311 6312
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6313
	.atomic_check = intel_digital_connector_atomic_check,
6314 6315 6316
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6317
	.reset = intel_dp_encoder_reset,
6318
	.destroy = intel_dp_encoder_destroy,
6319 6320
};

6321
enum irqreturn
6322 6323 6324
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6325

6326 6327 6328 6329 6330 6331 6332
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
6333 6334 6335
		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
6336
		return IRQ_HANDLED;
6337 6338
	}

6339 6340 6341
	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
6342
		      long_hpd ? "long" : "short");
6343

6344
	if (long_hpd) {
6345
		intel_dp->reset_link_params = true;
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6360 6361

			return IRQ_NONE;
6362
		}
6363
	}
6364

6365
	if (!intel_dp->is_mst) {
6366
		bool handled;
6367 6368 6369

		handled = intel_dp_short_pulse(intel_dp);

6370
		if (!handled)
6371
			return IRQ_NONE;
6372
	}
6373

6374
	return IRQ_HANDLED;
6375 6376
}

6377
/* check the VBT to see whether the eDP is on another port */
6378
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6379
{
6380 6381 6382 6383
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6384
	if (INTEL_GEN(dev_priv) < 5)
6385 6386
		return false;

6387
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6388 6389
		return true;

6390
	return intel_bios_is_port_edp(dev_priv, port);
6391 6392
}

6393
static void
6394 6395
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6396
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6397 6398 6399 6400
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6401

6402
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6403
	if (HAS_GMCH(dev_priv))
6404 6405 6406
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6407

6408
	if (intel_dp_is_edp(intel_dp)) {
6409 6410 6411
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6412
		if (!HAS_GMCH(dev_priv))
6413 6414 6415 6416
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6417
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6418

6419
	}
6420 6421
}

6422 6423
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6424
	intel_dp->panel_power_off_time = ktime_get_boottime();
6425 6426 6427 6428
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6429
static void
6430
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6431
{
6432
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6433
	u32 pp_on, pp_off, pp_ctl;
6434
	struct pps_registers regs;
6435

6436
	intel_pps_get_registers(intel_dp, &regs);
6437

6438
	pp_ctl = ironlake_get_pp_control(intel_dp);
6439

6440 6441 6442 6443
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6444 6445
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6446 6447

	/* Pull timing values out of registers */
6448 6449 6450 6451
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6452

6453 6454 6455 6456 6457
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6458
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6459
	} else {
6460
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6461
	}
6462 6463
}

I
Imre Deak 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6473
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6474 6475 6476 6477
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6478
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6488
static void
6489
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6490
{
6491
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6492 6493 6494 6495 6496 6497 6498 6499 6500
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6501
	intel_pps_readout_hw_state(intel_dp, &cur);
6502

I
Imre Deak 已提交
6503
	intel_pps_dump_state("cur", &cur);
6504

6505
	vbt = dev_priv->vbt.edp.pps;
6506 6507 6508 6509 6510 6511
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6512
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6513 6514 6515
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6516 6517 6518 6519 6520
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6534
	intel_pps_dump_state("vbt", &vbt);
6535 6536 6537

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6538
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6539 6540 6541 6542 6543 6544 6545 6546 6547
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6548
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6549 6550 6551 6552 6553 6554 6555
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6556 6557 6558 6559 6560 6561
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6572 6573 6574 6575 6576 6577

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6578 6579 6580
}

static void
6581
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6582
					      bool force_disable_vdd)
6583
{
6584
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6585
	u32 pp_on, pp_off, port_sel = 0;
6586
	int div = dev_priv->rawclk_freq / 1000;
6587
	struct pps_registers regs;
6588
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6589
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6590

V
Ville Syrjälä 已提交
6591
	lockdep_assert_held(&dev_priv->pps_mutex);
6592

6593
	intel_pps_get_registers(intel_dp, &regs);
6594

6595 6596
	/*
	 * On some VLV machines the BIOS can leave the VDD
6597
	 * enabled even on power sequencers which aren't
6598 6599 6600 6601 6602 6603 6604
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6605
	 * soon as the new power sequencer gets initialized.
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6620 6621 6622 6623
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6624 6625 6626

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6627
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6628
		port_sel = PANEL_PORT_SELECT_VLV(port);
6629
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6630 6631
		switch (port) {
		case PORT_A:
6632
			port_sel = PANEL_PORT_SELECT_DPA;
6633 6634 6635 6636 6637
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6638
			port_sel = PANEL_PORT_SELECT_DPD;
6639 6640 6641 6642 6643
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6644 6645
	}

6646 6647
	pp_on |= port_sel;

6648 6649
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6650 6651 6652 6653 6654

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6655 6656 6657
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6658 6659 6660 6661 6662
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6663
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6664 6665
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6666 6667

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6668 6669
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6670 6671 6672
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6673 6674
}

6675
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6676
{
6677
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6678 6679

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6680 6681
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6682 6683
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6684 6685 6686
	}
}

6687 6688
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6689
 * @dev_priv: i915 device
6690
 * @crtc_state: a pointer to the active intel_crtc_state
6691 6692 6693 6694 6695 6696 6697 6698 6699
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6700
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6701
				    const struct intel_crtc_state *crtc_state,
6702
				    int refresh_rate)
6703
{
6704
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6705
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6706
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6707 6708 6709 6710 6711 6712

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6713 6714
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6715 6716 6717 6718 6719 6720 6721 6722
		return;
	}

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6723
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6724 6725 6726 6727
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6728 6729
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6730 6731
		index = DRRS_LOW_RR;

6732
	if (index == dev_priv->drrs.refresh_rate_type) {
6733 6734 6735 6736 6737
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6738
	if (!crtc_state->base.active) {
6739 6740 6741 6742
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6743
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6744 6745
		switch (index) {
		case DRRS_HIGH_RR:
6746
			intel_dp_set_m_n(crtc_state, M1_N1);
6747 6748
			break;
		case DRRS_LOW_RR:
6749
			intel_dp_set_m_n(crtc_state, M2_N2);
6750 6751 6752 6753 6754
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6755 6756
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6757
		u32 val;
6758

6759
		val = I915_READ(reg);
6760
		if (index > DRRS_HIGH_RR) {
6761
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6762 6763 6764
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6765
		} else {
6766
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6767 6768 6769
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6770 6771 6772 6773
		}
		I915_WRITE(reg, val);
	}

6774 6775 6776 6777 6778
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6779 6780 6781
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6782
 * @crtc_state: A pointer to the active crtc state.
6783 6784 6785
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6786
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6787
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6788
{
6789
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6790

6791
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6792 6793 6794 6795
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6796 6797 6798 6799 6800
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6801
	mutex_lock(&dev_priv->drrs.mutex);
6802 6803
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6815 6816 6817
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6818
 * @old_crtc_state: Pointer to old crtc_state.
6819 6820
 *
 */
6821
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6822
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6823
{
6824
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6825

6826
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6836 6837
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6838 6839 6840 6841 6842 6843 6844

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6858
	/*
6859 6860
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6861 6862
	 */

6863 6864
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6865

6866 6867 6868 6869 6870 6871
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6872

6873 6874
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6875 6876
}

6877
/**
6878
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6879
 * @dev_priv: i915 device
6880 6881
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6882 6883
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6884 6885 6886
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6887 6888
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6889 6890 6891 6892
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6893
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6894 6895
		return;

6896
	cancel_delayed_work(&dev_priv->drrs.work);
6897

6898
	mutex_lock(&dev_priv->drrs.mutex);
6899 6900 6901 6902 6903
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6904 6905 6906
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6907 6908 6909
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6910
	/* invalidate means busy screen hence upclock */
6911
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6912 6913
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6914 6915 6916 6917

	mutex_unlock(&dev_priv->drrs.mutex);
}

6918
/**
6919
 * intel_edp_drrs_flush - Restart Idleness DRRS
6920
 * @dev_priv: i915 device
6921 6922
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6923 6924 6925 6926
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6927 6928 6929
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6930 6931
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6932 6933 6934 6935
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6936
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6937 6938
		return;

6939
	cancel_delayed_work(&dev_priv->drrs.work);
6940

6941
	mutex_lock(&dev_priv->drrs.mutex);
6942 6943 6944 6945 6946
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6947 6948
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6949 6950

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6951 6952
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6953
	/* flush means busy screen hence upclock */
6954
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6955 6956
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6957 6958 6959 6960 6961 6962

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6963 6964 6965 6966 6967
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6991 6992 6993 6994 6995 6996 6997 6998
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6999 7000 7001 7002 7003 7004 7005 7006
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7007
 * @connector: eDP connector
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7018
static struct drm_display_mode *
7019 7020
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7021
{
7022
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7023 7024
	struct drm_display_mode *downclock_mode = NULL;

7025 7026 7027
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7028
	if (INTEL_GEN(dev_priv) <= 6) {
7029 7030 7031 7032 7033
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7034
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7035 7036 7037
		return NULL;
	}

7038
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7039
	if (!downclock_mode) {
7040
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7041 7042 7043
		return NULL;
	}

7044
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7045

7046
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7047
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7048 7049 7050
	return downclock_mode;
}

7051
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7052
				     struct intel_connector *intel_connector)
7053
{
7054 7055
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7056
	struct drm_connector *connector = &intel_connector->base;
7057
	struct drm_display_mode *fixed_mode = NULL;
7058
	struct drm_display_mode *downclock_mode = NULL;
7059
	bool has_dpcd;
7060
	enum pipe pipe = INVALID_PIPE;
7061 7062
	intel_wakeref_t wakeref;
	struct edid *edid;
7063

7064
	if (!intel_dp_is_edp(intel_dp))
7065 7066
		return true;

7067 7068
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7069 7070 7071 7072 7073 7074
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7075
	if (intel_get_lvds_encoder(dev_priv)) {
7076 7077 7078 7079 7080 7081
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7082 7083 7084 7085 7086
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7087

7088
	/* Cache DPCD and EDID for edp. */
7089
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7090

7091
	if (!has_dpcd) {
7092 7093
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7094
		goto out_vdd_off;
7095 7096
	}

7097
	mutex_lock(&dev->mode_config.mutex);
7098
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7099 7100
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7101
			drm_connector_update_edid_property(connector,
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7112 7113 7114
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7115 7116

	/* fallback to VBT if available for eDP */
7117 7118
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7119
	mutex_unlock(&dev->mode_config.mutex);
7120

7121
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7122 7123
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7124 7125 7126 7127 7128 7129

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7130
		pipe = vlv_active_pipe(intel_dp);
7131 7132 7133 7134 7135 7136 7137 7138 7139

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7140 7141
	}

7142
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7143
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7144
	intel_panel_setup_backlight(connector, pipe);
7145

7146 7147 7148 7149
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7150
	return true;
7151 7152 7153 7154 7155 7156 7157

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7158 7159
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7160 7161

	return false;
7162 7163
}

7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7180 7181
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7182 7183 7184 7185 7186
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7187
bool
7188 7189
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7190
{
7191 7192 7193 7194
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7195
	struct drm_i915_private *dev_priv = to_i915(dev);
7196
	enum port port = intel_encoder->port;
7197
	enum phy phy = intel_port_to_phy(dev_priv, port);
7198
	int type;
7199

7200 7201 7202 7203
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7204
	if (WARN(intel_dig_port->max_lanes < 1,
7205 7206 7207
		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
		 intel_encoder->base.name))
7208 7209
		return false;

7210 7211
	intel_dp_set_source_rates(intel_dp);

7212
	intel_dp->reset_link_params = true;
7213
	intel_dp->pps_pipe = INVALID_PIPE;
7214
	intel_dp->active_pipe = INVALID_PIPE;
7215

7216 7217
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7218
	intel_dp->attached_connector = intel_connector;
7219

7220 7221 7222 7223 7224
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
7225
		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7226
		type = DRM_MODE_CONNECTOR_eDP;
7227
	} else {
7228
		type = DRM_MODE_CONNECTOR_DisplayPort;
7229
	}
7230

7231 7232 7233
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7234 7235 7236 7237 7238 7239 7240 7241
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7242
	/* eDP only on port B and/or C on vlv/chv */
7243
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7244 7245
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7246 7247
		return false;

7248 7249 7250
	DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
		      type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		      intel_encoder->base.base.id, intel_encoder->base.name);
7251

7252
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7253 7254
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7255
	if (!HAS_GMCH(dev_priv))
7256
		connector->interlace_allowed = true;
7257 7258
	connector->doublescan_allowed = 0;

7259 7260 7261
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

7262
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7263

7264
	intel_dp_aux_init(intel_dp);
7265

7266
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7267

7268
	if (HAS_DDI(dev_priv))
7269 7270 7271 7272
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7273
	/* init MST on ports that can support it */
7274
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7275 7276
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7277 7278
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7279

7280
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7281 7282 7283
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7284
	}
7285

7286
	intel_dp_add_properties(intel_dp, connector);
7287

7288
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7289 7290 7291 7292
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7293

7294 7295 7296 7297
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7298
	if (IS_G45(dev_priv)) {
7299 7300 7301
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7302 7303

	return true;
7304 7305 7306 7307 7308

fail:
	drm_connector_cleanup(connector);

	return false;
7309
}
7310

7311
bool intel_dp_init(struct drm_i915_private *dev_priv,
7312 7313
		   i915_reg_t output_reg,
		   enum port port)
7314 7315 7316 7317 7318 7319
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7320
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7321
	if (!intel_dig_port)
7322
		return false;
7323

7324
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7325 7326
	if (!intel_connector)
		goto err_connector_alloc;
7327 7328 7329 7330

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7331 7332 7333
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7334
		goto err_encoder_init;
7335

7336
	intel_encoder->hotplug = intel_dp_hotplug;
7337
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7338
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7339
	intel_encoder->get_config = intel_dp_get_config;
7340
	intel_encoder->update_pipe = intel_panel_update_backlight;
7341
	intel_encoder->suspend = intel_dp_encoder_suspend;
7342
	if (IS_CHERRYVIEW(dev_priv)) {
7343
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7344 7345
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7346
		intel_encoder->disable = vlv_disable_dp;
7347
		intel_encoder->post_disable = chv_post_disable_dp;
7348
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7349
	} else if (IS_VALLEYVIEW(dev_priv)) {
7350
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7351 7352
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7353
		intel_encoder->disable = vlv_disable_dp;
7354
		intel_encoder->post_disable = vlv_post_disable_dp;
7355
	} else {
7356 7357
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7358
		intel_encoder->disable = g4x_disable_dp;
7359
		intel_encoder->post_disable = g4x_post_disable_dp;
7360
	}
7361 7362

	intel_dig_port->dp.output_reg = output_reg;
7363
	intel_dig_port->max_lanes = 4;
7364

7365
	intel_encoder->type = INTEL_OUTPUT_DP;
7366
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7367
	if (IS_CHERRYVIEW(dev_priv)) {
7368
		if (port == PORT_D)
7369
			intel_encoder->crtc_mask = BIT(PIPE_C);
7370
		else
7371
			intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B);
7372
	} else {
7373
		intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C);
7374
	}
7375
	intel_encoder->cloneable = 0;
7376
	intel_encoder->port = port;
7377

7378 7379
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7380 7381 7382
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7383
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7384 7385 7386
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7387
	return true;
S
Sudip Mukherjee 已提交
7388 7389 7390

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7391
err_encoder_init:
S
Sudip Mukherjee 已提交
7392 7393 7394
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7395
	return false;
7396
}
7397

7398
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7399
{
7400 7401 7402 7403
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7404

7405 7406
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7407

7408
		intel_dp = enc_to_intel_dp(&encoder->base);
7409

7410
		if (!intel_dp->can_mst)
7411 7412
			continue;

7413 7414
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7415 7416 7417
	}
}

7418
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7419
{
7420
	struct intel_encoder *encoder;
7421

7422 7423
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7424
		int ret;
7425

7426 7427 7428 7429 7430 7431
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7432
			continue;
7433

7434
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7435 7436 7437 7438 7439
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7440 7441
	}
}