intel_dp.c 212.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_debugfs.h"
46
#include "i915_drv.h"
47
#include "i915_trace.h"
48
#include "intel_atomic.h"
49
#include "intel_audio.h"
50
#include "intel_connector.h"
51
#include "intel_ddi.h"
52
#include "intel_display_types.h"
53
#include "intel_dp.h"
54
#include "intel_dp_link_training.h"
55
#include "intel_dp_mst.h"
56
#include "intel_dpio_phy.h"
57
#include "intel_fifo_underrun.h"
58
#include "intel_hdcp.h"
59
#include "intel_hdmi.h"
60
#include "intel_hotplug.h"
61
#include "intel_lspcon.h"
62
#include "intel_lvds.h"
63
#include "intel_panel.h"
64
#include "intel_psr.h"
65
#include "intel_sideband.h"
66
#include "intel_tc.h"
67
#include "intel_vdsc.h"
68

69
#define DP_DPRX_ESI_LEN 14
70

71 72 73 74 75
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

76 77
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78

79 80 81 82 83 84
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

85
struct dp_link_dpll {
86
	int clock;
87 88 89
	struct dpll dpll;
};

90
static const struct dp_link_dpll g4x_dpll[] = {
91
	{ 162000,
92
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93
	{ 270000,
94 95 96 97
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
98
	{ 162000,
99
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100
	{ 270000,
101 102 103
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

104
static const struct dp_link_dpll vlv_dpll[] = {
105
	{ 162000,
C
Chon Ming Lee 已提交
106
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107
	{ 270000,
108 109 110
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

111 112 113 114 115 116 117 118 119 120
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
121
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 125
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
126

127 128 129 130 131 132 133 134
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

135
/**
136
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137 138 139 140 141
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
142
bool intel_dp_is_edp(struct intel_dp *intel_dp)
143
{
144 145 146
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 148
}

149 150
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
151
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 153
}

154 155
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
156
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 159
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
160
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161
				      enum pipe pipe);
162
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163

164 165 166
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
167
	static const int dp_rates[] = {
168
		162000, 270000, 540000, 810000
169
	};
170
	int i, max_rate;
171

172
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173

174 175
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
176
			break;
177
		intel_dp->sink_rates[i] = dp_rates[i];
178
	}
179

180
	intel_dp->num_sink_rates = i;
181 182
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

205 206
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207
{
208
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 210
}

211 212
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 214
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215 216
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218

219
	return min3(source_max, sink_max, fia_max);
220 221
}

222
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 224 225 226
{
	return intel_dp->max_link_lane_count;
}

227
int
228
intel_dp_link_required(int pixel_clock, int bpp)
229
{
230 231
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 233
}

234
int
235 236
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
237 238 239 240 241 242 243
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

269
static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 271 272 273 274 275 276 277 278
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
279
		return 540000;
280 281 282

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
283
		return 810000;
284

285
	/* For other SKUs, max rate on ports A and D is 5.4G */
286
	if (port == PORT_A || port == PORT_D)
287
		return 540000;
288

289
	return 810000;
290 291
}

292 293 294
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297

298
	if (intel_phy_is_combo(dev_priv, phy) &&
299
	    !IS_ELKHARTLAKE(dev_priv) &&
300
	    !intel_dp_is_edp(intel_dp))
301 302 303 304 305
		return 540000;

	return 810000;
}

306 307
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
308
{
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
325 326
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 328
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
329
	const int *source_rates;
330
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331

332 333 334
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

335
	if (INTEL_GEN(dev_priv) >= 10) {
336
		source_rates = cnl_rates;
337
		size = ARRAY_SIZE(cnl_rates);
338
		if (IS_GEN(dev_priv, 10))
339 340 341
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
342 343 344
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
345
	} else if (IS_GEN9_BC(dev_priv)) {
346
		source_rates = skl_rates;
347
		size = ARRAY_SIZE(skl_rates);
348 349
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
350 351
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
352
	} else {
353 354
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
355 356
	}

357 358 359 360 361
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

362 363 364
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

365 366
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

392 393 394 395 396 397 398 399 400 401 402 403
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

404
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405
{
406
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407

408 409 410 411 412 413 414 415
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
416
		intel_dp->common_rates[0] = 162000;
417 418 419 420
		intel_dp->num_common_rates = 1;
	}
}

421
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422
				       u8 lane_count)
423 424 425 426 427 428
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
429 430
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
431 432
		return false;

433 434
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
435 436 437 438 439
		return false;

	return true;
}

440 441
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
442
						     u8 lane_count)
443 444 445 446 447 448 449 450 451 452 453 454 455
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

456
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457
					    int link_rate, u8 lane_count)
458
{
459
	int index;
460

461 462 463 464
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
465 466 467 468 469 470 471
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
472 473
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
474
	} else if (lane_count > 1) {
475 476 477 478 479 480 481
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
482
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483
		intel_dp->max_link_lane_count = lane_count >> 1;
484 485 486 487 488 489 490 491
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

492 493 494 495 496 497
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

498 499 500 501 502 503 504 505 506 507 508
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 526
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
			      bits_per_pixel, valid_dsc_bpp[0]);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
				  int hdisplay)
{
	/*
	 * Older platforms don't like hdisplay==4096 with DP.
	 *
	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
	 * and frame counter increment), but we don't get vblank interrupts,
	 * and the pipe underruns immediately. The link also doesn't seem
	 * to get trained properly.
	 *
	 * On CHV the vblank interrupts don't seem to disappear but
	 * otherwise the symptoms are similar.
	 *
	 * TODO: confirm the behaviour on HSW+
	 */
	return hdisplay == 4096 && !HAS_DDI(dev_priv);
}

613
static enum drm_mode_status
614 615 616
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
617
	struct intel_dp *intel_dp = intel_attached_dp(connector);
618 619
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
621 622
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
623
	int max_dotclk;
624 625
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
626

627 628 629
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

630
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631

632
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633
		if (mode->hdisplay > fixed_mode->hdisplay)
634 635
			return MODE_PANEL;

636
		if (mode->vdisplay > fixed_mode->vdisplay)
637
			return MODE_PANEL;
638 639

		target_clock = fixed_mode->clock;
640 641
	}

642
	max_link_clock = intel_dp_max_link_rate(intel_dp);
643
	max_lanes = intel_dp_max_lane_count(intel_dp);
644 645 646 647

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

648 649 650
	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
		return MODE_H_ILLEGAL;

651 652 653 654 655 656 657 658 659 660 661 662
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
663
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664
			dsc_max_output_bpp =
665 666
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
667 668 669 670 671 672 673 674 675 676 677 678
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
679
		return MODE_CLOCK_HIGH;
680 681 682 683

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

684 685 686
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

687
	return intel_mode_valid_max_plane_size(dev_priv, mode);
688 689
}

690
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691
{
692 693
	int i;
	u32 v = 0;
694 695 696 697

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
698
		v |= ((u32)src[i]) << ((3 - i) * 8);
699 700 701
	return v;
}

702
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 704 705 706 707 708 709 710
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

711
static void
712
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713
static void
714
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715
					      bool force_disable_vdd);
716
static void
717
intel_dp_pps_init(struct intel_dp *intel_dp);
718

719 720
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
721
{
722
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723
	intel_wakeref_t wakeref;
724 725

	/*
726
	 * See intel_power_sequencer_reset() why we need
727 728
	 * a power domain reference here.
	 */
729 730
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731 732

	mutex_lock(&dev_priv->pps_mutex);
733 734

	return wakeref;
735 736
}

737 738
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739
{
740
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741 742

	mutex_unlock(&dev_priv->pps_mutex);
743 744 745 746
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
747 748
}

749 750 751
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

752 753 754
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
755
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 757
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
758 759 760
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761
	u32 DP;
762 763

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764 765 766
		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		 pipe_name(pipe), intel_dig_port->base.base.base.id,
		 intel_dig_port->base.base.name))
767 768
		return;

769 770 771
	DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		      pipe_name(pipe), intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
772 773 774 775 776 777 778 779 780

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

781
	if (IS_CHERRYVIEW(dev_priv))
782 783 784
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
785

786 787 788 789 790 791
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
792
	if (!pll_enabled) {
793
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794 795
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

796
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797 798 799 800 801
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
802
	}
803

804 805 806
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
807
	 * to make this power sequencer lock onto the port.
808 809 810 811 812 813 814 815 816 817
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
818

819
	if (!pll_enabled) {
820
		vlv_force_pll_off(dev_priv, pipe);
821 822 823 824

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
825 826
}

827 828 829 830 831 832 833 834 835
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
836 837
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

859 860 861
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
862
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864
	enum pipe pipe;
865

V
Ville Syrjälä 已提交
866
	lockdep_assert_held(&dev_priv->pps_mutex);
867

868
	/* We should never land here with regular DP ports */
869
	WARN_ON(!intel_dp_is_edp(intel_dp));
870

871 872 873
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

874 875 876
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

877
	pipe = vlv_find_free_pps(dev_priv);
878 879 880 881 882

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
883
	if (WARN_ON(pipe == INVALID_PIPE))
884
		pipe = PIPE_A;
885

886
	vlv_steal_power_sequencer(dev_priv, pipe);
887
	intel_dp->pps_pipe = pipe;
888

889
	DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890
		      pipe_name(intel_dp->pps_pipe),
891 892
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
893 894

	/* init power sequencer on this pipe and port */
895 896
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897

898 899 900 901 902
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
903 904 905 906

	return intel_dp->pps_pipe;
}

907 908 909
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
910
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911
	int backlight_controller = dev_priv->vbt.backlight.controller;
912 913 914 915

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
916
	WARN_ON(!intel_dp_is_edp(intel_dp));
917 918

	if (!intel_dp->pps_reset)
919
		return backlight_controller;
920 921 922 923 924 925 926

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
927
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928

929
	return backlight_controller;
930 931
}

932 933 934 935 936 937
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
938
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 940 941 942 943
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
944
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 946 947 948 949 950 951
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
952

953
static enum pipe
954 955 956
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
957 958
{
	enum pipe pipe;
959 960

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962
			PANEL_PORT_SELECT_MASK;
963 964 965 966

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

967 968 969
		if (!pipe_check(dev_priv, pipe))
			continue;

970
		return pipe;
971 972
	}

973 974 975 976 977 978
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
979
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981
	enum port port = intel_dig_port->base.port;
982 983 984 985

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
986 987 988 989 990 991 992 993 994 995 996
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
997 998 999

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
1000 1001 1002
		DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
1003
		return;
1004 1005
	}

1006 1007 1008 1009
	DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
		      pipe_name(intel_dp->pps_pipe));
1010

1011 1012
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 1014
}

1015
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 1017 1018
{
	struct intel_encoder *encoder;

1019
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020
		    !IS_GEN9_LP(dev_priv)))
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1033 1034
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1035

1036 1037 1038 1039 1040
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1041
		if (IS_GEN9_LP(dev_priv))
1042 1043 1044
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1045
	}
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1056
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057 1058
				    struct pps_registers *regs)
{
1059
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060 1061
	int pps_idx = 0;

1062 1063
	memset(regs, 0, sizeof(*regs));

1064
	if (IS_GEN9_LP(dev_priv))
1065 1066 1067
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068

1069 1070 1071 1072
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073 1074

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076 1077
		regs->pp_div = INVALID_MMIO_REG;
	else
1078
		regs->pp_div = PP_DIVISOR(pps_idx);
1079 1080
}

1081 1082
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1083
{
1084
	struct pps_registers regs;
1085

1086
	intel_pps_get_registers(intel_dp, &regs);
1087 1088

	return regs.pp_ctrl;
1089 1090
}

1091 1092
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1093
{
1094
	struct pps_registers regs;
1095

1096
	intel_pps_get_registers(intel_dp, &regs);
1097 1098

	return regs.pp_stat;
1099 1100
}

1101 1102 1103 1104 1105 1106 1107
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1108
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109
	intel_wakeref_t wakeref;
1110

1111
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112 1113
		return 0;

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128 1129
			msleep(intel_dp->panel_power_cycle_delay);
		}
1130 1131 1132 1133 1134
	}

	return 0;
}

1135
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136
{
1137
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138

V
Ville Syrjälä 已提交
1139 1140
	lockdep_assert_held(&dev_priv->pps_mutex);

1141
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142 1143 1144
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1145
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 1147
}

1148
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149
{
1150
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151

V
Ville Syrjälä 已提交
1152 1153
	lockdep_assert_held(&dev_priv->pps_mutex);

1154
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155 1156 1157
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1158
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 1160
}

1161 1162 1163
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1164
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165

1166
	if (!intel_dp_is_edp(intel_dp))
1167
		return;
1168

1169
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170 1171
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172 1173
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1174 1175 1176
	}
}

1177
static u32
1178
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179
{
1180
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182
	u32 status;
1183 1184
	bool done;

1185 1186
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1187
				  msecs_to_jiffies_timeout(10));
1188 1189 1190 1191

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1192
	if (!done)
1193
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1194 1195 1196 1197 1198
#undef C

	return status;
}

1199
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1200
{
1201
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1202

1203 1204 1205
	if (index)
		return 0;

1206 1207
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1208
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1209
	 */
1210
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1211 1212
}

1213
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1214
{
1215
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1216
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1217 1218 1219 1220

	if (index)
		return 0;

1221 1222 1223 1224 1225
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1226
	if (dig_port->aux_ch == AUX_CH_A)
1227
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1228 1229
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1230 1231
}

1232
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1233
{
1234
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1235
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1236

1237
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1238
		/* Workaround for non-ULT HSW */
1239 1240 1241 1242 1243
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1244
	}
1245 1246

	return ilk_get_aux_clock_divider(intel_dp, index);
1247 1248
}

1249
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1250 1251 1252 1253 1254 1255 1256 1257 1258
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1259 1260 1261
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1262 1263
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1264 1265
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1266
	u32 precharge, timeout;
1267

1268
	if (IS_GEN(dev_priv, 6))
1269 1270 1271 1272
		precharge = 3;
	else
		precharge = 5;

1273
	if (IS_BROADWELL(dev_priv))
1274 1275 1276 1277 1278
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1279
	       DP_AUX_CH_CTL_DONE |
1280
	       DP_AUX_CH_CTL_INTERRUPT |
1281
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1282
	       timeout |
1283
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1284 1285
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1286
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1287 1288
}

1289 1290 1291
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1292
{
1293
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1294
	u32 ret;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1306
	if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1307 1308 1309
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1310 1311
}

1312
static int
1313
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1314 1315
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1316
		  u32 aux_send_ctl_flags)
1317 1318
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1319
	struct drm_i915_private *i915 =
1320
			to_i915(intel_dig_port->base.base.dev);
1321
	struct intel_uncore *uncore = &i915->uncore;
1322 1323
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1324
	i915_reg_t ch_ctl, ch_data[5];
1325
	u32 aux_clock_divider;
1326 1327 1328 1329
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1330
	int i, ret, recv_bytes;
1331
	int try, clock = 0;
1332
	u32 status;
1333 1334
	bool vdd;

1335 1336 1337 1338
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1339 1340 1341
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1342
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1343
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1344

1345 1346 1347 1348 1349 1350
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1351
	vdd = edp_panel_vdd_on(intel_dp);
1352 1353 1354 1355 1356

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1357
	pm_qos_update_request(&i915->pm_qos, 0);
1358 1359

	intel_dp_check_edp(intel_dp);
1360

1361 1362
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1363
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1364 1365 1366 1367
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1368 1369
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1370 1371

	if (try == 3) {
1372
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1373

1374
		if (status != intel_dp->aux_busy_last_status) {
1375 1376
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
1377
			intel_dp->aux_busy_last_status = status;
1378 1379
		}

1380 1381
		ret = -EBUSY;
		goto out;
1382 1383
	}

1384 1385 1386 1387 1388 1389
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1390
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1391 1392 1393 1394 1395
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1396

1397 1398 1399 1400
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1401 1402 1403 1404
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1405 1406

			/* Send the command and wait for it to complete */
1407
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1408

1409
			status = intel_dp_aux_wait_done(intel_dp);
1410 1411

			/* Clear done status and any errors */
1412 1413 1414 1415 1416 1417
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1418

1419 1420 1421 1422 1423
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1424 1425 1426
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1427 1428
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1429
				continue;
1430
			}
1431
			if (status & DP_AUX_CH_CTL_DONE)
1432
				goto done;
1433
		}
1434 1435 1436
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1437
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1438 1439
		ret = -EBUSY;
		goto out;
1440 1441
	}

1442
done:
1443 1444 1445
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1446
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1447
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1448 1449
		ret = -EIO;
		goto out;
1450
	}
1451 1452 1453

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1454
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1455
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1456 1457
		ret = -ETIMEDOUT;
		goto out;
1458 1459 1460 1461 1462
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1476 1477
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1478

1479
	for (i = 0; i < recv_bytes; i += 4)
1480
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1481
				    recv + i, recv_bytes - i);
1482

1483 1484
	ret = recv_bytes;
out:
1485
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1486

1487 1488 1489
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1490
	pps_unlock(intel_dp, pps_wakeref);
1491
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1492

1493 1494 1495
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1496
	return ret;
1497 1498
}

1499 1500
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1512 1513
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1514
{
1515
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1516
	u8 txbuf[20], rxbuf[20];
1517
	size_t txsize, rxsize;
1518 1519
	int ret;

1520
	intel_dp_aux_header(txbuf, msg);
1521

1522 1523 1524
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1525
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1526
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1527
		rxsize = 2; /* 0 or 1 data bytes */
1528

1529 1530
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1531

1532 1533
		WARN_ON(!msg->buffer != !msg->size);

1534 1535
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1536

1537
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1538
					rxbuf, rxsize, 0);
1539 1540
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1541

1542 1543 1544 1545 1546 1547 1548
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1549 1550
		}
		break;
1551

1552 1553
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1554
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1555
		rxsize = msg->size + 1;
1556

1557 1558
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1559

1560
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1561
					rxbuf, rxsize, 0);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1572
		}
1573 1574 1575 1576 1577
		break;

	default:
		ret = -EINVAL;
		break;
1578
	}
1579

1580
	return ret;
1581 1582
}

1583

1584
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1585
{
1586
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1587 1588
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1589

1590 1591 1592 1593 1594
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1595
	default:
1596 1597
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1598 1599 1600
	}
}

1601
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1602
{
1603
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1604 1605
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1606

1607 1608 1609 1610 1611
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1612
	default:
1613 1614
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1615 1616 1617
	}
}

1618
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1619
{
1620
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1621 1622
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1623

1624 1625 1626 1627 1628 1629 1630
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1631
	default:
1632 1633
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1634 1635 1636
	}
}

1637
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1638
{
1639
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1640 1641
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1642

1643 1644 1645 1646 1647 1648 1649
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1650
	default:
1651 1652
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1653 1654 1655
	}
}

1656
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1657
{
1658
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1659 1660
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1661

1662 1663 1664 1665 1666
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1667
	case AUX_CH_E:
1668
	case AUX_CH_F:
1669
	case AUX_CH_G:
1670
		return DP_AUX_CH_CTL(aux_ch);
1671
	default:
1672 1673
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1674 1675 1676
	}
}

1677
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1678
{
1679
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1680 1681
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1682

1683 1684 1685 1686 1687
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1688
	case AUX_CH_E:
1689
	case AUX_CH_F:
1690
	case AUX_CH_G:
1691
		return DP_AUX_CH_DATA(aux_ch, index);
1692
	default:
1693 1694
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1695 1696 1697
	}
}

1698 1699 1700 1701 1702 1703 1704 1705
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1706
{
1707
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1708 1709
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1721

1722 1723 1724 1725 1726 1727 1728 1729
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1730

1731 1732 1733 1734
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1735

1736
	drm_dp_aux_init(&intel_dp->aux);
1737

1738
	/* Failure to allocate our preferred name is not critical */
1739 1740
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1741
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1742 1743
}

1744
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1745
{
1746
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1747

1748
	return max_rate >= 540000;
1749 1750
}

1751 1752 1753 1754 1755 1756 1757
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1758 1759
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1760
		   struct intel_crtc_state *pipe_config)
1761
{
1762
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1763 1764
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1765

1766
	if (IS_G4X(dev_priv)) {
1767 1768
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1769
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1770 1771
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1772
	} else if (IS_CHERRYVIEW(dev_priv)) {
1773 1774
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1775
	} else if (IS_VALLEYVIEW(dev_priv)) {
1776 1777
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1778
	}
1779 1780 1781

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1782
			if (pipe_config->port_clock == divisor[i].clock) {
1783 1784 1785 1786 1787
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1788 1789 1790
	}
}

1791 1792 1793 1794 1795 1796 1797 1798
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1799
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1814 1815
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1816 1817
	DRM_DEBUG_KMS("source rates: %s\n", str);

1818 1819
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1820 1821
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1822 1823
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1824
	DRM_DEBUG_KMS("common rates: %s\n", str);
1825 1826
}

1827 1828 1829 1830 1831
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1832
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1833 1834 1835
	if (WARN_ON(len <= 0))
		return 162000;

1836
	return intel_dp->common_rates[len - 1];
1837 1838
}

1839 1840
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1841 1842
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1843 1844 1845 1846 1847

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1848 1849
}

1850
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1851
			   u8 *link_bw, u8 *rate_select)
1852
{
1853 1854
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1855 1856 1857 1858 1859 1860 1861 1862 1863
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1864
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1865 1866 1867 1868
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1869 1870 1871 1872 1873 1874 1875 1876
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899
	/* On TGL, DSC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (INTEL_GEN(dev_priv) >= 10 &&
	    pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1900 1901 1902 1903 1904
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1905 1906 1907
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1908 1909 1910 1911
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1912 1913
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1914
{
1915
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1916
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1917 1918 1919 1920 1921 1922 1923 1924
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1935 1936 1937
	return bpp;
}

1938
/* Adjust link config limits based on compliance test requests. */
1939
void
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

1987
/* Optimize link config in order: max bpp, min clock, min lanes */
1988
static int
1989 1990 1991 1992 1993 1994 1995 1996 1997
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1998 1999
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

2000
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2001
						   output_bpp);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

2016
					return 0;
2017 2018 2019 2020 2021
				}
			}
		}
	}

2022
	return -EINVAL;
2023 2024
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2040 2041 2042 2043
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2044 2045 2046 2047 2048 2049
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
2050
	int ret;
2051

2052 2053 2054
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2055
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2056
		return -EINVAL;
2057

2058 2059 2060 2061 2062 2063
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2064 2065

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2066 2067 2068

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2069
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2070
		return -EINVAL;
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2094 2095
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2096 2097 2098 2099 2100 2101 2102 2103 2104
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2105
			return -EINVAL;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2122
			return -EINVAL;
2123 2124
		}
	}
2125 2126 2127

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
2128 2129 2130 2131
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
2132
		return ret;
2133
	}
2134

2135 2136 2137 2138 2139 2140 2141
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

2142
	return 0;
2143 2144
}

2145 2146 2147 2148 2149 2150 2151 2152
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2153
static int
2154
intel_dp_compute_link_config(struct intel_encoder *encoder,
2155 2156
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2157
{
2158
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2159
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2160
	struct link_config_limits limits;
2161
	int common_len;
2162
	int ret;
2163

2164
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2165
						    intel_dp->max_link_rate);
2166 2167

	/* No common link rates between source and sink */
2168
	WARN_ON(common_len <= 0);
2169

2170 2171 2172 2173 2174 2175
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2176
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2177
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2178

2179
	if (intel_dp_is_edp(intel_dp)) {
2180 2181
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2182 2183 2184 2185
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2186
		 */
2187 2188
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2189
	}
2190

2191 2192
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2193 2194 2195 2196 2197 2198
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2199 2200 2201 2202 2203
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2204 2205

	/* enable compression if the mode doesn't fit available BW */
2206
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2207 2208 2209 2210 2211
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2212
	}
2213

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2236
	return 0;
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2269 2270 2271 2272 2273 2274 2275 2276
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2302
int
2303 2304 2305 2306 2307 2308 2309
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2310
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2311 2312 2313 2314 2315
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2316 2317
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2318
	int ret = 0, output_bpp;
2319 2320 2321 2322

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2323
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2324

2325 2326
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2327 2328 2329 2330 2331 2332
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2333

2334 2335 2336 2337 2338 2339 2340 2341 2342
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2343 2344
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2345 2346 2347 2348 2349 2350 2351

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2352
		if (HAS_GMCH(dev_priv))
2353 2354 2355 2356 2357 2358 2359
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2360
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2361
		return -EINVAL;
2362

R
Rodrigo Vivi 已提交
2363
	if (HAS_GMCH(dev_priv) &&
2364
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2365
		return -EINVAL;
2366 2367

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2368
		return -EINVAL;
2369

2370 2371 2372
	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
		return -EINVAL;

2373 2374 2375
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2376

2377 2378
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2379

2380 2381
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2382
	else
2383
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2384 2385 2386 2387 2388 2389

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2390
			       constant_n, pipe_config->fec_enable);
2391

2392
	if (intel_connector->panel.downclock_mode != NULL &&
2393
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2394
			pipe_config->has_drrs = true;
2395
			intel_link_compute_m_n(output_bpp,
2396 2397 2398 2399
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2400
					       constant_n, pipe_config->fec_enable);
2401 2402
	}

2403
	if (!HAS_DDI(dev_priv))
2404
		intel_dp_set_clock(encoder, pipe_config);
2405

2406 2407
	intel_psr_compute_config(intel_dp, pipe_config);

2408 2409 2410
	intel_hdcp_transcoder_config(intel_connector,
				     pipe_config->cpu_transcoder);

2411
	return 0;
2412 2413
}

2414
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2415
			      int link_rate, u8 lane_count,
2416
			      bool link_mst)
2417
{
2418
	intel_dp->link_trained = false;
2419 2420 2421
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2422 2423
}

2424
static void intel_dp_prepare(struct intel_encoder *encoder,
2425
			     const struct intel_crtc_state *pipe_config)
2426
{
2427
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2428
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2429
	enum port port = encoder->port;
2430
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2431
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2432

2433 2434 2435 2436
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2437

2438 2439 2440
	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);

2441
	/*
K
Keith Packard 已提交
2442
	 * There are four kinds of DP registers:
2443 2444
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2445 2446
	 * 	SNB CPU
	 *	IVB CPU
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2457

2458 2459 2460 2461
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2462

2463 2464
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2465
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2466

2467
	/* Split out the IBX/CPU vs CPT settings */
2468

2469
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2470 2471 2472 2473 2474 2475
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2476
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2477 2478
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2479
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2480
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2481 2482
		u32 trans_dp;

2483
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2484 2485 2486 2487 2488 2489 2490

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2491
	} else {
2492
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2493
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2494 2495 2496 2497 2498 2499 2500

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2501
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2502 2503
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2504
		if (IS_CHERRYVIEW(dev_priv))
2505 2506 2507
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2508
	}
2509 2510
}

2511 2512
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2513

2514 2515
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2516

2517 2518
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2519

2520
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2521

2522
static void wait_panel_status(struct intel_dp *intel_dp,
2523 2524
				       u32 mask,
				       u32 value)
2525
{
2526
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2527
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2528

V
Ville Syrjälä 已提交
2529 2530
	lockdep_assert_held(&dev_priv->pps_mutex);

2531
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2532

2533 2534
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2535

2536
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2537 2538 2539
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2540

2541 2542
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2543
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2544 2545
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2546 2547

	DRM_DEBUG_KMS("Wait complete\n");
2548
}
2549

2550
static void wait_panel_on(struct intel_dp *intel_dp)
2551 2552
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2553
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2554 2555
}

2556
static void wait_panel_off(struct intel_dp *intel_dp)
2557 2558
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2559
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2560 2561
}

2562
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2563
{
2564 2565 2566
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2567
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2568

2569 2570 2571 2572 2573
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2574 2575
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2576 2577 2578
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2579

2580
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2581 2582
}

2583
static void wait_backlight_on(struct intel_dp *intel_dp)
2584 2585 2586 2587 2588
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2589
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2590 2591 2592 2593
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2594

2595 2596 2597 2598
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2599
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2600
{
2601
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2602
	u32 control;
2603

V
Ville Syrjälä 已提交
2604 2605
	lockdep_assert_held(&dev_priv->pps_mutex);

2606
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2607 2608
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2609 2610 2611
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2612
	return control;
2613 2614
}

2615 2616 2617 2618 2619
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2620
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2621
{
2622
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2623
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2624
	u32 pp;
2625
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2626
	bool need_to_disable = !intel_dp->want_panel_vdd;
2627

V
Ville Syrjälä 已提交
2628 2629
	lockdep_assert_held(&dev_priv->pps_mutex);

2630
	if (!intel_dp_is_edp(intel_dp))
2631
		return false;
2632

2633
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2634
	intel_dp->want_panel_vdd = true;
2635

2636
	if (edp_have_panel_vdd(intel_dp))
2637
		return need_to_disable;
2638

2639 2640
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2641

2642 2643 2644
	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
2645

2646 2647
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2648

2649
	pp = ironlake_get_pp_control(intel_dp);
2650
	pp |= EDP_FORCE_VDD;
2651

2652 2653
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2654 2655 2656 2657 2658

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2659 2660 2661
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2662
	if (!edp_have_panel_power(intel_dp)) {
2663 2664 2665
		DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
2666 2667
		msleep(intel_dp->panel_power_up_delay);
	}
2668 2669 2670 2671

	return need_to_disable;
}

2672 2673 2674 2675 2676 2677 2678
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2679
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2680
{
2681
	intel_wakeref_t wakeref;
2682
	bool vdd;
2683

2684
	if (!intel_dp_is_edp(intel_dp))
2685 2686
		return;

2687 2688 2689
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2690 2691 2692
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2693 2694
}

2695
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2696
{
2697
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2698 2699
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2700
	u32 pp;
2701
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2702

V
Ville Syrjälä 已提交
2703
	lockdep_assert_held(&dev_priv->pps_mutex);
2704

2705
	WARN_ON(intel_dp->want_panel_vdd);
2706

2707
	if (!edp_have_panel_vdd(intel_dp))
2708
		return;
2709

2710 2711 2712
	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
2713

2714 2715
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2716

2717 2718
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2719

2720 2721
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2722

2723 2724 2725
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2726

2727
	if ((pp & PANEL_POWER_ON) == 0)
2728
		intel_dp->panel_power_off_time = ktime_get_boottime();
2729

2730 2731
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2732
}
2733

2734
static void edp_panel_vdd_work(struct work_struct *__work)
2735
{
2736 2737 2738 2739
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2740

2741 2742 2743 2744
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2745 2746
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2760 2761 2762 2763 2764
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2765
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2766
{
2767
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2768 2769 2770

	lockdep_assert_held(&dev_priv->pps_mutex);

2771
	if (!intel_dp_is_edp(intel_dp))
2772
		return;
2773

2774 2775 2776
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2777

2778 2779
	intel_dp->want_panel_vdd = false;

2780
	if (sync)
2781
		edp_panel_vdd_off_sync(intel_dp);
2782 2783
	else
		edp_panel_vdd_schedule_off(intel_dp);
2784 2785
}

2786
static void edp_panel_on(struct intel_dp *intel_dp)
2787
{
2788
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2789
	u32 pp;
2790
	i915_reg_t pp_ctrl_reg;
2791

2792 2793
	lockdep_assert_held(&dev_priv->pps_mutex);

2794
	if (!intel_dp_is_edp(intel_dp))
2795
		return;
2796

2797 2798 2799
	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
		      dp_to_dig_port(intel_dp)->base.base.base.id,
		      dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
2800

2801
	if (WARN(edp_have_panel_power(intel_dp),
2802 2803 2804
		 "[ENCODER:%d:%s] panel power already on\n",
		 dp_to_dig_port(intel_dp)->base.base.base.id,
		 dp_to_dig_port(intel_dp)->base.base.name))
2805
		return;
2806

2807
	wait_panel_power_cycle(intel_dp);
2808

2809
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2810
	pp = ironlake_get_pp_control(intel_dp);
2811
	if (IS_GEN(dev_priv, 5)) {
2812 2813
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2814 2815
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2816
	}
2817

2818
	pp |= PANEL_POWER_ON;
2819
	if (!IS_GEN(dev_priv, 5))
2820 2821
		pp |= PANEL_POWER_RESET;

2822 2823
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2824

2825
	wait_panel_on(intel_dp);
2826
	intel_dp->last_power_on = jiffies;
2827

2828
	if (IS_GEN(dev_priv, 5)) {
2829
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2830 2831
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2832
	}
2833
}
V
Ville Syrjälä 已提交
2834

2835 2836
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2837 2838
	intel_wakeref_t wakeref;

2839
	if (!intel_dp_is_edp(intel_dp))
2840 2841
		return;

2842 2843
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2844 2845
}

2846 2847

static void edp_panel_off(struct intel_dp *intel_dp)
2848
{
2849
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2850
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2851
	u32 pp;
2852
	i915_reg_t pp_ctrl_reg;
2853

2854 2855
	lockdep_assert_held(&dev_priv->pps_mutex);

2856
	if (!intel_dp_is_edp(intel_dp))
2857
		return;
2858

2859 2860
	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
		      dig_port->base.base.base.id, dig_port->base.base.name);
2861

2862 2863
	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
	     dig_port->base.base.base.id, dig_port->base.base.name);
2864

2865
	pp = ironlake_get_pp_control(intel_dp);
2866 2867
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2868
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2869
		EDP_BLC_ENABLE);
2870

2871
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2872

2873 2874
	intel_dp->want_panel_vdd = false;

2875 2876
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2877

2878
	wait_panel_off(intel_dp);
2879
	intel_dp->panel_power_off_time = ktime_get_boottime();
2880 2881

	/* We got a reference when we enabled the VDD. */
2882
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2883
}
V
Ville Syrjälä 已提交
2884

2885 2886
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2887 2888
	intel_wakeref_t wakeref;

2889
	if (!intel_dp_is_edp(intel_dp))
2890
		return;
V
Ville Syrjälä 已提交
2891

2892 2893
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2894 2895
}

2896 2897
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2898
{
2899
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2900
	intel_wakeref_t wakeref;
2901

2902 2903 2904 2905 2906 2907
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2908
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2909

2910 2911 2912
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2913

2914 2915
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2916

2917 2918 2919
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2920 2921
}

2922
/* Enable backlight PWM and backlight PP control. */
2923 2924
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2925
{
2926 2927
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2928
	if (!intel_dp_is_edp(intel_dp))
2929 2930 2931 2932
		return;

	DRM_DEBUG_KMS("\n");

2933
	intel_panel_enable_backlight(crtc_state, conn_state);
2934 2935 2936 2937 2938
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2939
{
2940
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2941
	intel_wakeref_t wakeref;
2942

2943
	if (!intel_dp_is_edp(intel_dp))
2944 2945
		return;

2946 2947 2948
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2949

2950 2951
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2952

2953 2954 2955
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2956 2957

	intel_dp->last_backlight_off = jiffies;
2958
	edp_wait_backlight_off(intel_dp);
2959
}
2960

2961
/* Disable backlight PP control and backlight PWM. */
2962
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2963
{
2964 2965
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2966
	if (!intel_dp_is_edp(intel_dp))
2967 2968 2969
		return;

	DRM_DEBUG_KMS("\n");
2970

2971
	_intel_edp_backlight_off(intel_dp);
2972
	intel_panel_disable_backlight(old_conn_state);
2973
}
2974

2975 2976 2977 2978 2979 2980 2981 2982
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2983
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2984 2985
	bool is_enabled;

2986 2987 2988
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2989 2990 2991
	if (is_enabled == enable)
		return;

2992 2993
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2994 2995 2996 2997 2998 2999 3000

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

3001 3002 3003 3004 3005 3006 3007
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
3008 3009
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
3010
			onoff(state), onoff(cur_state));
3011 3012 3013 3014 3015 3016 3017 3018 3019
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
3020
			onoff(state), onoff(cur_state));
3021 3022 3023 3024
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

3025
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
3026
				const struct intel_crtc_state *pipe_config)
3027
{
3028
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3029
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3030

3031 3032 3033
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3034

3035
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3036
		      pipe_config->port_clock);
3037 3038 3039

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3040
	if (pipe_config->port_clock == 162000)
3041 3042 3043 3044 3045 3046 3047 3048
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

3049 3050 3051 3052 3053 3054
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3055
	if (IS_GEN(dev_priv, 5))
3056
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3057

3058
	intel_dp->DP |= DP_PLL_ENABLE;
3059

3060
	I915_WRITE(DP_A, intel_dp->DP);
3061 3062
	POSTING_READ(DP_A);
	udelay(200);
3063 3064
}

3065 3066
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
3067
{
3068
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3069
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3070

3071 3072 3073
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3074

3075 3076
	DRM_DEBUG_KMS("disabling eDP PLL\n");

3077
	intel_dp->DP &= ~DP_PLL_ENABLE;
3078

3079
	I915_WRITE(DP_A, intel_dp->DP);
3080
	POSTING_READ(DP_A);
3081 3082 3083
	udelay(200);
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

3115
/* If the sink supports it, try to set the power state appropriately */
3116
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3117 3118 3119 3120 3121 3122 3123 3124
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3125 3126 3127
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3128 3129
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3130
	} else {
3131 3132
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3133 3134 3135 3136 3137
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3138 3139
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3140 3141 3142 3143
			if (ret == 1)
				break;
			msleep(1);
		}
3144 3145 3146

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3147
	}
3148 3149 3150 3151

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3152 3153
}

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3200 3201
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3202
{
3203
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3204
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3205
	intel_wakeref_t wakeref;
3206
	bool ret;
3207

3208 3209 3210
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3211 3212
		return false;

3213 3214
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3215

3216
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3217 3218

	return ret;
3219
}
3220

3221
static void intel_dp_get_config(struct intel_encoder *encoder,
3222
				struct intel_crtc_state *pipe_config)
3223
{
3224
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3225 3226
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3227
	enum port port = encoder->port;
3228
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3229

3230 3231 3232 3233
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3234

3235
	tmp = I915_READ(intel_dp->output_reg);
3236 3237

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3238

3239
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3240 3241 3242
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3243 3244 3245
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3246

3247
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3248 3249 3250 3251
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3252
		if (tmp & DP_SYNC_HS_HIGH)
3253 3254 3255
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3256

3257
		if (tmp & DP_SYNC_VS_HIGH)
3258 3259 3260 3261
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3262

3263
	pipe_config->base.adjusted_mode.flags |= flags;
3264

3265
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3266 3267
		pipe_config->limited_color_range = true;

3268 3269 3270
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3271 3272
	intel_dp_get_m_n(crtc, pipe_config);

3273
	if (port == PORT_A) {
3274
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3275 3276 3277 3278
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3279

3280 3281 3282
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3283

3284
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3285
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3300 3301
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3302
	}
3303 3304
}

3305
static void intel_disable_dp(struct intel_encoder *encoder,
3306 3307
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3308
{
3309
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3310

3311 3312
	intel_dp->link_trained = false;

3313
	if (old_crtc_state->has_audio)
3314 3315
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3316 3317 3318

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3319
	intel_edp_panel_vdd_on(intel_dp);
3320
	intel_edp_backlight_off(old_conn_state);
3321
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3322
	intel_edp_panel_off(intel_dp);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3337 3338
}

3339
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3340 3341
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3342
{
3343
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3344
	enum port port = encoder->port;
3345

3346 3347 3348 3349 3350 3351
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3352
	intel_dp_link_down(encoder, old_crtc_state);
3353 3354

	/* Only ilk+ has port A */
3355
	if (port == PORT_A)
3356
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3357 3358
}

3359
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3360 3361
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3362
{
3363
	intel_dp_link_down(encoder, old_crtc_state);
3364 3365
}

3366
static void chv_post_disable_dp(struct intel_encoder *encoder,
3367 3368
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3369
{
3370
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3371

3372
	intel_dp_link_down(encoder, old_crtc_state);
3373

3374
	vlv_dpio_get(dev_priv);
3375 3376

	/* Assert data lane reset */
3377
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3378

3379
	vlv_dpio_put(dev_priv);
3380 3381
}

3382 3383
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3384 3385
			 u32 *DP,
			 u8 dp_train_pat)
3386
{
3387
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3388
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3389
	enum port port = intel_dig_port->base.port;
3390
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3391

3392
	if (dp_train_pat & train_pat_mask)
3393
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3394
			      dp_train_pat & train_pat_mask);
3395

3396
	if (HAS_DDI(dev_priv)) {
3397
		u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3398 3399 3400 3401 3402 3403 3404

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3405
		switch (dp_train_pat & train_pat_mask) {
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3419 3420 3421
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3422
		}
3423
		I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3424

3425
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3426
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3440
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3441 3442 3443 3444 3445
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3446
		*DP &= ~DP_LINK_TRAIN_MASK;
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3459 3460
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3461 3462 3463 3464 3465
			break;
		}
	}
}

3466
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3467
				 const struct intel_crtc_state *old_crtc_state)
3468
{
3469
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3470 3471 3472

	/* enable with pattern 1 (as per spec) */

3473
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3474 3475 3476 3477 3478 3479 3480 3481

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3482
	if (old_crtc_state->has_audio)
3483
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3484 3485 3486

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3487 3488
}

3489
static void intel_enable_dp(struct intel_encoder *encoder,
3490 3491
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3492
{
3493
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3494
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3495
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3496
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3497
	enum pipe pipe = crtc->pipe;
3498
	intel_wakeref_t wakeref;
3499

3500 3501
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3502

3503 3504 3505
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3506

3507
		intel_dp_enable_port(intel_dp, pipe_config);
3508

3509 3510 3511 3512
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3513

3514
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3515 3516
		unsigned int lane_mask = 0x0;

3517
		if (IS_CHERRYVIEW(dev_priv))
3518
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3519

3520 3521
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3522
	}
3523

3524
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3525
	intel_dp_start_link_train(intel_dp);
3526
	intel_dp_stop_link_train(intel_dp);
3527

3528
	if (pipe_config->has_audio) {
3529
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3530
				 pipe_name(pipe));
3531
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3532
	}
3533
}
3534

3535
static void g4x_enable_dp(struct intel_encoder *encoder,
3536 3537
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3538
{
3539
	intel_enable_dp(encoder, pipe_config, conn_state);
3540
	intel_edp_backlight_on(pipe_config, conn_state);
3541
}
3542

3543
static void vlv_enable_dp(struct intel_encoder *encoder,
3544 3545
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3546
{
3547
	intel_edp_backlight_on(pipe_config, conn_state);
3548 3549
}

3550
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3551 3552
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3553 3554
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3555
	enum port port = encoder->port;
3556

3557
	intel_dp_prepare(encoder, pipe_config);
3558

3559
	/* Only ilk+ has port A */
3560
	if (port == PORT_A)
3561
		ironlake_edp_pll_on(intel_dp, pipe_config);
3562 3563
}

3564 3565 3566
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3567
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3568
	enum pipe pipe = intel_dp->pps_pipe;
3569
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3570

3571 3572
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3573 3574 3575
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3576 3577 3578
	edp_panel_vdd_off_sync(intel_dp);

	/*
3579
	 * VLV seems to get confused when multiple power sequencers
3580 3581 3582
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3583
	 * selected in multiple power sequencers, but let's clear the
3584 3585 3586
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3587 3588 3589
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		      pipe_name(pipe), intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name);
3590 3591 3592 3593 3594 3595
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3596
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3597 3598 3599 3600 3601 3602
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3603 3604
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3605

3606
		WARN(intel_dp->active_pipe == pipe,
3607 3608 3609
		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
		     pipe_name(pipe), encoder->base.base.id,
		     encoder->base.name);
3610

3611 3612 3613
		if (intel_dp->pps_pipe != pipe)
			continue;

3614 3615 3616
		DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			      pipe_name(pipe), encoder->base.base.id,
			      encoder->base.name);
3617 3618

		/* make sure vdd is off before we steal it */
3619
		vlv_detach_power_sequencer(intel_dp);
3620 3621 3622
	}
}

3623 3624
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3625
{
3626
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3627 3628
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3629 3630 3631

	lockdep_assert_held(&dev_priv->pps_mutex);

3632
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3633

3634 3635 3636 3637 3638 3639 3640
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3641
		vlv_detach_power_sequencer(intel_dp);
3642
	}
3643 3644 3645 3646 3647

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3648
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3649

3650 3651
	intel_dp->active_pipe = crtc->pipe;

3652
	if (!intel_dp_is_edp(intel_dp))
3653 3654
		return;

3655 3656 3657
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3658 3659 3660
	DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		      pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		      encoder->base.name);
3661 3662

	/* init power sequencer on this pipe and port */
3663 3664
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3665 3666
}

3667
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3668 3669
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3670
{
3671
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3672

3673
	intel_enable_dp(encoder, pipe_config, conn_state);
3674 3675
}

3676
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3677 3678
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3679
{
3680
	intel_dp_prepare(encoder, pipe_config);
3681

3682
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3683 3684
}

3685
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3686 3687
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3688
{
3689
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3690

3691
	intel_enable_dp(encoder, pipe_config, conn_state);
3692 3693

	/* Second common lane will stay alive on its own now */
3694
	chv_phy_release_cl2_override(encoder);
3695 3696
}

3697
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3698 3699
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3700
{
3701
	intel_dp_prepare(encoder, pipe_config);
3702

3703
	chv_phy_pre_pll_enable(encoder, pipe_config);
3704 3705
}

3706
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3707 3708
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3709
{
3710
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3711 3712
}

3713 3714 3715 3716
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3717
bool
3718
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3719
{
3720 3721
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3722 3723
}

3724
/* These are source-specific values. */
3725
u8
K
Keith Packard 已提交
3726
intel_dp_voltage_max(struct intel_dp *intel_dp)
3727
{
3728
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3729 3730
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3731

3732
	if (HAS_DDI(dev_priv))
3733
		return intel_ddi_dp_voltage_max(encoder);
3734
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3735
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3736
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3737
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3738
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3739
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3740
	else
3741
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3742 3743
}

3744 3745
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3746
{
3747
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3748 3749
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3750

3751 3752
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3753
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3754
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3755 3756 3757 3758 3759 3760 3761
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3762
		default:
3763
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3764
		}
3765
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3766
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3767 3768 3769 3770 3771
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3772
		default:
3773
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3774 3775 3776
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3777 3778 3779 3780 3781 3782 3783
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3784
		default:
3785
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3786
		}
3787 3788 3789
	}
}

3790
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3791
{
3792
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3793 3794
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3795
	u8 train_set = intel_dp->train_set[0];
3796 3797

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3798
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3799 3800
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3801
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3802 3803 3804
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3805
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3806 3807 3808
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3809
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3810 3811 3812
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3813
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3814 3815 3816 3817 3818 3819 3820
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3821
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3822 3823
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3824
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3825 3826 3827
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3828
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3829 3830 3831
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3832
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3833 3834 3835 3836 3837 3838 3839
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3840
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3841 3842
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3843
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3844 3845 3846
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3847
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3848 3849 3850 3851 3852 3853 3854
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3855
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3856 3857
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3858
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3870 3871
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3872 3873 3874 3875

	return 0;
}

3876
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3877
{
3878 3879 3880
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3881
	u8 train_set = intel_dp->train_set[0];
3882 3883

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3884
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3885
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3886
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3887 3888 3889
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3890
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3891 3892 3893
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3894
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3895 3896 3897
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3898
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3899 3900
			deemph_reg_value = 128;
			margin_reg_value = 154;
3901
			uniq_trans_scale = true;
3902 3903 3904 3905 3906
			break;
		default:
			return 0;
		}
		break;
3907
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3908
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3909
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3910 3911 3912
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3913
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3914 3915 3916
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3917
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3918 3919 3920 3921 3922 3923 3924
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3925
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3926
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3927
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3928 3929 3930
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3931
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3932 3933 3934 3935 3936 3937 3938
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3939
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3940
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3941
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3953 3954
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3955 3956 3957 3958

	return 0;
}

3959 3960
static u32
g4x_signal_levels(u8 train_set)
3961
{
3962
	u32 signal_levels = 0;
3963

3964
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3965
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3966 3967 3968
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3969
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3970 3971
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3972
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3973 3974
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3975
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3976 3977 3978
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3979
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3980
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3981 3982 3983
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3984
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3985 3986
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3987
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3988 3989
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3990
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3991 3992 3993 3994 3995 3996
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3997
/* SNB CPU eDP voltage swing and pre-emphasis control */
3998 3999
static u32
snb_cpu_edp_signal_levels(u8 train_set)
4000
{
4001 4002 4003
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4004 4005
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4006
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4007
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4008
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4009 4010
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4011
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4012 4013
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4014
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4015 4016
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4017
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4018
	default:
4019 4020 4021
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4022 4023 4024
	}
}

4025
/* IVB CPU eDP voltage swing and pre-emphasis control */
4026 4027
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4028 4029 4030 4031
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4032
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4033
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4034
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4035
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4036
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4037 4038
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4039
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4040
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4041
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4042 4043
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4044
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4045
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4046
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4056
void
4057
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4058
{
4059
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4060
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4061
	enum port port = intel_dig_port->base.port;
4062 4063
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
4064

R
Rodrigo Vivi 已提交
4065
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4066 4067
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
4068
		signal_levels = ddi_signal_levels(intel_dp);
4069
		mask = DDI_BUF_EMP_MASK;
4070
	} else if (IS_CHERRYVIEW(dev_priv)) {
4071
		signal_levels = chv_signal_levels(intel_dp);
4072
	} else if (IS_VALLEYVIEW(dev_priv)) {
4073
		signal_levels = vlv_signal_levels(intel_dp);
4074
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4075
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4076
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4077
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4078
		signal_levels = snb_cpu_edp_signal_levels(train_set);
4079 4080
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
4081
		signal_levels = g4x_signal_levels(train_set);
4082 4083 4084
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

4085 4086 4087 4088 4089 4090 4091 4092
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
4093

4094
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4095 4096 4097

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
4098 4099
}

4100
void
4101
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4102
				       u8 dp_train_pat)
4103
{
4104
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4105 4106
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
4107

4108
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4109

4110
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
4111
	POSTING_READ(intel_dp->output_reg);
4112 4113
}

4114
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4115
{
4116
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4117
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4118
	enum port port = intel_dig_port->base.port;
4119
	u32 val;
4120

4121
	if (!HAS_DDI(dev_priv))
4122 4123
		return;

4124
	val = I915_READ(intel_dp->regs.dp_tp_ctl);
4125 4126
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4127
	I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4128 4129

	/*
4130 4131 4132
	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
	 * reason we need to set idle transmission mode is to work around a HW
	 * issue where we enable the pipe while not in idle link-training mode.
4133 4134 4135
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
4136
	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4137 4138
		return;

4139
	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4140
				  DP_TP_STATUS_IDLE_DONE, 1))
4141 4142 4143
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

4144
static void
4145 4146
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4147
{
4148 4149 4150 4151
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
4152
	u32 DP = intel_dp->DP;
4153

4154
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4155 4156
		return;

4157
	DRM_DEBUG_KMS("\n");
4158

4159
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4160
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4161
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4162
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4163
	} else {
4164
		DP &= ~DP_LINK_TRAIN_MASK;
4165
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4166
	}
4167
	I915_WRITE(intel_dp->output_reg, DP);
4168
	POSTING_READ(intel_dp->output_reg);
4169

4170 4171 4172 4173 4174 4175 4176 4177 4178
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4179
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4180 4181 4182 4183 4184 4185 4186
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4187
		/* always enable with pattern 1 (as per spec) */
4188 4189 4190
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4191 4192 4193 4194
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
4195
		I915_WRITE(intel_dp->output_reg, DP);
4196
		POSTING_READ(intel_dp->output_reg);
4197

4198
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4199 4200
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4201 4202
	}

4203
	msleep(intel_dp->panel_power_down_delay);
4204 4205

	intel_dp->DP = DP;
4206 4207

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4208 4209 4210 4211
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4212
	}
4213 4214
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4251
bool
4252
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4253
{
4254 4255
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4256
		return false; /* aux transfer failed */
4257

4258 4259
	intel_dp_extended_receiver_capabilities(intel_dp);

4260
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4261

4262 4263
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4264

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4275 4276 4277 4278 4279 4280 4281 4282
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4283 4284 4285
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4298

4299
		/* FEC is supported only on DP 1.4 */
4300 4301 4302 4303
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4304

4305
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4306 4307 4308
	}
}

4309 4310 4311 4312 4313
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4314

4315 4316
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4317

4318
	if (!intel_dp_read_dpcd(intel_dp))
4319 4320
		return false;

4321 4322
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4323

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4334 4335
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4336
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4337
			      intel_dp->edp_dpcd);
4338

4339 4340 4341 4342 4343 4344
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4345 4346
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4347
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4348 4349
		int i;

4350 4351
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4352

4353 4354
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4355 4356 4357 4358

			if (val == 0)
				break;

4359 4360 4361 4362 4363 4364
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4365
			intel_dp->sink_rates[i] = (val * 200) / 10;
4366
		}
4367
		intel_dp->num_sink_rates = i;
4368
	}
4369

4370 4371 4372 4373
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4374 4375 4376 4377 4378
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4379 4380
	intel_dp_set_common_rates(intel_dp);

4381 4382 4383 4384
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4395 4396 4397 4398
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4399
	if (!intel_dp_is_edp(intel_dp)) {
4400 4401 4402
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4403
		intel_dp_set_sink_rates(intel_dp);
4404 4405
		intel_dp_set_common_rates(intel_dp);
	}
4406

4407
	/*
4408 4409
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4410
	 */
4411 4412
	if (!intel_dp_is_edp(intel_dp) &&
	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4413 4414
		u8 count;
		ssize_t r;
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4437

4438
	if (!drm_dp_is_branch(intel_dp->dpcd))
4439 4440 4441 4442 4443
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4444 4445 4446
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4447 4448 4449
		return false; /* downstream port status fetch failed */

	return true;
4450 4451
}

4452
static bool
4453
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4454
{
4455
	u8 mstm_cap;
4456 4457 4458 4459

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4460
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4461
		return false;
4462

4463
	return mstm_cap & DP_MST_CAP;
4464 4465
}

4466 4467 4468 4469 4470 4471 4472 4473
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4474 4475 4476
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4477 4478 4479 4480
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4481 4482 4483 4484
	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support? port: %s, sink: %s, modparam: %s\n",
		      encoder->base.base.id, encoder->base.name,
		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
		      yesno(i915_modparams.enable_dp_mst));
4485 4486 4487 4488

	if (!intel_dp->can_mst)
		return;

4489 4490
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4491 4492 4493

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4494 4495 4496 4497 4498
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4499 4500 4501
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4502 4503
}

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
{
	/*
	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
	 * of Color Encoding Format and Content Color Gamut], in order to
	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		return true;

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_SYCC_601:
	case DRM_MODE_COLORIMETRY_OPYCC_601:
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		return true;
	default:
		break;
	}

	return false;
}

4530
static void
4531 4532 4533
intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
		       const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		/* RGB: DB16[7:4] = 0h */
		break;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc_sdp.db[16] |= 0x1;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc_sdp.db[16] |= 0x2;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc_sdp.db[16] |= 0x3;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc_sdp.db[16] |= 0x4;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc_sdp.db[16] |= 0x5;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc_sdp.db[16] |= 0x6;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc_sdp.db[16] |= 0x7;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
		break;
	default:
		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */

		/* RGB->YCBCR color conversion uses the BT.709 color space. */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
		break;
	}
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
static void
intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					  const struct intel_crtc_state *crtc_state,
					  const struct drm_connector_state *conn_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp infoframe_sdp = {};
	struct hdmi_drm_infoframe drm_infoframe = {};
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;
	int ret;

	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
	if (ret) {
		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
		return;
	}

	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Packet ID, 00h for non-Audio INFOFRAME */
	infoframe_sdp.sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
	 */
	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1,
	 */
	infoframe_sdp.sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	infoframe_sdp.db[0] = drm_infoframe.version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	infoframe_sdp.db[1] = drm_infoframe.length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
					HDMI_PACKET_TYPE_GAMUT_METADATA,
					&infoframe_sdp,
					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
}

4734 4735 4736
void intel_dp_vsc_enable(struct intel_dp *intel_dp,
			 const struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
4737
{
4738
	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4739 4740
		return;

4741
	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4742 4743
}

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	if (!conn_state->hdr_output_metadata)
		return;

	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
						  crtc_state,
						  conn_state);
}

4756
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4757
{
4758
	int status = 0;
4759
	int test_link_rate;
4760
	u8 test_lane_count, test_link_bw;
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4781 4782 4783 4784

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4785 4786 4787 4788 4789 4790
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4791 4792
}

4793
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4794
{
4795 4796
	u8 test_pattern;
	u8 test_misc;
4797 4798 4799 4800
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4801 4802
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4824 4825
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4852 4853
}

4854
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4855
{
4856
	u8 test_result = DP_TEST_ACK;
4857 4858 4859 4860
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4861
	    connector->edid_corrupt ||
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4875
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4876
	} else {
4877 4878 4879 4880 4881 4882 4883
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4884 4885
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4886 4887 4888
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4889
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4890 4891 4892
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4893
	intel_dp->compliance.test_active = 1;
4894

4895 4896 4897
	return test_result;
}

4898
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4899
{
4900
	u8 test_result = DP_TEST_NAK;
4901 4902 4903 4904 4905
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4906 4907
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4908
	int status;
4909

4910
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4911 4912 4913 4914 4915
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4916
	switch (request) {
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4934
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4935 4936 4937
		break;
	}

4938 4939 4940
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4941
update_status:
4942
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4943 4944
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4945 4946
}

4947 4948 4949 4950 4951 4952
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4953
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4954 4955 4956
		int ret = 0;
		int retry;
		bool handled;
4957 4958

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4959 4960 4961 4962 4963
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4964
			if (intel_dp->active_mst_links > 0 &&
4965
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4966 4967 4968 4969 4970
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4971
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4987
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4988 4989 4990 4991 4992 4993 4994 4995 4996
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4997 4998
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4999 5000 5001 5002 5003
		}
	}
	return -EINVAL;
}

5004 5005 5006 5007 5008
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

5009
	if (!intel_dp->link_trained)
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
5021 5022 5023
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
5040 5041
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
5082 5083 5084

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5085
	if (crtc_state->has_pch_encoder)
5086 5087 5088 5089 5090 5091 5092
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
5093
	intel_wait_for_vblank(dev_priv, crtc->pipe);
5094 5095

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5096
	if (crtc_state->has_pch_encoder)
5097 5098
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
5099 5100

	return 0;
5101 5102
}

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
5115 5116 5117 5118
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
5119
{
5120
	struct drm_modeset_acquire_ctx ctx;
5121
	enum intel_hotplug_state state;
5122
	int ret;
5123

5124
	state = intel_encoder_hotplug(encoder, connector, irq_received);
5125

5126
	drm_modeset_acquire_init(&ctx, 0);
5127

5128 5129
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
5130

5131 5132 5133 5134
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
5135

5136 5137
		break;
	}
5138

5139 5140 5141
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5142

5143 5144 5145 5146 5147 5148 5149
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

5150
	return state;
5151 5152
}

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

5169
	if (val & DP_CP_IRQ)
5170
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5171 5172 5173

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5174 5175
}

5176 5177 5178 5179 5180 5181 5182
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
5183 5184 5185 5186 5187
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
5188
 */
5189
static bool
5190
intel_dp_short_pulse(struct intel_dp *intel_dp)
5191
{
5192
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5193 5194
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5195

5196 5197 5198 5199
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5200
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5201

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5213 5214
	}

5215
	intel_dp_check_service_irq(intel_dp);
5216

5217 5218 5219
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5220 5221 5222
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5223

5224 5225
	intel_psr_short_pulse(intel_dp);

5226 5227 5228
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
5229
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5230
	}
5231 5232

	return true;
5233 5234
}

5235
/* XXX this is probably wrong for multiple downstream ports */
5236
static enum drm_connector_status
5237
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5238
{
5239
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5240 5241
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5242

5243 5244 5245
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5246 5247 5248
	if (lspcon->active)
		lspcon_resume(lspcon);

5249 5250 5251 5252
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5253
	if (!drm_dp_is_branch(dpcd))
5254
		return connector_status_connected;
5255 5256

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5257 5258
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5259

5260 5261
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5262 5263
	}

5264 5265 5266
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5267
	/* If no HPD, poke DDC gently */
5268
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5269
		return connector_status_connected;
5270 5271

	/* Well we tried, say unknown for unreliable port types */
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5284 5285 5286

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5287
	return connector_status_disconnected;
5288 5289
}

5290 5291 5292
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5293
	return connector_status_connected;
5294 5295
}

5296
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5297
{
5298
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5299
	u32 bit;
5300

5301 5302
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5303 5304
		bit = SDE_PORTB_HOTPLUG;
		break;
5305
	case HPD_PORT_C:
5306 5307
		bit = SDE_PORTC_HOTPLUG;
		break;
5308
	case HPD_PORT_D:
5309 5310 5311
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5312
		MISSING_CASE(encoder->hpd_pin);
5313 5314 5315 5316 5317 5318
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5319
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5320
{
5321
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5322 5323
	u32 bit;

5324 5325
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5326 5327
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5328
	case HPD_PORT_C:
5329 5330
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5331
	case HPD_PORT_D:
5332 5333
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5334
	default:
5335
		MISSING_CASE(encoder->hpd_pin);
5336 5337 5338 5339 5340 5341
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

5342
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5343
{
5344
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5345 5346
	u32 bit;

5347 5348
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5349 5350
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5351
	case HPD_PORT_E:
5352 5353
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5354
	default:
5355
		return cpt_digital_port_connected(encoder);
5356
	}
5357

5358
	return I915_READ(SDEISR) & bit;
5359 5360
}

5361
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5362
{
5363
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5364
	u32 bit;
5365

5366 5367
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5368 5369
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5370
	case HPD_PORT_C:
5371 5372
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5373
	case HPD_PORT_D:
5374 5375 5376
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5377
		MISSING_CASE(encoder->hpd_pin);
5378 5379 5380 5381 5382 5383
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

5384
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5385
{
5386
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5387 5388
	u32 bit;

5389 5390
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5391
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5392
		break;
5393
	case HPD_PORT_C:
5394
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5395
		break;
5396
	case HPD_PORT_D:
5397
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5398 5399
		break;
	default:
5400
		MISSING_CASE(encoder->hpd_pin);
5401
		return false;
5402 5403
	}

5404
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5405 5406
}

5407
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5408
{
5409 5410 5411
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5412 5413
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5414
		return ibx_digital_port_connected(encoder);
5415 5416
}

5417
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5418
{
5419 5420 5421
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5422 5423
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5424
		return cpt_digital_port_connected(encoder);
5425 5426
}

5427
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5428
{
5429 5430 5431
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5432 5433
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5434
		return cpt_digital_port_connected(encoder);
5435 5436
}

5437
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5438
{
5439 5440 5441
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5442 5443
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5444
		return cpt_digital_port_connected(encoder);
5445 5446
}

5447
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5448
{
5449
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5450 5451
	u32 bit;

5452 5453
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5454 5455
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5456
	case HPD_PORT_B:
5457 5458
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5459
	case HPD_PORT_C:
5460 5461 5462
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5463
		MISSING_CASE(encoder->hpd_pin);
5464 5465 5466 5467 5468 5469
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5470 5471 5472 5473 5474
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

5475 5476 5477
	if (HAS_PCH_MCC(dev_priv) && port == PORT_C)
		return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);

5478 5479 5480 5481 5482 5483 5484
	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5485
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5486

5487
	if (intel_phy_is_combo(dev_priv, phy))
5488
		return icl_combo_port_connected(dev_priv, dig_port);
5489
	else if (intel_phy_is_tc(dev_priv, phy))
5490
		return intel_tc_port_connected(dig_port);
5491
	else
5492
		MISSING_CASE(encoder->hpd_pin);
5493 5494

	return false;
5495 5496
}

5497 5498
/*
 * intel_digital_port_connected - is the specified port connected?
5499
 * @encoder: intel_encoder
5500
 *
5501 5502 5503 5504 5505
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5506
 * Return %true if port is connected, %false otherwise.
5507
 */
5508
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5509
{
5510 5511
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5512
	if (HAS_GMCH(dev_priv)) {
5513
		if (IS_GM45(dev_priv))
5514
			return gm45_digital_port_connected(encoder);
5515
		else
5516
			return g4x_digital_port_connected(encoder);
5517 5518
	}

5519 5520
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5521
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5522
		return spt_digital_port_connected(encoder);
5523
	else if (IS_GEN9_LP(dev_priv))
5524
		return bxt_digital_port_connected(encoder);
5525
	else if (IS_GEN(dev_priv, 8))
5526
		return bdw_digital_port_connected(encoder);
5527
	else if (IS_GEN(dev_priv, 7))
5528
		return ivb_digital_port_connected(encoder);
5529
	else if (IS_GEN(dev_priv, 6))
5530
		return snb_digital_port_connected(encoder);
5531
	else if (IS_GEN(dev_priv, 5))
5532 5533 5534 5535
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5536 5537
}

5538 5539 5540
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5541
	bool is_connected = false;
5542 5543 5544 5545 5546 5547 5548 5549
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5550
static struct edid *
5551
intel_dp_get_edid(struct intel_dp *intel_dp)
5552
{
5553
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5554

5555 5556 5557 5558
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5559 5560
			return NULL;

J
Jani Nikula 已提交
5561
		return drm_edid_duplicate(intel_connector->edid);
5562 5563 5564 5565
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5566

5567 5568 5569 5570 5571
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5572

5573
	intel_dp_unset_edid(intel_dp);
5574 5575 5576
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5577
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5578
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5579 5580
}

5581 5582
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5583
{
5584
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5585

5586
	drm_dp_cec_unset_edid(&intel_dp->aux);
5587 5588
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5589

5590 5591
	intel_dp->has_audio = false;
}
5592

5593
static int
5594 5595 5596
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5597
{
5598 5599
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5600 5601
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5602 5603
	enum drm_connector_status status;

5604 5605
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5606
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5607

5608
	/* Can't disconnect eDP */
5609
	if (intel_dp_is_edp(intel_dp))
5610
		status = edp_detect(intel_dp);
5611
	else if (intel_digital_port_connected(encoder))
5612
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5613
	else
5614 5615
		status = connector_status_disconnected;

5616
	if (status == connector_status_disconnected) {
5617
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5618
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5619

5620 5621 5622 5623 5624 5625 5626 5627 5628
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5629
		goto out;
5630
	}
Z
Zhenyu Wang 已提交
5631

5632
	if (intel_dp->reset_link_params) {
5633 5634
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5635

5636 5637
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5638 5639 5640

		intel_dp->reset_link_params = false;
	}
5641

5642 5643
	intel_dp_print_rates(intel_dp);

5644 5645 5646 5647
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5648 5649 5650
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5651 5652 5653 5654 5655
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5656 5657
		status = connector_status_disconnected;
		goto out;
5658 5659 5660 5661 5662 5663
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5664 5665 5666 5667
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5668
		if (ret)
5669 5670
			return ret;
	}
5671

5672 5673 5674 5675 5676 5677 5678 5679
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5680
	intel_dp_set_edid(intel_dp);
5681 5682
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5683
		status = connector_status_connected;
5684

5685
	intel_dp_check_service_irq(intel_dp);
5686

5687
out:
5688
	if (status != connector_status_connected && !intel_dp->is_mst)
5689
		intel_dp_unset_edid(intel_dp);
5690

5691
	return status;
5692 5693
}

5694 5695
static void
intel_dp_force(struct drm_connector *connector)
5696
{
5697
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5698 5699
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5700
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5701 5702
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5703
	intel_wakeref_t wakeref;
5704

5705 5706 5707
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5708

5709 5710
	if (connector->status != connector_status_connected)
		return;
5711

5712
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5713 5714 5715

	intel_dp_set_edid(intel_dp);

5716
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5730

5731
	/* if eDP has no EDID, fall back to fixed mode */
5732
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5733
	    intel_connector->panel.fixed_mode) {
5734
		struct drm_display_mode *mode;
5735 5736

		mode = drm_mode_duplicate(connector->dev,
5737
					  intel_connector->panel.fixed_mode);
5738
		if (mode) {
5739 5740 5741 5742
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5743

5744
	return 0;
5745 5746
}

5747 5748 5749 5750
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5751 5752 5753 5754 5755
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5756 5757 5758 5759 5760 5761 5762

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5763 5764
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
5765
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
5766
	return ret;
5767 5768
}

5769 5770 5771
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5772 5773 5774 5775
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5776 5777 5778
	intel_connector_unregister(connector);
}

5779
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5780
{
5781 5782
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5783

5784
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5785
	if (intel_dp_is_edp(intel_dp)) {
5786 5787
		intel_wakeref_t wakeref;

5788
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5789 5790 5791 5792
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5793 5794
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5795

5796 5797 5798 5799
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5800
	}
5801 5802

	intel_dp_aux_fini(intel_dp);
5803 5804 5805 5806 5807
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5808

5809
	drm_encoder_cleanup(encoder);
5810
	kfree(enc_to_dig_port(encoder));
5811 5812
}

5813
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5814 5815
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5816
	intel_wakeref_t wakeref;
5817

5818
	if (!intel_dp_is_edp(intel_dp))
5819 5820
		return;

5821 5822 5823 5824
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5825
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5826 5827
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5828 5829
}

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5842 5843 5844 5845 5846
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5847 5848 5849 5850 5851
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5852
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5853 5854 5855 5856 5857 5858 5859
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5860 5861
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5862 5863 5864 5865 5866 5867 5868 5869 5870
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5871
	intel_dp_aux_header(txbuf, &msg);
5872

5873
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5874 5875
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5876
	if (ret < 0) {
5877
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5878 5879
		return ret;
	} else if (ret == 0) {
5880
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5881 5882 5883 5884
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5885 5886 5887 5888 5889 5890
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5891 5892 5893 5894 5895 5896 5897 5898 5899
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5900
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5918
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5919 5920 5921 5922 5923 5924
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5925 5926
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5927 5928
{
	ssize_t ret;
5929

5930
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5931
			       bcaps, 1);
5932
	if (ret != 1) {
5933
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5934 5935
		return ret >= 0 ? -EIO : ret;
	}
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5963
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5978
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
6000 6001
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6021
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
6040

6041 6042 6043
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6044
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6045
		return false;
6046
	}
6047

6048 6049 6050
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6066 6067 6068 6069 6070
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

6071
struct hdcp2_dp_msg_data {
6072 6073 6074 6075 6076
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
6077 6078
};

6079
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6108 6109
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6110 6111 6112 6113
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6167
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6188 6189 6190 6191 6192 6193 6194
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

6206
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6207 6208 6209
{
	int i;

6210 6211 6212
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6213 6214 6215 6216 6217 6218 6219 6220

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6221 6222
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6223 6224 6225
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6226
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6238 6239
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6290
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6409
	.hdcp_capable = intel_dp_hdcp_capable,
6410 6411 6412 6413 6414 6415
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6416 6417
};

6418 6419
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6420
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6421
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6435
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6436 6437 6438 6439

	edp_panel_vdd_schedule_off(intel_dp);
}

6440 6441
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6442
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6443 6444
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6445

6446 6447 6448
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6449

6450
	return INVALID_PIPE;
6451 6452
}

6453
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6454
{
6455
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6456 6457
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6458
	intel_wakeref_t wakeref;
6459 6460 6461

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6462

6463
	if (lspcon->active)
6464 6465
		lspcon_resume(lspcon);

6466 6467
	intel_dp->reset_link_params = true;

6468 6469 6470 6471
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6472 6473 6474
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6475

6476 6477 6478 6479 6480 6481 6482 6483
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6484
	}
6485 6486
}

6487
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6488
	.force = intel_dp_force,
6489
	.fill_modes = drm_helper_probe_single_connector_modes,
6490 6491
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6492
	.late_register = intel_dp_connector_register,
6493
	.early_unregister = intel_dp_connector_unregister,
6494
	.destroy = intel_connector_destroy,
6495
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6496
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6497 6498 6499
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6500
	.detect_ctx = intel_dp_detect,
6501 6502
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6503
	.atomic_check = intel_digital_connector_atomic_check,
6504 6505 6506
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6507
	.reset = intel_dp_encoder_reset,
6508
	.destroy = intel_dp_encoder_destroy,
6509 6510
};

6511
enum irqreturn
6512 6513 6514
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6515

6516 6517 6518 6519 6520 6521 6522
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
6523 6524 6525
		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
6526
		return IRQ_HANDLED;
6527 6528
	}

6529 6530 6531
	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
6532
		      long_hpd ? "long" : "short");
6533

6534
	if (long_hpd) {
6535
		intel_dp->reset_link_params = true;
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6550 6551

			return IRQ_NONE;
6552
		}
6553
	}
6554

6555
	if (!intel_dp->is_mst) {
6556
		bool handled;
6557 6558 6559

		handled = intel_dp_short_pulse(intel_dp);

6560
		if (!handled)
6561
			return IRQ_NONE;
6562
	}
6563

6564
	return IRQ_HANDLED;
6565 6566
}

6567
/* check the VBT to see whether the eDP is on another port */
6568
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6569
{
6570 6571 6572 6573
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6574
	if (INTEL_GEN(dev_priv) < 5)
6575 6576
		return false;

6577
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6578 6579
		return true;

6580
	return intel_bios_is_port_edp(dev_priv, port);
6581 6582
}

6583
static void
6584 6585
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6586
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6587 6588 6589 6590
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6591

6592
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6593
	if (HAS_GMCH(dev_priv))
6594 6595 6596
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6597

6598 6599
	intel_attach_colorspace_property(connector);

6600 6601 6602 6603 6604
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
		drm_object_attach_property(&connector->base,
					   connector->dev->mode_config.hdr_output_metadata_property,
					   0);

6605
	if (intel_dp_is_edp(intel_dp)) {
6606 6607 6608
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6609
		if (!HAS_GMCH(dev_priv))
6610 6611 6612 6613
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6614
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6615

6616
	}
6617 6618
}

6619 6620
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6621
	intel_dp->panel_power_off_time = ktime_get_boottime();
6622 6623 6624 6625
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6626
static void
6627
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6628
{
6629
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6630
	u32 pp_on, pp_off, pp_ctl;
6631
	struct pps_registers regs;
6632

6633
	intel_pps_get_registers(intel_dp, &regs);
6634

6635
	pp_ctl = ironlake_get_pp_control(intel_dp);
6636

6637 6638 6639 6640
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6641 6642
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6643 6644

	/* Pull timing values out of registers */
6645 6646 6647 6648
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6649

6650 6651 6652 6653 6654
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6655
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6656
	} else {
6657
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6658
	}
6659 6660
}

I
Imre Deak 已提交
6661 6662 6663 6664 6665 6666 6667 6668 6669
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6670
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6671 6672 6673 6674
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6675
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6676 6677 6678 6679 6680 6681 6682 6683 6684

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6685
static void
6686
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6687
{
6688
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6689 6690 6691 6692 6693 6694 6695 6696 6697
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6698
	intel_pps_readout_hw_state(intel_dp, &cur);
6699

I
Imre Deak 已提交
6700
	intel_pps_dump_state("cur", &cur);
6701

6702
	vbt = dev_priv->vbt.edp.pps;
6703 6704 6705 6706 6707 6708
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6709
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6710 6711 6712
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6713 6714 6715 6716 6717
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6731
	intel_pps_dump_state("vbt", &vbt);
6732 6733 6734

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6735
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6736 6737 6738 6739 6740 6741 6742 6743 6744
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6745
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6746 6747 6748 6749 6750 6751 6752
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6753 6754 6755 6756 6757 6758
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6769 6770 6771 6772 6773 6774

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6775 6776 6777
}

static void
6778
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6779
					      bool force_disable_vdd)
6780
{
6781
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6782
	u32 pp_on, pp_off, port_sel = 0;
6783
	int div = dev_priv->rawclk_freq / 1000;
6784
	struct pps_registers regs;
6785
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6786
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6787

V
Ville Syrjälä 已提交
6788
	lockdep_assert_held(&dev_priv->pps_mutex);
6789

6790
	intel_pps_get_registers(intel_dp, &regs);
6791

6792 6793
	/*
	 * On some VLV machines the BIOS can leave the VDD
6794
	 * enabled even on power sequencers which aren't
6795 6796 6797 6798 6799 6800 6801
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6802
	 * soon as the new power sequencer gets initialized.
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6817 6818 6819 6820
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6821 6822 6823

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6824
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6825
		port_sel = PANEL_PORT_SELECT_VLV(port);
6826
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6827 6828
		switch (port) {
		case PORT_A:
6829
			port_sel = PANEL_PORT_SELECT_DPA;
6830 6831 6832 6833 6834
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6835
			port_sel = PANEL_PORT_SELECT_DPD;
6836 6837 6838 6839 6840
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6841 6842
	}

6843 6844
	pp_on |= port_sel;

6845 6846
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6847 6848 6849 6850 6851

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6852 6853 6854
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6855 6856 6857 6858 6859
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6860
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6861 6862
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6863 6864

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6865 6866
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6867 6868 6869
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6870 6871
}

6872
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6873
{
6874
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6875 6876

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6877 6878
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6879 6880
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6881 6882 6883
	}
}

6884 6885
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6886
 * @dev_priv: i915 device
6887
 * @crtc_state: a pointer to the active intel_crtc_state
6888 6889 6890 6891 6892 6893 6894 6895 6896
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6897
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6898
				    const struct intel_crtc_state *crtc_state,
6899
				    int refresh_rate)
6900
{
6901
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6902
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6903
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6904 6905 6906 6907 6908 6909

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6910 6911
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6912 6913 6914 6915 6916 6917 6918 6919
		return;
	}

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6920
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6921 6922 6923 6924
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6925 6926
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6927 6928
		index = DRRS_LOW_RR;

6929
	if (index == dev_priv->drrs.refresh_rate_type) {
6930 6931 6932 6933 6934
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6935
	if (!crtc_state->base.active) {
6936 6937 6938 6939
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6940
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6941 6942
		switch (index) {
		case DRRS_HIGH_RR:
6943
			intel_dp_set_m_n(crtc_state, M1_N1);
6944 6945
			break;
		case DRRS_LOW_RR:
6946
			intel_dp_set_m_n(crtc_state, M2_N2);
6947 6948 6949 6950 6951
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6952 6953
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6954
		u32 val;
6955

6956
		val = I915_READ(reg);
6957
		if (index > DRRS_HIGH_RR) {
6958
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6959 6960 6961
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6962
		} else {
6963
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6964 6965 6966
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6967 6968 6969 6970
		}
		I915_WRITE(reg, val);
	}

6971 6972 6973 6974 6975
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6976 6977 6978
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6979
 * @crtc_state: A pointer to the active crtc state.
6980 6981 6982
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6983
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6984
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6985
{
6986
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6987

6988
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6989 6990 6991 6992
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6993 6994 6995 6996 6997
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6998
	mutex_lock(&dev_priv->drrs.mutex);
6999 7000
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

7012 7013 7014
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
7015
 * @old_crtc_state: Pointer to old crtc_state.
7016 7017
 *
 */
7018
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7019
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
7020
{
7021
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7022

7023
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
7024 7025 7026 7027 7028 7029 7030 7031 7032
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7033 7034
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
7035 7036 7037 7038 7039 7040 7041

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

7055
	/*
7056 7057
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
7058 7059
	 */

7060 7061
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7062

7063 7064 7065 7066 7067 7068
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7069

7070 7071
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7072 7073
}

7074
/**
7075
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7076
 * @dev_priv: i915 device
7077 7078
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7079 7080
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7081 7082 7083
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7084 7085
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7086 7087 7088 7089
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7090
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7091 7092
		return;

7093
	cancel_delayed_work(&dev_priv->drrs.work);
7094

7095
	mutex_lock(&dev_priv->drrs.mutex);
7096 7097 7098 7099 7100
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7101 7102 7103
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7104 7105 7106
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7107
	/* invalidate means busy screen hence upclock */
7108
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7109 7110
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7111 7112 7113 7114

	mutex_unlock(&dev_priv->drrs.mutex);
}

7115
/**
7116
 * intel_edp_drrs_flush - Restart Idleness DRRS
7117
 * @dev_priv: i915 device
7118 7119
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7120 7121 7122 7123
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7124 7125 7126
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7127 7128
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7129 7130 7131 7132
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7133
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7134 7135
		return;

7136
	cancel_delayed_work(&dev_priv->drrs.work);
7137

7138
	mutex_lock(&dev_priv->drrs.mutex);
7139 7140 7141 7142 7143
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7144 7145
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7146 7147

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7148 7149
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7150
	/* flush means busy screen hence upclock */
7151
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7152 7153
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7154 7155 7156 7157 7158 7159

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7160 7161 7162 7163 7164
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7188 7189 7190 7191 7192 7193 7194 7195
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7196 7197 7198 7199 7200 7201 7202 7203
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7204
 * @connector: eDP connector
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7215
static struct drm_display_mode *
7216 7217
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7218
{
7219
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7220 7221
	struct drm_display_mode *downclock_mode = NULL;

7222 7223 7224
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7225
	if (INTEL_GEN(dev_priv) <= 6) {
7226 7227 7228 7229 7230
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7231
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7232 7233 7234
		return NULL;
	}

7235
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7236
	if (!downclock_mode) {
7237
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7238 7239 7240
		return NULL;
	}

7241
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7242

7243
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7244
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7245 7246 7247
	return downclock_mode;
}

7248
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7249
				     struct intel_connector *intel_connector)
7250
{
7251 7252
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7253
	struct drm_connector *connector = &intel_connector->base;
7254
	struct drm_display_mode *fixed_mode = NULL;
7255
	struct drm_display_mode *downclock_mode = NULL;
7256
	bool has_dpcd;
7257
	enum pipe pipe = INVALID_PIPE;
7258 7259
	intel_wakeref_t wakeref;
	struct edid *edid;
7260

7261
	if (!intel_dp_is_edp(intel_dp))
7262 7263
		return true;

7264 7265
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7266 7267 7268 7269 7270 7271
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7272
	if (intel_get_lvds_encoder(dev_priv)) {
7273 7274 7275 7276 7277 7278
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7279 7280 7281 7282 7283
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7284

7285
	/* Cache DPCD and EDID for edp. */
7286
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7287

7288
	if (!has_dpcd) {
7289 7290
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7291
		goto out_vdd_off;
7292 7293
	}

7294
	mutex_lock(&dev->mode_config.mutex);
7295
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7296 7297
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7298
			drm_connector_update_edid_property(connector,
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7309 7310 7311
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7312 7313

	/* fallback to VBT if available for eDP */
7314 7315
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7316
	mutex_unlock(&dev->mode_config.mutex);
7317

7318
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7319 7320
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7321 7322 7323 7324 7325 7326

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7327
		pipe = vlv_active_pipe(intel_dp);
7328 7329 7330 7331 7332 7333 7334 7335 7336

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7337 7338
	}

7339
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7340
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7341
	intel_panel_setup_backlight(connector, pipe);
7342

7343 7344 7345 7346
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7347
	return true;
7348 7349 7350 7351 7352 7353 7354

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7355 7356
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7357 7358

	return false;
7359 7360
}

7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7377 7378
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7379 7380 7381 7382 7383
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7384
bool
7385 7386
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7387
{
7388 7389 7390 7391
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7392
	struct drm_i915_private *dev_priv = to_i915(dev);
7393
	enum port port = intel_encoder->port;
7394
	enum phy phy = intel_port_to_phy(dev_priv, port);
7395
	int type;
7396

7397 7398 7399 7400
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7401
	if (WARN(intel_dig_port->max_lanes < 1,
7402 7403 7404
		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
		 intel_encoder->base.name))
7405 7406
		return false;

7407 7408
	intel_dp_set_source_rates(intel_dp);

7409
	intel_dp->reset_link_params = true;
7410
	intel_dp->pps_pipe = INVALID_PIPE;
7411
	intel_dp->active_pipe = INVALID_PIPE;
7412

7413 7414
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7415
	intel_dp->attached_connector = intel_connector;
7416

7417 7418 7419 7420 7421
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
7422
		WARN_ON(intel_phy_is_tc(dev_priv, phy));
7423
		type = DRM_MODE_CONNECTOR_eDP;
7424
	} else {
7425
		type = DRM_MODE_CONNECTOR_DisplayPort;
7426
	}
7427

7428 7429 7430
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7431 7432 7433 7434 7435 7436 7437 7438
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7439
	/* eDP only on port B and/or C on vlv/chv */
7440
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7441 7442
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7443 7444
		return false;

7445 7446 7447
	DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
		      type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		      intel_encoder->base.base.id, intel_encoder->base.name);
7448

7449
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7450 7451
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7452
	if (!HAS_GMCH(dev_priv))
7453
		connector->interlace_allowed = true;
7454 7455
	connector->doublescan_allowed = 0;

7456 7457 7458
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

7459
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7460

7461
	intel_dp_aux_init(intel_dp);
7462

7463
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7464

7465
	if (HAS_DDI(dev_priv))
7466 7467 7468 7469
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7470
	/* init MST on ports that can support it */
7471 7472
	intel_dp_mst_encoder_init(intel_dig_port,
				  intel_connector->base.base.id);
7473

7474
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7475 7476 7477
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7478
	}
7479

7480
	intel_dp_add_properties(intel_dp, connector);
7481

7482
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7483 7484 7485 7486
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7487

7488 7489 7490 7491
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7492
	if (IS_G45(dev_priv)) {
7493 7494 7495
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7496 7497

	return true;
7498 7499 7500 7501 7502

fail:
	drm_connector_cleanup(connector);

	return false;
7503
}
7504

7505
bool intel_dp_init(struct drm_i915_private *dev_priv,
7506 7507
		   i915_reg_t output_reg,
		   enum port port)
7508 7509 7510 7511 7512 7513
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7514
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7515
	if (!intel_dig_port)
7516
		return false;
7517

7518
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7519 7520
	if (!intel_connector)
		goto err_connector_alloc;
7521 7522 7523 7524

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7525 7526 7527
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7528
		goto err_encoder_init;
7529

7530
	intel_encoder->hotplug = intel_dp_hotplug;
7531
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7532
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7533
	intel_encoder->get_config = intel_dp_get_config;
7534
	intel_encoder->update_pipe = intel_panel_update_backlight;
7535
	intel_encoder->suspend = intel_dp_encoder_suspend;
7536
	if (IS_CHERRYVIEW(dev_priv)) {
7537
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7538 7539
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7540
		intel_encoder->disable = vlv_disable_dp;
7541
		intel_encoder->post_disable = chv_post_disable_dp;
7542
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7543
	} else if (IS_VALLEYVIEW(dev_priv)) {
7544
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7545 7546
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7547
		intel_encoder->disable = vlv_disable_dp;
7548
		intel_encoder->post_disable = vlv_post_disable_dp;
7549
	} else {
7550 7551
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7552
		intel_encoder->disable = g4x_disable_dp;
7553
		intel_encoder->post_disable = g4x_post_disable_dp;
7554
	}
7555 7556

	intel_dig_port->dp.output_reg = output_reg;
7557
	intel_dig_port->max_lanes = 4;
7558

7559
	intel_encoder->type = INTEL_OUTPUT_DP;
7560
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7561
	if (IS_CHERRYVIEW(dev_priv)) {
7562
		if (port == PORT_D)
7563
			intel_encoder->crtc_mask = BIT(PIPE_C);
7564
		else
7565
			intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B);
7566
	} else {
7567
		intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C);
7568
	}
7569
	intel_encoder->cloneable = 0;
7570
	intel_encoder->port = port;
7571

7572 7573
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7574 7575 7576
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7577
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7578 7579 7580
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7581
	return true;
S
Sudip Mukherjee 已提交
7582 7583 7584

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7585
err_encoder_init:
S
Sudip Mukherjee 已提交
7586 7587 7588
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7589
	return false;
7590
}
7591

7592
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7593
{
7594 7595 7596 7597
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7598

7599 7600
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7601

7602
		intel_dp = enc_to_intel_dp(&encoder->base);
7603

7604
		if (!intel_dp->can_mst)
7605 7606
			continue;

7607 7608
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7609 7610 7611
	}
}

7612
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7613
{
7614
	struct intel_encoder *encoder;
7615

7616 7617
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7618
		int ret;
7619

7620 7621 7622 7623 7624 7625
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7626
			continue;
7627

7628
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7629 7630 7631 7632 7633
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7634 7635
	}
}